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Abstract 

The members of a set of conditional probability density functions are called com­

patible if there exists a joint probability density function which generates them. We 

generalize this concept by calling the conditionals functionally compatible if there ex­

ists a (possibly non-integrable) function that behaves like a joint density as far as 

generating the conditionals according to the probability calculus. A necessary and 

sufficient condition for functional compatibility is given, w.hich provides a method 

of calculating this function, if it exists. A Markov transition function is then con­

structed using a set of functionally compatible conditional densities and it is shown, 

using the compatibility results, that the associated Markov chain is positive recurrent 

if and only if the conditionals are compatible. A Gibbs Markov chain, constructed 

via "Gibbs conditionals" from a hierarchical model with an improper posterior, is a 

special case. Monte Carlo approximations based on Gibbs chains are shown to have 

undesirable limiting behavior when the posterior is improper. The results are applied 

to a Bayesian hierarchical one-way random effects model with an improper posterior 

distribution. The model is simple, but also quite similar to some models with im­

proper posteriors which have been used in conjunction with the Gibbs sampler in the 

literature. 



1. Introduction 

Consider two real valued functions !I (xi, x2) and h (xi, x2) with domain ~ 2 . Sup­

pose that there exist two sets, AI and A2, in ~ such that for any x2 E A2, !I is a 

probability density in XI whose support is AI and similarly, for any XI E All h is a 

probability density in x2 with support A2 • The functions !I and h may be thought 

of as conditional probability densities and will hereafter be written as !I (xiix2) and 

h (x2lxi)· Arnold and Press (1989) give necessary and sufficient conditions for the 

existence of a joint density function f (xb x2) whose conditionals are given by !I and 

f2. When such an f exists, !I and h are called compatible conditional densities. 

Arnold and Press allow AI and A2 to depend on x2 and xll respectively. If !I and h 
are compatible and the support sets are fixed, that is AI(x2 ) =AI and A2(xi) = A2, 
then results of Besag (1974) show that the joint density is unique (and satisfies the 

positivity condition). The following simple example from Gourieroux and Monfort 

{1979) shows that uniqueness does not necessarily hold when the support sets are not 

fixed. 

Example 1. Define !I and h by 

ifx2 E [1,2) 

if X2 E (2, 3) 
otherwise 

if XI E (1, 2) 
if XI E (2, 3) 

otherwise 

where I ( ·) is the indicator function. The support sets of !I and h clearly depend on 

x2 and XI, respectively. These conditionals are compatible, but any joint density of 

the form 

f (xb x2) = ad (xi E [1, 2]) I (x2 E [1, 2]) + (1 -a) I (xi E [2, 3]) I (x2 E [2, 3]) 

with a E (0, 1) will produce them. 

In Section 2, we consider the compatibility of the set of conditional densities, 

!I (xiJx2, ... , Xm), ... , fm (xmlxi, ... , Xm-I), under the assumption that the support 

sets are fixed. Our approach is to first introduce a necessary (but not sufficient) condi­

tion for compatibility, which we call functional compatibility. Conditional densities are 

functionally compatible if there exists a function g (possibly non-integrable) which, 

if treated as a joint density, generates the conditionals. For example, !I and h are 

functionally compatible if there exists a function g (xb x2) such that gj J g dxi = / 1 

and g j J g dx2 = f2. Clearly, if no such g exists, the conditionals cannot be com­

patible. On the other hand, the existence of g does not guarantee compatibility 

since g may not be normalizable. For instance, consider the exponential condi­

tionals of Casella and George (1992, Example 2): !I (xiix2) = x2 exp ( -x1x2) and 
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h (x2Jxi) =XI exp ( -xix2)· The non-integrable function g (xi, x2) = exp ( -xix2), if 

treated as a joint density, does yield !I and h as its conditionals, thus !I and h are 

functionally compatible, but they are not compatible (see Theorem 2). 

A necessary and sufficient condition for functional compatibility is given (Theorem 

1) which allows one to check for functional compatibility and construct g if it exists. 

Compatibility of the conditionals follows if and only if g is integrable. Thus, if the 

compatibility of a set of conditionals is in question, one may first check whether or 

not they are functionally compatible. If they are not, then they are not compatible 

either, and if they are, the integral of g must be checked. 

The necessary and sufficient condition for functional compatibility is based on the 

following argument. Assume that the support sets of !I and h are fixed. If h and 

h are compatible, and we let f (xi, x2) denote the unique joint density, then for any 

particular x~ E AI and x~ E A2, we have (Besag 1974, Gelman and Speed 1993) 

and (1.1) 

Therefore, if we are given !I and h, and compatibility is in question, a necessary 

condition for compatibility is that the ratio of the two right-hand sides be constant 

for any point (x~, x~). This condition is actually necessary and sufficient for functional 

compatibility and when it is satisfied, either of the right-hand sides will serve as g. 

