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Abstract—Motivated by applications to sensor networks and pri-
vacy preserving databases, we consider the problem of functional
compression. The objective is to separately compress possibly cor-
related discrete sources such that an arbitrary but fixed determin-
istic function of those sources can be computed given the com-
pressed data from each source. We consider both the lossless and
lossy computation of a function. Specifically, we present results of
the rate regions for three instances of the problem where there are
two sources: 1) lossless computation where one source is available
at the decoder; 2) under a special condition, lossless computation
where both sources are separately encoded; and 3) lossy computa-
tion where one source is available at the decoder. For all of these
instances, we present a layered architecture for distributed coding:
first preprocess data at each source using colorings of certain char-
acteristic graphs and then use standard distributed source coding
(a la Slepian and Wolfs scheme) to compress them. For the first in-
stance, our results extend the approach developed by Orlitsky and
Roche (2001) in the sense that our scheme requires simpler struc-
ture of coloring rather than independent sets as in the previous
case. As an intermediate step to obtain these results, we obtain an
asymptotic characterization of conditional graph coloring for an
OR product of graphs generalizing a result of Korner (1973), which
should be of interest in its own right.

Index Terms—Distributed computing, distributed source coding,
functional compression.

I. INTRODUCTION

G
ENERALLY speaking, data compression considers the

compression of a source (sources) and its (their) recovery

via a decoding algorithm. Functional compression considers the

recovery not of the sources, but of a function of the sources. It

is a method for reducing the number of bits required to convey

relevant information from disparate sources to a third party. The

key contributions of this article are to provide meaning to the
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word “relevant” in this context. We will derive the information

theoretic limits for a selection of functional compression prob-

lems and give novel algorithms to achieve these rates.

A. Motivations and Applications

We are motivated to study this problem mainly by two ap-

plications. First, consider medical records databases. The data

is located in several different locations. There are enormous

amounts of private data in the databases. Some government

agency wants to release certain statistics, or functions, of the

data useful to researchers. Thinking of the data as a bit-string,

we provide a way for the agency to release a minimal set of bits

to compute a set of allowable functions. Thus, our architecture

allows for a minimal loss of privacy, given the need to compute

certain statistics.

Next, consider a network of wireless sensors measuring tem-

perature in a building. There are bandwidth and power con-

straints for each sensor, and the sensors communicate only with

a central receiver, not with each other. The receiver wishes only

to compute the average temperature in the building. We want to

determine whether it is possible to compress beyond the tradi-

tional distributed data compression rate bounds given by Slepian

and Wolf.

We can frame both of the above questions as functional com-

pression problems. In each case, we wish to minimize the source

description rates either to guarantee privacy or to achieve higher

compression rates (thus conserving bandwidth and power).

We demonstrate the possible rate gains by example.

Example 1: Consider two sources uniformly and indepen-

dently producing -bit integers and ; assume . We

assume independence to bring into focus the compression gains

from using knowledge of the function. First suppose

is to be perfectly reconstructed at the decoder. Then, the

rate at which can encode its information is bits per symbol

(bps); the same holds for . Thus, the rate sum is bits per

function-value (bpf).

Next, suppose . The value of

depends only upon the final two bits of both and .

Thus, at most (and in fact, exactly), 2 bps is the encoding rate,

for a rate sum of 4 bpf. Note that the rate advantage, , is

unbounded because we are reducing a possibly huge alphabet to

one of size 4.

Finally, suppose as before, but

the decoder is allowed to recover up to some distortion. We

consider the Hamming distortion function on . Consider recov-

ering up to a Hamming distortion of 1. One possible coding

scheme would simply encode the single least significant bit for

both and . Then one could recover the least significant bit

0018-9448/$26.00 © 2010 IEEE
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TABLE I
RESEARCH ARTICLES ON ZERO-DISTORTION SOURCE CODING PROBLEMS

of , thus achieving an encoding rate of 1 bps per source

or 2 bpf.

These examples suggest that the knowledge of the decoder’s

final objective help achieve better compression rates. This ar-

ticle provides a general framework that, in certain cases, allows

us to solve the problem of finding the best possible rates as well

as coding schemes that allow for approximations of these rates.

Example 1 showcases the three specific scenarios considered

in this article: side information with zero distortion, distributed

compression with zero distortion, and side information with

nonzero distortion. We proceed by placing our results in their

historical context. It should be noted that this topic has a long,

elaborate history and we will be able to mention only a few of

the closely related results.

B. Historical Context

We can categorize compression problems with two sources

along three dimensions. First, whether one source is locally

available at the receiver (call this “side information”) or

whether both sources are communicating separately (call this

“distributed”). Second, whether or is more

general. Finally, whether there is zero-distortion or nonzero-dis-

tortion. In all cases, the goal is to determine the rates (

for distributed coding or for side information coding) at

which and must be encoded in order for the decoder to

compute within distortion with high proba-

bility.

1) Zero Distortion: First, consider zero distortion. Shannon

[1] considers the side information problem where .

Slepian and Wolf [3] consider the distributed problem where

. Many practical and near-optimal coding

schemes have been developed for both of the above problems,

such as DISCUS codes by Pradhan and Ramchandran [6] and

source-splitting techniques by Coleman et al. [7]. We provide

the precise theorems in a later section.

Orlitsky and Roche provide a single-letter characterization

for the side information problem for a general function .

Ahlswede and Körner [4] determine the rate region for the dis-

tributed problem for . Körner and Marton [5] con-

sider zero-distortion with both sources separately encoded for

the function . There has been little

work on a general function in the distributed zero-dis-

tortion case. A summary of these contributions are summarized

in Table I.