In Section 3, we consider a Markov transition function constructed using a set 

of functionally compatible conditional densities. It is shown that a u-finite measure, 

1r, constructed using g, is an invariant measure for the associated Markov chain (see 

Theorem 3). Results from Section 2 imply that 1r is a finite measure (normalizable) 

if and only if the conditional densities (used to construct the transition function) are 

compatible. It follows that the chain is positive recurrent if and only if the conditional 

densities are compatible. Section 3 ends with a general result for a class of null chains 

which describes the limiting behavior of averages. 

The results of Sections 2 and 3 are relevant in situations where the Gibbs sampler 

(Gelfand and Smith 1990, Tierney 1995) is applied in an attempt to explore an 

improper posterior distribution. The remainder of this section is a discussion of 

this particular application and Section 4 gives an example concerning a Bayesian 

hierarchical random effects model (with an improper posterior) which is similar to 

models with improper posteriors which have been employed in the literature. 

Often, either from a lack of prior information or simply for convenience, improper 

priors are assigned to the hyperparameters of Bayesian hierarchical models. When 

improper priors are used in any stage of a hierarchical model, the resulting posterior 

distribution must be checked for propriety. The integration necessary to check pro­

priety and calculate posterior quantities of interest can be daunting, however. When 

the posterior is proper, the Gibbs sampler can often be used to simulate from the 

posterior distribution. The simulation results can then be used to calculate Monte 

Carlo approximations of the posterior quantities of interest, thus avoiding difficult in-
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tegration. Unfortunately, if one mistakenly assumes propriety, it may still be possible 

to apply the Gibbs sampler. Consider the following example. 

Example 2. Let Y1 , Y2 , Y3 be iid N(J.L, cr2) and suppose that the improper prior 

on the parameters is 1r (J.L, cr2) = J!R+ ( cr2) where Is ( ·) is the indicator of the set S. It 

is not difficult to show that the posterior is improper, that is 

(1.2) 

Given this knowledge, consider what would have happened had we assumed that the 

posterior distribution was proper and applied the Gibbs sampler. If we had assumed 

propriety, we would have written the posterior as 

Use of the Gibbs sampler in this situation would require h (J.Licr2 , y), the conditional 

density of J.L given cr2 and the data, and h ( cr2 IJ.L, y ), the conditional density of cr2 given 

J.L and the data. These densities can be calculated by recognition based on (1.3) and it 

follows that h is N(y, cr2 /3) and h is IG ( 1/2,2 (I: (Yi- J.L) 2r 1
) [IG is the inverted 

gamma distribution (see Berger 1985 p.561)]. Note that h and h are functionally 

compatible, with 1r serving as g, but not compatible since 1r is not integrable. 

Given a starting value for J.L, say J.L(o) = y, a Gibbs chain, 

(1.4) 

could be constructed in the usual manner. (The symbol cr2(i) represents the ith value 

of cr2 in the Gibbs chain.) We would then be under the impression that (J.L(n), cr2(n)) 

converges in distribution to a random variable whose distribution is the "posterior 

distribution." 

Figures 1 and 2 show the first 1,000 values of ln IJ.L(i) I and ln ( cr2(i)), respectively, 

for one realization of this Gibbs chain. (The data, y1, y2 , and y3 , were simulated 

from a standard normal distribution.) The chain is apparently out of control. At the 

1,000th iteration, the magnitude of the J.L component is up to about 1037 and the cr2 

component is up to about 1065 . 

Thus, the Gibbs chain in Example 2 provides a "red flag" warning us that there 

may be a problem. If an experimenter had mistakenly assumed propriety of the pos­

terior in Example 2, collected three data points whose mean and standard deviation 

were near 0 and 1, respectively, and then simulated a Gibbs chain like the one shown 

in Figures 1 and 2, he would probably question his assumption regarding propriety 

and discover his mistake before any damage was done. 

If Gibbs chains corresponding to improper posteriors always "misbehaved," there 

would be no reason to worry about demonstrating propriety before applying the Gibbs 
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sampler, since we would discover an improper posterior through the Gibbs output. 

This is not the case, however. Sometimes the output from Gibbs chains corresponding 

to improper posteriors appears perfectly reasonable, that is, the Gibbs chains do not 

provide a "red flag." These situations are very dangerous because one ends up making 

inferences about a nonexistent posterior distribution. Such instances can be found in 

the literature (see Section 4), thus the properties of such chains, and the associated 

Monte Carlo approximations, are of practical interest. 

In general, "Gibbs conditionals" calculated via a proportionality, as are those in 

Example 2, are functionally compatible. Therefore the results from Sections 2 and 3 

may be applied and show that, under some mild regularity conditions, a Gibbs sampler 

is positive recurrent if and only if the posterior distribution is proper. (Note that this 

fact precludes the use of standard "convergence diagnostics" (Cowles and Carlin 1994) 

for detection of improper posteriors through Gibbs output, since the diagnostics are 

based on the assumption that the Gibbs chain is positive recurrent.) It follows from 

the results of Section 3 that, although the output from Gibbs chains corresponding to 

improper posteriors may appear reasonable and can even lead to nice looking pictures 

of (nonexistent) marginal posterior densities, the limiting behavior of the Monte Carlo 

approximations is quite undesirable. 

2. Compatibility of Conditional Densities 

2.1. The Problem 

Consider m measure spaces (Ai, Bi, J-Li), i = 1, ... , m, where each Ai ~ ~n;, Bi is the 

corresponding Borel a--algebra, and /-Li is Lebesgue measure when Ai is uncountable 

and counting measure otherwise. Put A= A1 x · · · x Am and A_i = A1 x · · · x Ai-l x 

Ai+l x · · · x Am. Let Xi denote an element of A so that x = (x1, ... , Xm) represents an 

element of A. Also, elements of A_i will be written x_i = (x1, ... , Xi-l, xi+l, ... , Xm)· 

Suppose that there are functions fi (xilx-i): A-+ [0, oo), i = 1, ... , m, such that 

for every X-i E A_i, fi (·lx-i) is a probability density function with respect to /-Li 

whose support set is Ai. The sets Ai are assumed fixed in that they may not depend 

on x-i· 
Example 3. Take Ai = ~ and let !I, ... , f m have the Gaussian forms 

where the pi's are constants. 

The question of interest is as follows: Does there exists a joint probability density 

whose conditional densities are the fi 's? We refer to !I, ... , f m as candidate condi­

tional densities. They are called compatible if there exists a function, f ( x 1, ... , xm) : 
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A --+ [0, oo), which is a probability density with respect to the product measure 

1-t = /-LI x · · · x J-tm, having support set A, such that 

(2.1) 

for i = 1, ... , m. 

Arnold and Press (1989) give necessary and sufficient conditions for compatibility 

when m = 2 in the more general setting where the support sets of the candidate 

conditionals are not assumed fixed. In the remainder of this section, we consider the 

compatibility of fr, ... , fm· 

2.2. Compatibility versus Functional Compatibility 

We begin by defining functional compatibility. 

Definition 1. Let fr, ... , fm be the set of candidate conditional densities described 

above. If there exists a function g (xi, ... , Xm) : A ----t [0, oo) -such that 

(2.2) 

for i = 1, ... , m, then h, ... , f m are functionally compatible. 

Functional compatibility is necessary, but not sufficient, for compatibility since g 

may not be a probability density. For instance, the function g (xi, x2 ) = exp ( -xix2 ) 

generates the exponential conditionals discussed in the Introduction, but it is clearly 

not a probability density since its integral over the positive quadrant diverges. Note 

that "Gibbs conditionals" calculated via a proportionality, like (1.3), are functionally 

compatible. A necessary and sufficient condition for functional compatibility is now 

developed. The condition is constructive in that it gives the form of g in terms of 

fr, ... ,fm· 

Suppose, for a moment, that our candidate conditionals are compatible. Write the 

joint density as f (xi, ... , xm)· Besag (1974) shows that if (x~, ... , x~) is any fixed 

point in A and (lr, ... , lm) is any one them! permutations of (1, 2, ... , m), then 

(2.3) 

on A. (Note that fi (xilx-i) > 0 whenever (xi, ... , xm) E A so the denominator 

is never zero.) Thus, f (XI, ... , xm) is unique when the candidate conditionals are 

compatible. 

If, on the other hand, the compatibility of fi, ... , fm is in question, them! versions 

of (2.3) can be constructed and compatibility ruled out if the ratio of any two is not 
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constant. For i = 1, ... , m! let li = (lf, 1;, ... , l:n) represent the permutations of 

(1, 2, ... , m). For fixed (x~, ... , x~) E A, define 

n~=I fti (xl~ IXti' ... 'Xt~ 'Xl1; ' ••• 'x;; ) 
( ) J J J 1 ;-1 i+1 m ( ) 

gi XI, ... ,Xm = ( )' 2.4 
TIJ':2 ft~ xl'; lxl;' .. . 'Xt~ 'xl'; ' ... 'xl'; 

J j 1 ;-1 j+1 m 

Theorem 1. The candidate conditional densities !I, ... , f m are functionally compat­

ible if and only if for each fixed (x~, ... , x~) E A, the ratio 

gi (xi, ... ,xm) 

gj (xi, ... ,xm) 
(2.5) 

is constant for all i # j. Moreover, if they are functionally compatible, then any gi 

will serve as g which is unique up to constant multiples. 

Proof. First assume that /r, ... , fm are functionally compatible. Consider some per­

mutation li. Define the function g* ( x11, x 1 ~, ••• , x1:n) = g (x1 , x2 , ..• , xm). Clearly 

*( I I) *.( I I) *( ) g Xti, X1;, ••• , X1; g Xti, Xti, X1;, • •• , X1; • • • g Xti, ... , Xti 
12 m 12 3 m 1 m 

g* (x1;, x1';, •.• , x;; ) g* (x1;, x1;, x1
1;, ••• , x;; ) · · · g* (x1;, ••• , x1; , x1'; ) • 

1 2 m 1 2 3 m 1 m-1 m 

Thus, for every i, gi (xi, ... , Xm) ex: g (xi, ... , xm) and the condition is satisfied. 