For this case of zero distortion, we will provide a framework

that leads to an optimal modular coding scheme for the side in-

formation problem for general functions. We also give condi-

tions under which this framework can be extended to the dis-

tributed problem for general functions. In a sense, our results

extend (and imply) results of Orlitsky and Roche by providing

TABLE II
RESEARCH ARTICLES ON NONZERO-DISTORTION SOURCE CODING PROBLEMS

Fig. 1. Functional compression problem with side information.

simpler and modular scheme for the setup of zero distortion with

side information.

2) Nonzero Distortion: Next, consider nonzero distortion

problems. Wyner and Ziv [8] considered the side information

problem for . Yamamoto [9] obtained the rate re-

gion for the side information problem for general function .

However, this was an implicit single-letter characterziation. The

result of Orlitsky and Roche [2] provided more explicit form for

the case of zero distortion case in terms of independent sets of

a certain characteristic graph.

The rate region for the case of nonzero distortion with both

sources separately encoded is unknown, but bounds have been

given by Berger and Yeung [10], Barros and Servetto [11], and

Wagner, Tavildar, and Viswanath [12]. Wagner et al. considered

a specific distortion function for their results (quadratic). In the

context of functional compression, all of these theorems are spe-

cific to .

We note that Feng, Effros, and Savari [13] extended the

result of Yamamoto [9] for the side information problem where

the encoder and decoder have noisy information about the

sources. These results are summarized in Table II. For the case

of nonzero distortion, we extend the framework derived for

zero distortion and apply it in this more general setting. As

indicated above, the distributed setting with nonzero distortion

and a general function is quite difficult (even the special case

is not completely solved).

C. Overview of Results

Now, we describe the three problems considered in this article

along with an overview of the results.

1) Functional Compression With Side Information: The side

information problem is depicted in Fig. 1. We describe a scheme

for encoding such that can be computed within ex-

pected distortion at a receiver that knows .

The optimal rate for the problem of the functional compres-

sion with side information was given by Orlitsky and Roche in

the zero-distortion case. While the resulting characterization is

complete and tight, it is difficult to calculate even for simple

source distributions. For this problem, this article provides a

new interpretation for that rate through a coloring algorithm.

Computing the Orlitsky–Roche rate requires optimizing a

distribution over an auxiliary random variable . We provide
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Fig. 2. Distributed functional compression problem.

an interpretation of that leads to an achievability scheme

for the Orlitsky–Roche rate that is modular, with each module

being a well-studied problem. It can be extended to—and

motivates—our functional distributed source coding scheme

below.

As mentioned earlier, Yamamoto gave a characterization of

the rate distortion function for this problem as an optimization

over an auxiliary random variable. We give a new interpreta-

tion to Yamamotos rate distortion function for nonzero distor-

tion. Our formulation of the rate distortion function leads to a

coding scheme that extends the coding schemes for the zero dis-

tortion case. Further, we give a simple achievability scheme that

achieves compression rates that are certainly at least as good as

the Slepian–Wolf rates and also at least as good as the zero-dis-

tortion rate.

For zero-distortion, the rate is a special case of the distributed

functional compression problem considered next where one

source is compressed at entropy-rate, thus allowing for recon-

struction at the decoder.

2) Distributed Functional Compression: The distributed

functional compression problem is depicted in Fig. 2. In this

problem, and are separately encoded such that the de-

coder can compute with zero distortion and arbitrarily

small probability of error. We describe the conditions under

which the coding scheme mentioned in the previous section

can be extended to the distributed set up. Further, we provide

a less general condition depending only upon the probability

distribution of the sources under which our scheme is optimal.

Thus, we extend the Slepian–Wolf rate region to a general

deterministic function . Our rate region is, in general,

an inner bound to the general rate region, and we provide

conditions under which it is the true rate region.

The distributed functional compression problem is depicted

in Fig. 2. In this problem, and are separately encoded such

that the decoder can compute with zero distortion and

arbitrarily small probability of error. We describe the conditions

under which the coding scheme mentioned in the previous sec-

tion can be extended to the distributed set up. Further, we pro-

vide a less general condition depending only upon the proba-

bility distribution of the sources under which our scheme is op-

timal. Thus, we extend the Slepian–Wolf rate region to a general

deterministic function . Our rate region is, in general, an

inner bound to the general rate region, and we provide condi-

tions under which it is the true rate region. We note that the re-

sult about asymptotic characterization of the conditional graph

coloring of an OR product of graphs, stated as Theorem 13, is a

key step in establishing above results and should be interest in

its own right. This can be thought of as generalization of result

by Korner [14].

D. Organization

The rest of the article is organized as follows. Section II gives

the problem statement and presents the related technical back-

ground necessary to understand the main results. Section III

presents those results. Section IV gives an example application

of our results to Blue Force Tracking. The proofs for our results

are given in Section V. Future research directions and conclu-

sions are given in Section VI.

II. FUNCTIONAL COMPRESSION BACKGROUND

We consider the three proposed problems within a common

framework. We borrow much of the notation from [15, Chapter

12].

A. Problem Setup

Let and be discrete memoryless sources

drawn from finite sets and according to a joint distribu-

tion . Denote by and the marginals of .

We denote -sequences of random variables and by

and , respectively, where

and are clear from context. We generally assume . Be-

cause the sequence is drawn i.i.d. according to ,

we can write the probability of any instance of the sequence as

.

In this paper, we shall use the notion of strong typicality.

Specifically, for given , we call a sequence as

-jointly typical if for all

In the above, corresponds to the empirical distribu-

tion induced by defined as

where is the standard characteristic function with

and . Let denote the set of all such -jointly typical

sequences of length . It can be easily checked that, if

is -jointly typical then and are -typical. That is, for each

and

Again, here and represent marginal empirical dis-

tributions induced by and respectively defined as, for any

and

The sources encode their messages (at rates

); a common decoder uses these descriptions to com-

pute an approximation to a fixed deterministic function
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or , its vector extension,

where again will be clear from context.