Now assume that the condition is satisfied. Take any li and any fixed point 

( x~, ... , x~) E A. It will be shown that gi generates !I, ... , f m as in ( 2. 2). It is clear 

that 

since x1:n appears only once in gi· Let u E {1, 2, ... , m- 1 }. Employing the condition 

of the theorem, we have 

where c (x~, ... , x~) is a constant and lj is such that lfn = l~. Now use the fact that 

and the result follows. 0 
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In terms of the Hammersley-Clifford Theorem (Besag 1974), functional compat­

ibility is equivalent to having constructed the candidate conditional densities using 

appropriate "G-functions" without regard for the integrability condition. 

Example 3 cont. Consider the case m = 3. Some simple calculations show that 

3 

g, (xr, x2 , x3 ) <X exp{-H ~ x~ - 2 ( x1i x;~ (P•i - p,~) + x,i x;i (P•i - P<i) 

+ x1; x1'; (p1; - p1;) + p1; x1; (x1; + x1;) + p1; x1; x1;)] } • 
23 2 3 331 2 212 

Thus, for instance, if l1 = (1, 2, 3) and l2 = (1, 3, 2), we have 

91/92 = exp { (P2- P3) (x2x~ + X3x;- x2x3)} (2.6) 

which is constant only if p2 = p3 . Similar considerations lead to the conclusion that 

these three candidate conditionals are functionally compatible only when Pi = p. 

Analogously, f 1, ... , fm are functionally compatible only if Pi = p, i = 1, ... , m, and 

in that case 

9(x1, ... , Xm) ex exp { -~x'Mmx} (2.7) 

where Mm = -pJm + (1 + p)Im where Jm is an m-dimensional square matrix of 1's 

and Im is an m-dimensional identity matrix. 

If the compatibility of a general set JI, ... , fm is in question, the first step is to 

check that they are functionally compatible using the condition in Theorem 1. If they 

are not functionally compatible, then they are not compatible. If they are functionally 

compatible, then they are compatible if and only if 9 is integrable. More formally, we 

have 

Theorem 2. The functionally compatible conditional densities JI, ... , fm are com­

patible if and only if 

r .. · r 9 (x1, ... , Xm) J.lm (dxm)" · /-l1 (dx1) < 00. 
JA1 }Am 

Proof. If they are compatible then 9 must be proportional to the joint density. Con­

versely, if the integral is finite, then 9 is normalizable and compatibility follows. 0 

Example 3 cont. Assume that Pi= p so that f1 , ... , fm are functionally compat­

ible. According to Theorem 2, they are compatible if and only if (2.7) is integrable, 

which will be the case only if Mm is positive definite. Since the eigenvalues of Mm 

are (1 + p) and 1- p(m- 1), (2.7) will be integrable only when p E ( -1, m~ 1 ) and 

in that case the joint density corresponding to JI, ... , fm is an m-dimensional normal 

with mean 0 and covariance matrix M;;;_1. 
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3. A Markov Chain 

In this section, a Markov transition function is constructed using the functionally 

compatible conditional densities !I, ... , fm· The measure 1r (S) = fs g is shown to be 

invariant for the associated Markov chain which, in light of Theorem 2, implies that 

the chain is positive recurrent if and only if JI, ... , fm are compatible. Gibbs Markov 

chains corresponding to improper posterior distributions are a special case and are 

therefore null (not positive recurrent). We conclude with a general result for null 

chains which can be used to describe the limiting behavior of some standard Monte 

Carlo approximations. 

3.1. Construction 

Let / 1 , ... , fm be a set of continuous functionally compatible conditional densities 

and let B represent the product a-algebra corresponding to A. Consider the function 

P : A x B -+ [0, 1] given by 

P (x, S) = (3.1) 

1 fi (t1IX2, · · ·, Xm}h (t2itb X3, · · ·, Xm) · · · fm (tmlt1, · · ·, tm-1) J.], (d (tl, ... , tm)). 

For any x E A, P (x, ·)is a probability measure on B. Also, for any S E B, P (·, S) is a 

lower semi-continuous function (see the Appendix), which implies that it's measurable 

(Billingsley 1986 p.188). Therefore, P is a Markov transition function (Meyn and 

Tweedie 1992, Chapter 3) which defines a discrete time, time homogeneous Markov 

chain <P = { ¢0 , <P1 , <P2 , ••. } on the product space A00 • The initial state of the chain 

is <Po = ¢0 and the transition probabilities are now briefly described. For any i = 

0, 1, 2, ... , the conditional distribution of <Pi+1 given that <Pi = <Pi is P (<Pi,·). For 

n ~ 2, define the n-step Markov transition functions inductively as 

pn (x, S) = L P (x, dy) pn-l (y, S). 

For any i = 0, 1, 2, ... and any n = 2, 3, ... , the conditional distribution of <Pi+n given 

that <Pi = <Pi is pn(</Ji, · ). Thus, for example, pn(¢>0, S) is the probability that the 

chain is in the set S after the first n steps. The Markov chain <P is J.J,-irreducible and 

aperiodic since the fi 's are strictly positive on A. 

3.2. Positive Recurrence and Compatibility 

Define a measure, 1r (·), on the measurable space (A, B) using g of (2.2) as follows 

7r (S) = 1 g (x1, ... , Xm) J.t (d (xi,··· , Xm)). (3.2) 

It is assumed throughout that w(·) is a-finite. 

8 



Theorem 3. The measure 1r 0 defined in {3.2} is a 6-.finite invariant measure for 

<I>, that is, for any S E B 

1r (S) = i 1r (dx) P (x, S). (3.3) 

Proof. We give a proof for m=2. Extension to the general case is straightforward. 

i 1r (d(xb x2)) P((xi, x2), S) 

i
1 
i

2 
[1 !I (ti!x2)h(t21ti)tL(d(ti, t2))] g(xr, x2) tL(dx2) tL(dxi) 

1 [i
2 
i

1 
g(xi, x2) fr(tdx2)h(t2iti)tL(dxi) tL(dx2)ltL(d(tb t 2)) 

1 [i
2 

g(ti, x2) h(t2iti)11-(dx2)] tL(d(ti, t2)) 

1 g(ti, t2) tL(d(ti, t2)) 

1r (S) (3.4) 

where the third and fourth equalities follow from functional compatibility, that is, 

from (2.2). 0 

If 1r is finite, it is the unique (up to constant multiples) invariant measure and <I> 

is positive recurrent, otherwise <I> is null (Meyn and Tweedie 1993, p230). This fact, 

together with Theorems 2 and 3 give us the following result. 

Theorem 4. The Markov chain <I> is positive recurrent if and only if !I, ... , fm are 

compatible. 

Although our main interest is in the chains resulting from incompatible fi 's, the 

well-known compatible case is discussed briefly for completeness. Tierney (1991) 

shows that if <I> is positive recurrent, and the probability measure P(x, ·) is abso­

lutely continuous w.r.t. 1r for all x E A, then <I> is positive Harris recurrent. (Harris 

recurrence is stronger than recurrence: for any set V E B such that 11-(V) > 0 and any 

starting point c/Jo E A, a Harris recurrent chain visits V an infinite number of times 

with probability one, while a recurrent chain has only an infinite expected number 

of visits to V.) Since the /i's are all strictly positive on A, 1r(S) = 0 implies that 

11-(S) = 0 for any S E B, which clearly implies that P(x, S) = 0, no matter what the 

value of x. Thus, if 1r is finite, <I> is positive Harris recurrent. 

Assuming that 1r is finite, let 1r1 0 = 1r (·) j1r (A). Successful use of the Gibbs 

sampler relies on two facts about <I> which follow from positive Harris recurrence 

(Meyn and Tweedie 1992, Theorems 13.0.1 and 17.0.1). First, for any starting value 
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¢0 E A, the probability measures given by pn(¢0 , ·)converge in total variation to the 

probability measure 7r1 as n -t oo. This implies that the <Pn converge in distribution 

to a random variable with distribution 1r'. Second, the law of large numbers holds, 

that is, if tis a real-valued function with domain A such that J jt (x) j1r'(dx) is finite, 

then ~ 2:::~= 1 t(<Pi) -t J t (x) 1r'(dx) with probability one. 

3.3. A General Result for Null Chains 

Let r = ('y0,f1,f2 , ... ) be a Markov chain on a product space, A00 , where A is a 

Euclidean space of the type described at the beginning of Section 2.1. Let R and P 'Yo 

denote the Markov transition function and the probability law for the entire chain, 

respectively. (We user and R here to avoid confusion with <I> and P.) One definition 

is required before the result is stated. The chain, r, is called a Feller chain if R (·, S) 

is a lower semi-continuous function for every S E B. 

Theorem 5. Suppose that r is an aperiodic, 11-irreducible, null, Feller Markov chain 

where the support of 11 has non-empty interior. If t : A -t ~+. is a bounded measurable 

function for which, given E > 0, there exists a compact set C E A such that t (y) ::::; E 

V y E cc, then 

n 

lim inf ~ L t (C) = 0 a.s. 
n~oo n 

i=1 

(3.5) 

Proof. Choose E E (0, 1) and let c1 c c2 c ... be a sequence of compact sets in A 

such that 'Yo E C1 and such that t (y) ::::; Ej when y E CJ. The conditions of the theorem 

imply that if C E A is a compact set containing ')'o, then limn~oo Rn ('y0 , C) = 0 