For any , and , we define a distributed functional

code of block length for the joint source and function

as two encoder maps

and a decoder map

Consider a distortion function, , with

vector extension

where . As in [8], we assume that the distortion

function satisfies if and only if . (Oth-

erwise, one can define the equivalence classes of the function

values to make this condition hold.)

The probability of error is

A rate pair, , is achievable for a distortion if there

exists a sequence of distributed functional codes at those rates

and distortion level such that as . The achiev-

able rate region is the set closure of the set of all achievable

rates. Our most general objective is to find this achievable rate

region.

B. Previous Results

We begin by defining a construct useful in formulating all the

results.

Definition 2: The characteristic graph of

with respect to , and is defined as follows:

, and is in if there exists a

such that and .

Defined thus, is the “confusability graph” from the per-

spective of the receiver. If , then the descrip-

tions of and must be different to avoid confusion about

at the receiver. This was first defined by Shannon when

studying the zero error capacity of noisy channels [16]. Witsen-

hausen [17] used this graph to consider our problem in the case

when one source is deterministic, or equivalently, when one en-

codes to compute with 0 distortion. The characteristic

graph of with respect to , and is defined

analogously and denoted . When notationally convenient and

clear, we will drop the subscript.

The importance of using the characteristic graph construct be-

comes clear when considering independent sets1 of the graph.

1A subset of vertices of a graph � is an independent set if no two nodes
in the subset are adjacent to each other in �. With the characteristic graph,
independent sets form equivalence classes.

Fig. 3. Example of a characteristic graph.

By definition of the edge set, knowledge of and the indepen-

dent set uniquely determines .

We illustrate this with Example 3.

Example 3: To illustrate the idea of confusability and the

characteristic graph, consider again the sources from Example

1. Suppose both sources are uniformly and independently gen-

erating 3-bit integers. The function of interest is

, then the characteristic graph of with respect

to for all , and is shown in Fig. 3. There

is an edge between and if and only if they differ in one

or both of their final two bits. This is because, given any

if and only if and have the same

final two bits.

Next we define graph entropy, which we use later to derive

more generally the communication rate required for problems

as in Example 3.

Definition 4: Given a graph and a distribution

on the vertices , Körner [14] defines the graph entropy as

(1)

where is the set of all independent sets of .

The notation means that we are minimizing

over all distributions such that implies

where is an independent set of the graph . We now

demonstrate how this can be used to solve problems like that

given in Example 3.

Example 5: Consider again the scenario in Example 1 as

presented in Example 3. For the graph in Fig. 3, the maximal

independent sets are the sets with the same final two bits. To

minimize , we must maxi-

mize ; this occurs when is nonzero only over

the 4 maximal independent sets of the graph. This is because

for all maximal independent . Therefore, we

get .

Witsenhausen [17] considered a graph with vertices equal

to the support of the random variable and the edge set de-

fined such that and have an edge when ; he

showed that the graph entropy is the minimal rate at which a

single source can be encoded such that a desired function can

be computed with zero distortion. Witsenhausen’s graph equals

the characteristic graph of with respect to , and

when is constant.

Orlitsky and Roche [2] defined an extension of Körner’s

graph entropy, the conditional graph entropy.
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Definition 6: The conditional graph entropy is

(2)

The additional constraint that forms a Markov

chain formally enforces the constraint that should not contain

any information about that is not available through . If

and are independent, .

Theorem 7 (Orlitisky–Roche Theorem, 2001 [2]): When

is the characteristic graph of with respect to , and

, then is the rate region for reliable

computation of the function with zero distortion and

arbitrarily small probability of error when is available as side

information.

A natural extension of this problem is the functional compres-

sion with side information problem for nonzero distortion. Ya-

mamoto gives a full characterization of the rate-distortion func-

tion for the side information functional compression problem

[9] as a generalization of the Wyner–Ziv side-information rate-

distortion function [8]. Specifically, Yamamoto gives the rate

distortion function as follows.

Theorem 8 (Yamamoto Theorem, 1982): The rate distortion

function for the functional compression with side information

problem is

where is the collection of all distributions on given

such that forms a Markov chain and there exists a

satisfying .

This is a natural extension of the Wyner–Ziv rate-distortion

result [8]. The constraint in the definition

of the Orlitsky–Roche rate (Definition 6) specifies a subset of

distributions in which retain optimality when .

C. Graph Entropies

Our results depend on the use of more graph tools, which

we now describe. Alon and Orlitsky [18] defined the OR-power

graph of as where and two vertices

if any component

. Thus, two blocks of source observations are confusable iff

any pair of symbols in those blocks are confusable, i.e., OR

operation over confusability induced by the individual symbols

in the block pair.

A vertex coloring of a graph is any function of

a graph such that implies

. The entropy of a coloring is the entropy of the induced

distribution on colors where

and is called a color class.

Definition 9: Let be an high-probability set if

. Let the conditional distribution on be denoted

by , defined as for any and

otherwise. Let the characteristic graph of with

respect to , and be denoted by and the

characteristic graph of with respect to , and by

. Clearly, and . We call and

as -colorings of and if they are valid colorings of

and for any high-probability set and the corresponding

conditional distribution .

Alon and Orlitsky [18] defined the chromatic entropy of a

graph as follows.

Definition 10:

Well-known typicality results (e.g., [15]) imply that there

exists a high probability set for which the graph vertices

are roughly equiprobable. Thus, the chromatic entropy is a

representation of the chromatic number of high probability

subgraphs of the characteristic graph. We define a natural

extension, the conditional chromatic entropy, as follows.

Definition 11:

For any given , the above optimizations are actually

minima and not infima because there are only finitely many sub-

graphs of any fixed , and thus, only finitely many -colorings

regardless of . Later, in order to use typicality results, we allow

the block length to grow without bound in order to drive the

error probability to zero and, therefore, use and study the

infimum over all .

It is worth a note that such optimizations over space of col-

oring for a given graph are NP-hard [19]. However, the hope is

that simple heuristics [20], [21] might provide useful achievable

schemes in practice.