(Meyn and Tweedie 1993 pp. 127, 454). Furthermore, by the consistency of Cesaro 

summation (Billingsley 1986 p.572) we have limn~oo n-1 2:::~ 1 Ri ('Yo, C) = 0. Thus, 

we may choose a subsequence, {nj}, of the positive integers such that 

It will be shown that 

According to the first Borel-Cantelli Lemma, it is enough to show that for any 6 > 0, 
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Let M be an upper bound fort. Since t :S Mlci +(:ilcj for any j (I is an indicator), 

we have 

< 00 

where the second step follows from Markov's inequality. 0 

This result can be used to demonstrate that many standard Monte Carlo ap­

proximations used in Gibbs sampling have undesirable limiting behavior when the 

posterior is improper. The example developed in the next. section shows that these 

undesirable properties are not always apparent from the Gibbs output. 

4. A Gibbs Sampling Application 

In this section we discuss a Bayesian hierarchical version of the one-way random ef­

fects model which has an improper posterior. This model is similar to the hierarchical 

model in Example 2 in that if one assumes that the posterior is proper, the Gibbs 

conditionals and hence a Gibbs chain may be constructed. Unlike the Gibbs chain in 

Example 2, however, this chain is (seemingly) well-behaved and provides no warning 

that the posterior is improper. The results from the previous sections are used to 

demonstrate that, although they may seem well-behaved, the Monte Carlo approxi­

mations constructed using this Gibbs chain have undesirable limiting behavior. 

Although the model discussed in this section is quite simplistic, it is a special case 

of a hierarchical linear mixed model (Hobert and Casella 1994) which may possess an 

improper posterior depending on which improper priors are placed on the variance 

components. Models of this type possessing improper posteriors have been employed 

in the literature (see the references below) and this example is therefore of practical 

as well as theoretical interest. 

Consider the simple one-way random effects model 

(4.1) 

where i = 1, 2, ... , k, j = 1, 2, ... , J. It is assumed that the ui's (the random effects) 

are iid N(O, a 2 ) and the Ei/s (white noise) are iid N(O, a-;). The ui's and Ei/s are 

assumed independent. The overall mean, (3, and the variance components, a 2 and a;, 
are considered unknown parameters. 
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This frequentist model fits nicely into a Bayesian conditionally independent hier­

archical model (Kass and Steffey 1989) by writing (4.1) as a two stage hierarchy and 

specifying priors on the three unknown parameters 

Yii LB, u, a; f"V N ({3 + ui, a;) 
{3 f"V n(/3) uia2 

f"V Nk(O, la2) a; f"V 1r (a;) (4.2) 

a2 f"V 7r ( a2) 

where u' = (u1 , ... , uk) and the priors n(/3), 1r (a;) and 1r (a2 ) must be elicited. (It 

is often assumed that the variance components are not independent a priori, that is, 

1r (a;) is often allowed to depend on a 2 . The Gibbs sampler is more difficult to imple­

ment in these situations, however, because simulating from the "Gibbs conditionals" 

is not easy. Lehmann (1983, p.248) and Chaloner (1987) both discuss such models 

and give further references.) 

A specific example of model ( 4.2) discussed by Hill (1965) and Tiao and Tan (1965) 

has n(/3) ex 1, 1r (a;) ex 1/a; and 1r (a2) ex: 1/a2 where the last two are restricted to 

~+- Hill (1965) shows that the posterior distribution corresponding to this model is 

improper. If, however, propriety of the posterior were incorrectly assumed, as was 

done for similar models in Gelfand et al. (1990, }lvlodel I, Section 4) and Wang et al. 

(1993, p.44), then the "Gibbs conditionals" could be computed (see Example 2) and 

the result is 

h (uiiu-i, /3, a;, a 2, y) = N ( Ju~:u; (Yi·- Jf3), 1 ;~::;) i = 1, ... , k 

fk+1 (f3iu, a;, a 2 , y) = N (Y .. - u., Jt) 

fk+2 (a;iu, /3, a 2,y) = IG (Jk/2,2 (I:ii:; (Yii- {3- ui) 2) -
1

) 

fk+3 ( a 2 iu, {3, a;, y) = IG (k/2, 2 (u'u) - 1) 

(4.3) 

where Y .. = Ei,j Yi;/ Jk, Yi· =I:; Yi;, u. = L:i udk, IG stands for inverted gamma, 
andy represents the data. (We say X f"V IG (a, b) if it has support ~+ and fx (x) ex 

[xa+l exp (1/xb)r1 .) Thus, JI, ... , fk+3 are a set of continuous functionally compat­

ible conditional densities. They are not compatible, however, since the posterior is 

improper (see Theorem 2). Theorem 4 tells us that the Markov chain, <P, constructed 

using JI, ... , fk+3 is null, that is, the Gibbs chain is null. 

As mentioned above, this is an example of a situation in which the Gibbs output 

does not provide a "red flag" informing us that the posterior is improper. Suppose 

that we are under the impression that the posterior corresponding to the model ( 4.2) 

is proper and that we have data for which this model is appropriate. It is desired to 

simulate from the posterior (using the Gibbs algorithm) and construct Monte Carlo 

estimates of (1) fu21y (·iy), the marginal posterior density of a 2 , and (2) E'lr 1[1,2] (/3), 
the posterior probability that f3 is in the interval [1, 2]. Write the Gibbs chain as 

( 4.4) 
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where the zeros indicate starting values. We might approximate fcr2ly (·ly) at the 

point a using 

b+n 

Jcr2IY (aly) = ~ 2:fk+3 (alu(i),,B(i),a;<i),y) (4.5) 
i=b 

and E7r 1[1,2] (,8) using (Liu, Wong and Kong 1994) 

1 b+n 1 1 ( Jk · 2) ~ 2:: 
2 

. exp - ~ ( t - 11 .. - u~t)) dt 
i=b [1,2] V 27raE (t) I Jk 2a€ 

(4.6) 

where b is the "burn-in" and n is "large." 

Before considering the limiting behavior of these approximations, we give an exam­

ple of how well-behaved they appear. Figure 3 shows the pointwise estimate Jcr2ly (aly) 

(b=15,000, n=1,000) from a realization of (4.4) based on data simulated using i = 7, 

j = 5, ,8 = 10, a 2 = 5, and a; = 2. A histogram of a 2U+15•000), j = 1, ... , 1000, is 

shown in the same figure. Note that the density approximation and histogram appear 

reasonable and in no way warn the user of an improper posterior. One might believe 

that the chain would eventually misbehave if it were allowed to run for a long time, 

but this is not the case.· Some of these chains were run for millions of iterations and 

never misbehaved. 

Theorem 5 shows that for any point a, 

1 b+n . . . 
lim inf- 2:: fk+3 ( alu(t), ,B(t), a;(z), y) = 0 a.s. 

n-+oo n 
i=b 

Thus, at each point, the Monte Carlo approximation has an almost sure limit of zero 

or none at all. Similarly 

. . 1 b+n 1 1 ( J k . 2) 
hmmf- 2:: exp -~ (t- fl .. - u~t)) dt = 0 a.s. 

n-+oo n i=b [1,2] V27ra;(i) I Jk 2aE () 

There are many approximations to which Theorem 5 does not apply. For example, 

a more intuitive approximation of E1r /[1,2] (,8), which is sometimes more variable than 

(4.6) (Liu, Wong and Kong 1994), is 

(4.7) 

Theorem 5 cannot be applied to this approximation because the indicator function 

does not satisfy the necessary conditions. On the other hand, if the indicator in ( 4. 7) 

were replaced with /[-M,M]kx[1,2Jx[M-l,M]x[M-l,MJ (<I>i) where M is some large, positive 

number, the approximation would be practically the same, and Theorem 5 could be 

applied. 
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5. Concluding Remarks 

When Bayesian hierarchical models with improper priors are employed, the high­

dimensional integration required to calculate posterior quantities of interest is often 

extremely difficult. The ability to use the Gibbs sampler in these situations is usually 

a blessing, but may be a curse. Sometimes a perfectly good set of "Gibbs conditionals" 

may be calculated from a hierarchical model with an improper posterior distribution. 

Since demonstrating propriety of the posterior is not a necessary step in calculating 

the "Gibbs conditionals" (and usually involves the same complicated integration that 

one is avoiding by using the Gibbs sampler), the experimenter might simply assume 

propriety and use the Gibbs sampler to calculate the "posterior quantities of interest." 

The problem is that the resulting Gibbs output may appear perfectly reasonable (see 

Section 4) which could lead to inferences about a nonexistent posterior distribution. 

This paper contains some general theory which can be used to characterize the 

behavior of "improper Gibbs" chains, that is, Gibbs Markov chains constructed using 

"Gibbs conditionals" associated with an improper posterior. We have generalized 

Arnold and Press's (1989) notion of compatibility by calling conditional densities 

functionally compatible if there exists a positive function, g, which behaves as the 

joint density function in every way except that it need not be integrable. Theorem 1 

gives a necessary and sufficient condition for ·functional compatibility as well as the 

form of g (when it exists). "Gibbs conditionals" corresponding to improper posteriors 

are functionally compatible due to the manner in which they are constructed. This 

implies that "improper" Gibbs chains are special cases of the chain defined by the 

Markov transition function in Section 3 and are thus not positive recurrent, i.e., they 

are null (either transient or null recurrent). 

Sometimes when an "improper" Gibbs chain is simulated, the output appears "out 

of control" (see Example 2) and therefore warns the user that there is a problem. 

The danger occurs when "improper" Gibbs chains produce nice looking output either 

because they are "almost" positive recurrent (like a chain constructed with the normal 

conditionals in Example 3 with p = 1/(m-1)) or because they "get stuck" in a "nice" 

part of the space (Geyer 1992). Our results show that although some "improper" 

Monte Carlo approximations may appear reasonable, they either have an almost 

certain limit of zero or none at all. 