III. MAIN RESULTS

The proofs of the results described in this section appear in

Section V.

A. Functional Compression With Side Information

We begin by describing the zero distortion problem for a

single source and function . There is no side informa-

tion at the decoder. Witsenhausen [17] tells us that the optimal

rate is the graph entropy defined earlier in Definition

4 where is the characteristic graph of with respect to the

function . As stated earlier, the chromatic entropy is a rep-

resentation of the chromatic number of a high -probability sub-

graph of the characteristic graph. Körner proved [14] that the

chromatic entropy approaches the graph entropy as block length

grows without bound.

Theorem 12 (Körner Theorem, 1973):

(3)

The implications of this result are that we can compute a func-

tion of a discrete memoryless source with vanishing probability

of error by first coloring a sufficiently large power graph of the

characteristic graph of the source with respect to the function,

and then, encoding the colors using any code that achieves the

entropy bound on the colored source. The previous approach for
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Fig. 4. Source coding scheme for the zero distortion functional compression
problem with side information.

achieving rates close to the bound was to optimize with

respect to a distribution over as in the definition of .

This theorem allows us to move the optimization from finding

the optimal distribution to finding the optimal colorings. Thus,

our solution modularizes the coding by first creating a graph

coloring problem (for which heuristics exist), and then transmit-

ting the colors using any existing entropy-rate code. Moreover,

we can extend this technique to the functional side information

case.

Next, consider the problem of lossless functional source

coding with side information. Orlitsky and Roche proved that

the optimal rate for the zero distortion functional compression

problem with side information equals . Recall from

Definition 6 that is also achieved by optimizing a

distribution over . Theorem 13 extends Körner’s Theorem to

conditional chromatic and conditional graph entropies.

Theorem 13:

This theorem extends the previous result to the conditional

case. In other words, in order to encode a memoryless source,

we first color a graph for sufficiently large . Then, we

encode each source symbol with its corresponding vertex’s

color. Finally, we use a Slepian–Wolf code on the sequence of

colors achieving a rate arbitrarily close to . This

allows for computation of the function at the decoder. The

resulting code has rate arbitrarily close to the Orlitsky–Roche

bound by Theorem 13. Fig. 4 illustrates our coding

scheme.

The Orlitsky–Roche achievability proof uses random coding

arguments and proves the existence of an optimal coding

scheme, but does not specify it precisely. Our coding scheme

allows the use of heuristics available for finding good colorings

as well as the use of optimal source codes that achieve the

conditional entropy. Finding the minimum-entropy colorings

required to achieve the bound is NP-hard [22], [19], but even

simple colorings (weakly)2 improve over the bound

that arises when trying to recover completely at the receiver

by the Data Processing Inequality. This solution gives the

corner points of the achievable rate region for the distributed

functional compression problem, considered next.

2For all functions ������� ������ ��� � ��� ���. For any nonin-
jective function ������ and large enough block length �� ������ ��� �

��� ���.

B. Distributed Functional Compression

In this section, we prove rate bounds for the distributed func-

tional compression problem. The derived rate region is always

achievable and sometimes tight. The region directly arises from

the coloring arguments discussed in the above section.

Recall the lossless distributed functional compression

problem shown in Fig. 2. Our goal is to provide an achievability

scheme that extends the modular scheme given in Fig. 4 for

the side-information case, i.e., a scheme in which compression

of sources with respect to the function computation as well as

distributed transmissions are modularized. That is, the code first

precodes the data using coloring scheme and then describes the

colors using existing Slepian–Wolf source codes.

The Slepian–Wolf Theorem [3] states that in order to recover

a joint source at a receiver, it is both necessary and suf-

ficient to encode separately sources and at rates

where

Denote this region by .

For any and functions and defined on and ,

respectively, denote by the Slepian–Wolf region for

and normalized by the block length. Precisely,

is the set of all where

If is sent at rate , it can be faithfully recovered

at the receiver. Thus, the rate for is as given

by Orlitsky and Roche. Similarly, when

. Therefore, we know the corner points

for the rate region for the distributed functional compression

problem.

Our goal is to determine the region and give a scheme anal-

ogous to the one given in Fig. 4 that achieves all rates in the

given region. We proceed with the following philosophy: color

and using the characteristic graphs and , and encode

the colored sequences using codes achieving the Slepian–Wolf

bounds. We want to characterize when this approach is valid. In

other words, we want to find the conditions under which col-

orings of the characteristic graphs are sufficient to determine

for the zero distortion problem.

1) Zigzag Condition: A condition which is necessary and

sufficient for the proposed coloring scheme to give a legitimate

code follows.

Condition 14 (Legitimate Coloring): For any , consider

-colorings and of and with associated proba-

bility distribution . The colorings and and the source

distribution are said to satisfy the Legitimate Col-

oring condition if for all colors ,
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Fig. 5. Illustration of the Zigzag Condition.

and all such that

.

Condition 14 merely states that a pair of coloring is

useful to reconstruct the function of interest with respect to the

probability distribution of interest. The next condition, called

Zigzag, suggests when do such Legitimate Coloring exist for a

given sources with high-probability.

Condition 15 (Zigzag Condition): A discrete memoryless

source with distribution satisfies the

Zigzag Condition if for any , there exists

so that satisfies the following (zigzag) property: for any

, there exists some

such that for each , and

for some for each .

Fig. 5 illustrates the Zigzag Condition. If a solid line connects

two values, then the pair is in . If a dashed line connects two

values, then the pair is in . Therefore, the Zigzag Condition

is quite strict in the sense that many pairs must be typical. For

any source that does not satisfy the Zigzag Condition, coloring

and independently still allows the decoder to uniquely

determine the function but may use more rate than required be-

cause it treats as jointly typical pairs that are unlikely to

occur together. Thus, the Zigzag Condition should be viewed as

a strict condition under which coloring based scheme is rate op-

timal and may not be widely applicable. However, the coloring

based scheme is applicable more generally, but at suboptimal

rates.

2) Rate Region: Let where

for all and are -colorings of and . Let be

largest set that is a subset of for all . Let be the set

closure of . Finally, let be the rate region for the distributed

functional compression problem. We can now state the rate re-

gion in the notation just given.

Theorem 16: For any is an inner bound to the rate

region, and thus, is an inner bound to the rate region. In other

words, . Moreover, under the Zigzag Condition, the rate

region for the distributed functional source coding problem is

.

Theorem 16 extends Theorem 13 to the distributed case by

showing that optimal (independent) coloring of characteristic

graphs and always yields a legitimate code, describing a

family of problems for which these codes guarantee an optimal

solution. While the above result is not a single-letter character-

ization, any nontrivial (noninjective) coloring does better than

the Slepian–Wolf rates, by the Data Processing Inequality (cf.

[15]).

The Orlitsky–Roche bound is consistent with our region at

by the following argument. If , then

for all typical with some . Thus, the rate must

be which is minimized at

by Theorem 13.

Next, we derive a characterization of the minimum joint rate,

in terms of graph entropies.

Corollary 17: Under the Zigzag Condition, if there is a

unique point that achieves the minimum joint rate, it must be

.

In this case, each encoder uses only its corresponding mar-

ginal ( or ) when encoding. The resulting rates are

and , respectively.

When the jointly optimal rate is not unique, Theorem 18

bounds the difference between the minimal rate-sum and

.

Theorem 18: Let

be the graph information of and for the graph . Let

be the graph informa-

tion of and for the graph . Let equal the minimal

sum-rate, . Then, under the Zigzag Condition

Thus, for the case in Corollary 17, the mutual information of

the minimum entropy colorings of and goes to zero as

If the independent sets of are large, then

and are close, and is close to zero.

Therefore, coloring followed by fixed block length compres-

sion (using , not ) is not too far from optimal by

Theorem 18. (Similarly, for .) Another case when the right

hand side of Theorem 18 is small is when and have small

mutual information. In fact, if and are independent, the

right hand side is zero and Corollary 17 applies.

The region given in Theorem 16 has several interesting prop-

erties. First, it is convex by time-sharing arguments for any

two points in the region. Second, when there is a unique point

achieving the minimal sum-rate, we can give a single-

letter characterization for that point (Corollary 17). When it is

not unique, we have given a simple bound on performance.

Fig. 6 presents a possible rate region for the case where the

minimal sum rate is not uniquely achieved. (For ease of reading,

we drop the subscripts for and and write for both.)

The “corners” of this rate region are

and , the Orlitsky–Roche points, which

can be achieved with graph coloring, in the limit sense, as de-

scribed earlier. For any rate , the

joint rate required is less than or equal to the joint rate required

by a time-sharing of the Orlitsky–Roche scheme. The inner re-

gion denoted by the dotted line is the Slepian–Wolf rate region.

The other point we characterize is the minimum joint rate

point (when unique) given as . Thus, we

have given a single-letter characterization for three points in

the region.
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Fig. 6. Example rate region for the zero distortion distributed functional com-
pression problem.

C. Functional Compression With Side Information

We now consider the functional rate distortion problem; we

give a new characterization of the rate distortion function given

by Yamamoto. We also give an upper bound on that rate distor-

tion function which leads to an achievability scheme that mirrors

those given in the functional side information problem.

Recall the Yamamoto rate distortion function (Theorem 8).

According to the Orlitsky–Roche result (Theorem 7), when

, any distribution over independent sets of the characteristic

graph (with the Markov chain imposed) is in .

Any distribution in can be thought of as a distribution over

independent sets of the characteristic graph.

We claim that finding a suitable reconstruction function, , is

equivalent to finding the decoding function on from

Theorem 8.

For any , let denote the set of all functions

such that

To prove the claim, we consider blocks of length . The

functions in the expectation above will be on .

Let . Let denote the charac-

teristic graph of with respect to , and for any

. For each and all functions , denote

for brevity the normalized graph entropy as

.

Theorem 19:

Note that must be a subgraph of the characteristic graph

(for appropriate ) with respect to . Because is fi-

nite, there are only finitely many subgraphs. Thus, for any fixed

error and associated block length , this is a finite optimiza-

tion. This theorem implies that once the suitable reconstruction

function is found, the functional side information bound (and

achievability scheme) using the graph is optimal in the

limit.

Unfortunately, is an (uncountably) infinite set, but

the set of graphs associated with these functions is countably

infinite. Moreover, any allowable graph dictates a function,

but it has no meaning in terms of distortion. Given a function

, choosing the values that minimize expected distortion is

a tractable optimization problem. This shows that if one can

approximate with , the compression rate might improve

(even when is not optimal).

The problem of finding an appropriate function is equiva-

lent to finding a new graph whose edges are a subset of the edges

of the characteristic graph. This motivates Corollary 20 where

we use the a graph parameterized by to look at a subset of

. The resulting bound is not tight, but it provides a prac-

tical tool for tackling a very difficult problem.

Define the -characteristic graph of with respect to

, and , as having verticies and having

the pair as an edge if there exists some such that

and . Denote

this graph as . Because if and only if ,

the 0-characteristic graph is the characteristic graph, i.e.,

.

Corollary 20: The rate is achievable.

Constructing this graph is not computationally difficult when

the number of vertices is small. Given the graph, we have a set of

equivalence classes for . One can then optimize by choosing

those values for the equivalence classes that minimize distor-

tion. However, any legal values (values that lead to the graph

) will necessarily still have distortion within . Indeed, this

construction guarantees not only that expected distortion is less

than or equal to , but also that maximal distortion is always

less than or equal to . There are many possible improvements

to be made here.