Ideally, a hierarchical model (with improper priors) should always be shown to 

possess a proper posterior distribution before being used as a model for data. How­

ever, for many hierarchical models, demonstrating propriety is extremely difficult, 

while employing the Gibbs sampler is almost trivial. Thus, the ability to use the 

Gibbs output to diagnose positive recurrence (propriety) would be useful. One such 

diagnostic, described in Hobert (1994), is based on the fact that an infinite mean 

return time (to a compact set) implies that the Gibbs chain is null, i.e., that the 

posterior is improper. Independent Gibbs chains are used to collect a random sample 

of return times (to some arbitrary compact set) and the technique suggested by Hill 
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(1975) is used to decide if the return time distribution has an infinite mean or not. 

Unfortunately, this technique seems to be effective in detecting improper posteriors 

only in cases where the chain is clearly out of control. 

There is an important distinction between the diagnostics for positive recurrence 

and the so-called "convergence diagnostics" proposed in the MCMC literature (see, for 

example, Robert 1993, Tanner 1993, p.l14, Gelman and Rubin 1992, Roberts 1992, 

and Raftery and Banfield 1991). The latter assume that the chain is positive recurrent 

and use the output to provide information about when Monte Carlo approximations 

are "close enough" to the true values. They are not designed to detect if the Gibbs 

chain converges (positive recurrence), nor even when the Gibbs chain has converged; 

it never does. Thus, one should not count on "convergence diagnostics" to detect an 

improper posterior. 

There are many Monte Carlo approximations which are Cesaro averages of func­

tions which do not satisfy the conditions of Theorem 5. Although our intuition tells 

us that many of these approximations should also have undesirable limiting behav­

ior, our results do not apply. Results describing the limiting behavior of averages of 

functions which do not satisfy the "arbitrarily small off of compact sets" condition of 

Theorem 5, (like the indicator function in ( 4. 7)) would clearly be useful. 
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6. Appendix 

Recall (Bartle 1976 p.180) that P (·, S) is lower semi-continuous at the point x* E A 

if 

lim inf P (x, S) 2: P (x*, S) 
x---tx• 

where 

liminf P (x, S) = liminf {P (x, S): 0 < llx- x*ll < r, x E A}. 
x---tx• r---+0 

Lemma 1. For any S E B and any sequence Xn E A such that Xn --+ x* 

lim inf P (xn, S) 2: P (x*, S) . 
n---too 

Proof. Write the integrand in (3.1) as k (t, x). Define fn (t) = k (t, Xn)· By the 

continuity of the conditional densities, we have fn (t) --+ k (t,x*) for all t and the 

result follows by Fatou's Lemma. 0 

Theorem 6. ForSE B, P (·, S), is lower semi-continuous. 

Proof. Define the following notation 

4> (r) = inf {P (x, S): 0 < llx- x*ll < r, x E A}. 

First, if x* is not a limit point of A, then the theorem is trivial, so assume x* is a 

limit point and that the theorem is false, that is, 

lim inf P (x, S) = l < P (x*, S). 
x---tx• 

Let rn--+ 0. Then limn-too 4> (rn) =land for each k = 1, 2, ... , there exists an Nk s.t. 

14> (rn) - ll < 2-k whenever n 2: Nk. We may clearly assume that Nk+l > Nk· Let 

xk E {x: 0 < llx- x*ll < rNk' x E A} be such that IP (xk, S)- 4> (rNk) I< 2-k. Then 

xk--+ x* and IP (xk, S) - ll < 21-k, but this contradicts Lemma 1. 0 
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Figure 1: The natural logarithm of the absolute value of the /l(i)'s versus i for the 

first 1,000 iterations of a Gibbs chain. The data, (y1, Y2, y3), were realizations of 

independent standard normals. The densities used to build the chain were flia2 "-' 

N (y, a2 /3) and a2 1fl "-' IG ( 1/2, 2 (2:::: (Yi- fl?) -l). 
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Figure 2: The natural logarithm of the o-2(i)'s versus i for the first 1,000 iterations 

of a Gibbs chain. The data, (y1, y2 , y3 ), were realizations of independent standard 

normals. The densities used to build the chain were J.Lio-2 "'N (y, o-2 /3) and o-2 1J.L rv 

IG ( 1/2,2 (2::: (Yi- J.L)2) -l). 
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Figure 3: Histogram of the 1000 values of the effect variance from the null Gibbs 

chain, that is, a histogram of a 2U+Is,ooo) for j = 1, 2, ... , 1000. Superimposed is the 

approximate (supposed) marginal posterior density of a 2 . An appropriately scaled 

version of fu2jy (aiy) is on the ordinate with a on the abscissa. (Actually, eight of the 

1,000 values of the effect variance, ranging from 38.1 to 169.7, were not included in 

the histogram.) 
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