Theorem 13 and the corresponding achievability scheme,

Corollary 20, give a simple coding scheme that may potentially

lead to large compression gains.

D. Possible Extensions

In all of the above problems, our achievability schemes are

modular, providing a separation between the computation of the

function and the lossless compression of the function descrip-

tors.

The computation module is a graph coloring module. The

specific problem of interest for our scheme is NP-hard [22],

[19], but there is ample literature providing near-optimal graph

coloring heuristics for special graphs or heuristics that work

well in certain cases [20], [21].

The lossless correlation module is a standard entropy coding

scheme such as a Slepian–Wolf code. There are many practical

algorithms with near-optimal performance for these codes, e.g.,

DISCUS codes [6] and source-splitting techniques [7].

Given the separation, the problem of functional compression

becomes more tractable. While the overall problem may still

be NP-hard, one can combine the results from each module to

provide heuristics that are good for the specific task at hand.

We note that our results treat only two sources and . Loss-

less distributed source codes for the more general scenario of

sources exist in the literature [15, p. 415]. Thus, it seems likely

that given a suitable extension of the graph coloring technique

and the Zigzag Condition, our results would generalize to
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Fig. 7. Blue Force Tracking Data.

sources. We focus on the two-source scenario because, as with

Slepian–Wolf, it gives many insights into the problem. We leave

the extension to future work.

IV. SIMULATION RESULTS

In this section, we present an application of the work pre-

sented in the previous sections. We consider a sensor network

scenario in which there are several sources communicating with

some central receiver. This receiver wishes to learn some func-

tion of the sources.

Specifically, we consider Blue Force Tracking, which is a

GPS system used by the U.S. Armed Forces to track friendly and

enemy movements. Sometimes the nodes in the system commu-

nicate with each other, and sometimes they communicate with

some central receiver, such as a UAV, which is the case consid-

ered here.

We present preliminary experimental results for the algorithm

given for the distributed functional compression. We obtained

tracking data from SRI International.3 This data represents GPS

location data. It includes information on various mobiles, in-

cluding latitude and longitude coordinates. We ignored the other

information (e.g., altitude) for the purpose of this simulation. In

Fig. 7, two curves represent trajectories of two different vehi-

cles over time with axis representing co-ordinates.

We focused on these two mobiles as our sources. We as-

sume that our sources are the positional differences (i.e.,

-encoding), and , where each is actually a pair,

and , of the

latitude and longitude data. The use of -encoding assumes

that the positional differences form a Markov chain, a common

assumption. Our goal is to test the hypothesis that significant

encoding gains can be obtained even with very simple coloring

schemes when a function of sources, but not entire sources are

3We thank Dr. A. Heller for providing the data, available at: http://www.ai.
sri.com/ajh/isat.

Fig. 8. Levels of compression.

required to be recovered. We consider three relative proximity

functions4 for our analysis

Thus, the functions are 1 when the sources change their rel-

ative position by less than (along some axis or both), and 0

otherwise. To compare the results of our analysis with current

methods, we consider the joint rate where is com-

municated at rate and is communicated at rate . There

are several means of rate reduction summarized in Fig. 8.

First, the most common means (in practice) of communi-

cation is to actually communicate the full index of the value.

This means that if takes possible values and takes

possible values, each source will communicate those values

using bits and bits, respectively. Thus, the total

rate is . This is clearly inefficient.

Second, we can immediately reduce the rate by compressing

each source before communication. Therefore, the rate for

would be , and the rate for would be

4We would have liked to use a true proximity function, but then we could not
form a valid comparison because our uncolored rate would be in terms of�-en-
coding, but our coloring would necessarily have to be in terms of an encoding
of the true position. Therefore, we examine functions that measure how far two
mobiles moved towards or away from each other relative to their previous dis-
tance, a kind of distance of positional differences.
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Fig. 9. Empirical probability versus rate.

TABLE III
EMPIRICAL RESULTS FOR OUR ENCODING SCHEME

. The total rate would be . This is strictly

better than the first method unless the sources are uniformly

distributed.

Third, we can further reduce the rate using correlation, or

Slepian–Wolf, encoding. We could use any of the techniques al-

ready developed to achieve near optimal rates, such as DISCUS

codes [6] and source-splitting [7]. The joint rate would be

. This is strictly better than the second

method unless the sources are independent.

Fourth, we can use our coloring techniques from

Section III.B. If we consider each source communicating

its color to the central receiver, then the resulting total rate

would be . This may

not be better than the above third method, though it certainly

will be for independent sources. It will always be better than

the second method.

Finally, we can use Slepian–Wolf coding over the colors to

achieve a joint rate of , which will

be strictly better than the third method unless and are

both injective and strictly better than the fourth method unless

and are independent. Thus, the rate relations are

as follows:

In our simulations, we test various values of to see how

the likelihood , which changes with

, affects the rate reduction.5 Intuitively, we expect that as

5We only show our results for � for brevity. The intuition also applies to
� and � .

becomes more extreme and approaches either 0 or 1, the rate

reduction will become more extreme and approach 100%—if

or with probability 1, then there is nothing

to communicate, and, hence, the rate required is 0. This is shown

in Fig. 9, where we plot the empirical probability

versus the rate .

We expect it would be more symmetric about if we used

optimal encoding schemes. However, we are only considering

(no power graphs) when coloring, as well as a quite

simple coloring algorithm. Had we used power graphs, our rate

gains would be higher, though the computational complexity

would increase exponentially with . Our coloring algorithm

was a simple greedy algorithm that did not use any of the prob-

ability information, nor was it an -coloring. We expect better

gains with more advanced graph coloring schemes.

In Table III, we present the rate results for the various stages

of compression in Fig. 8. All units are in bits. In the table, we

use the values of that provide the smallest rate reductions;

in other words, we use the worst-case rates by testing various

as in Fig. 9. The percentage next to each number shows the

percentage decrease in rate. Thus, for the first column, we see

0%, and in the second, we see

%

We can see that the sources are close to independent, as

is only slightly smaller than . Therefore, there is

not much gain when considering the correlation between the

sources. Nevertheless, the coloring provides a great deal of

coding gain. For the simpler and , the rate has been

reduced almost threefold.
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This provides evidence that our techniques can indeed lead

to large rate gains. For the simpler functions, the rate has been

reduced over 60%. Further, considering that the indices are often

sent without compression, it is worth noting that even simple

compression is 15% better.

V. PROOFS AND ANCILLARY RESULTS

In this section, we provide full proofs of all our previously

stated results.

A. Functional Compression With Side Information

We recall Theorem 13

(4)

To prove this, we borrow proof techniques from Körner [14],

and Orlitsky and Roche [2]. We first state some more typicality

results. We use the notion of -strong typicality.

Lemma 21: Suppose is a sequence of random vari-

ables drawn independently and according to the joint distribu-

tion , which is the marginal of . Let an -se-

quence be drawn independently according to its marginal,

. Suppose the joint distribution forms a Markov

chain, . Then, for all , there is an ,

where depends only on the distribution , such that

for sufficiently large .

1) , and

.

2) For all .

3) For all .

4) For all

Part 1 follows from [15, Lemma 13.6.1], parts 2 and 3 follow

from [15, Lemma 13.6.2], and part 4 follows from [15, Lemma

14.8.1].

1) Proof Plan for Theorem 13: Consider any and the cor-

responding OR-product graph . By definition of conditional

chromatic entropy, as , the conditional entropy of -col-

oring of approaches (from below) . That is, for

any small enough , we have an -coloring of with re-

spect to the underlying distribution so that

With this coloring, we prove that there is a scheme that en-

codes at rate such that the decoder can compute

with small probability of error. Proving that would

essentially establish achievability of the rate

and hence lower bound of on ,

since Theorem 7, implies that no achievable rate can be below

. This is summarized in Lemma 22.

To establish a matching upper bound, we use novel technique

to show that essentially can be bounded above by

(cf. Lemma 23). Putting these two, asymptotically

matching, bounds together we shall obtain the Theorem 13.

2) Lower Bound: Here we state a lower bound on

in terms of .

Lemma 22:

Proof: For any given , let , as above, denote -col-

oring on for any small enough so that

is within of , for the characteristic graph of

with respect to , and . Given that is an -col-

oring, let set be the corresponding high-proba-

bility set, i.e., and let be the conditional distri-

bution on . Let , the set of all colors,

with assumption that is extended beyond in a trivial manner.

Now for every color and , let

where

and

Of course, if no such exists, we define to have some default

value (which will only lead to an error in reconstructing ). We

wish to argue that this reconstructs with low probability of

error.

To this end, consider with . Suppose

and are available at the decoder where is

defined as above. Then, there is a decoding error when

. This is true only if (a) there exists some

such that ,

or (b) is assigned default value. First note that either

or . By definition, . When

, the error of type (b) can not happen. Therefore, the

probability of error of type (b) is at most . Now if error of type

(a) happens then it must be that . Further, for some

, we have and .

That is, . But then there must be an edge

between in the graph with respect to and . There-

fore, the color assigned to and must be different. This is

a contradiction. That is, error of type (a) can not happen. In

conclusion, our function reconstructs with probability at

least .

Finally, to make the construction of possible at the decoder,

it remains to be seen how to make and available at the

decoder. Recall that if a source is encoded at a rate equal to its

entropy, it can be recovered to arbitrarily small probability of

error at the decoder. Thus, having available at the decoder as

side information is the same as encoding at rate greater than

. Recall that the Slepian–Wolf Theorem [3] for sources

and states that if , an encoding with rate

suffices to recover at the decoder.

We consider our source as . Thus, an encoding

of rate at least suffices to recover the functions

with arbitrarily small probability of error. Encoders (and

corresponding decoders) exist by the Slepian–Wolf Theorem.

Let be such an encoding with

its corresponding
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decoder. Thus, the idea here is to first color -blocks of the

source. Then, one encodes -blocks of the colors. The overall

rate will be .

Formally, fix some . Suppose . With an encoder

as above, let be such that

(5)

To show achievability, we need to prove that there exists an

encoder and a decoder

such that the prob-

ability of error is also small:

(6)

To prove this, define our encoder as

Then define the decoder as

when correctly recovers the pair and is undefined

otherwise.

The probability that fails is less than by (5). If does

not fail, then, as described earlier, the function will be correctly

recovered with probability at least . Choose

to obtain the overall probability of recovery . Note that

the choice of and are not mutually constraining. Finally, by

taking in place of in all of the above, we have obtain (6).

Therefore, for any , the rate is achievable.

Thus, using Theorem 7 we obtain that

This completes our proof of the lower bound.

3) Upper Bound: Next, we prove that the encoding rate re-

quired to recover given is at most :

Lemma 23:

Proof: Suppose . Suppose is (sufficiently

large) such that: (1) Lemma 21 applies with some , (2)

, and (3) .

Let be the distribution that achieves the

with the Markov property . (This is guaranteed

to exist by Theorem 7.) Denote by , and the

marginal distributions. For any integer , define an -system

where each is drawn independently with

distribution .

Our encoding scheme will declare an error if .

This means that the encoder will code over colorings of the

characteristic graphs. By construction, this error happens with

probability less than . Henceforth assume that .

Next, our encoder will declare an error when there is no such

that . This occurs with probability

where (a) and (b) follow because the are independent and

identically distributed, (c) follows from Lemma 21 part 2, and

(d) follows because for . Assuming

because is large enough such that the final inequality holds.

Henceforth, fix an -system for some

. Further, assume there is some such

that .

For each , let the smallest (or any) such be denoted as .

Note that is an -coloring of the graph . For each , define

Then, , because our coloring scheme is

simply an assignment of the indices of the -system. Thus, we

know

Similarly, we get . Thus

We know that if , there is some such that

and . For each such , we must have (by defini-

tion of our coloring), . For each such where
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by Lemma 21 part 4. Thus, we have

. This, along with Jensen’s inequality, imply

Finally, (using a Taylor series expansion) we know

when . Thus

(7)

We compute

because the are i.i.d. Therefore

(8)

by Lemma 21 part 3.

By the definition of , we know that determining given

requires at most bits. Therefore, we have

(9)

Putting it all together, we have

where (a) follows by definition of the conditional chromatic

entropy, (b) follows from inequality (9), (c) follows from in-

equality (7), (d) follows from inequality (8), (e) follows by set-

ting , and (f) follows because

for .

For Markov chains

Thus, for our optimal distribution , we have

Because . Thus,

. This completes the proof for the upper

bound

The lower and upper bounds, Lemmas 22 and 23, combine to

give Theorem 13

B. Distributed Functional Compression

Recall that the Theorem 16 states that the achievable rate re-

gion for the distributed functional compression problem, under

the Zigzag Condition (Condition 15), is the set closure of the set

of all rates that can be realized via graph coloring.

We prove this by first showing that if the colors are avail-

able at the decoder, the decoder can successfully compute the

function. This proves achievability. Next, we show that all valid

encodings are -colorings of the characteristic graphs (and their

powers). This establishes the converse.

1) Achievability: We first prove the achievability of all rates

in the region given in the theorem statement.

Lemma 24: For sufficiently large and -colorings and

of and , respectively, there exists

such that for all .

Proof: Suppose that , and that we have col-

orings and . We proceed by constructing . For any two

colors and , let and

be any (say the first) pair such that .

Define . There must be such a pair because

certainly qualifies.

To show that this function is well-defined on elements in the

support, suppose and are both in . Suppose

further that and . Then, we

know that there is no edge in the high-probability sub-

graph of or in the edge set of the high-probability

subgraph of , by definition of graph coloring.

By the Zigzag Condition, there exists some such that

. We claim that there is

no edge between or for either . We prove this for

, with the other cases following naturally. Suppose there

were an edge. Thus, there would be some such that

. This implies that for some .

Define as in every component but the th, where it is .

We know that for all

by definition of -typicality. Therefore

for all such that and .

Next, we can choose large enough such that .

Then, for or , the empirical frequency changes by
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at most . Thus, for all (including and ),

we have

Thus, is -typical with both and . By construction,

. Therefore, there must be an edge in the

high-probability subgraph between , an impossibility.

Thus, there is no edge . The others follow similarly.

Thus, by definition of the graph

Therefore, our function is well-defined and has the desired

property.

Then, Lemma 24 implies that we can successfully compute

our function given colors of the characteristic graphs. Thus, if

the decoder is given colors, it can look up based on its table

of . The question is now of faithfully (with probability of error

less than ) transmitting these colors to the receiver. However,

when we consider the colors as sources, we know the achievable

rates.

Lemma 25: For any -colorings and of and

, respectively, the achievable rate region for joint source

is the set of all rates, , satisfying

Proof: This follows directly from the Slepian–Wolf The-

orem [3] for the separate encoding of correlated sources.

Suppose the probability of decoder error for the decoder guar-

anteed in Lemma 25 is less than . Then the total error in the

coding scheme of first coloring and , and then encoding

those colors to be faithfully decoded at the decoder is upper-

bounded by the sum of the errors in each stage. Thus, Lemmas

24 and 25 together to show that the probability that the decoder

errs less than for any provided that (and block size on

the colors)is large enough.

Finally, in light of the fact that source symbols are encoded

for each color, the achievable rate region for the problem under

the Zigzag Condition is the set of all rates such that

where and are achievable -colorings (for any ).

Thus, every is achievable for all . There-

fore, every is achievable.

2) Converse: Next, we prove that any distributed functional

source code with small probability of error induces a coloring.

Suppose . Define for all

This is the set of all functions that equal to within probability

of error. (Note that all achievable distributed functional source

codes are in for large enough .)

Lemma 26: Consider some function . Any

distributed functional code that reconstructs with zero error

(with respect to a distribution ) induces colorings on the

characteristic graphs of and with respect to , and

and , respectively.

Proof: Suppose we have encoders and , decoder ,

and characteristic graphs and . Then a zero error re-

construction implies that for any such that

if , and

, then

(10)

We now show that and are valid colorings of and

. We demonstrate the argument for . The argument for

is analogous. We proceed by contradiction. If it were not

true, then there must be some edge with both vertices with the

same color. In other words, there must exist such

that , and

. This is impossible (by taking in (10)).

Hence, we have induced colorings of the characteristic graphs.

We now show that any achievable distributed functional code

also induces an -coloring of the characteristic graphs.

Lemma 27: All achievable distributed functional codes in-

duce -colorings of the characteristic graphs.

Proof: Let be such a

code. Then, we know that a zero-error reconstruction (with re-

spect to ) of induces colorings, and , of the character-

istic graphs with respect to and by Lemma 26. Let the set

of all such that be denoted as . Then

because , we know that . Therefore, the func-

tions and restricted to are -colorings of and (by

definition).

Thus, the Lemma 26 and Lemma 27 establish Theorem 16 in

full.

3) Minimal Joint Rate: Recall Corollary 17 states that under

the zigzag condition, when there is a unique point achieving the

minimum joint rate, it must be .

Proof: First, we recall that the rate pair

can be achieved via graph color-

ings. This is true by the achievability result of Theorem 16

along with Theorem 12, which states that graph colorings can

achieve each of and . In the achievability

proof above, we showed that, under the zigzag condition,

any coloring scheme will lead to achievable rates. Therefore,

is in the rate region. (Note, that we have

not yet used the uniqueness of the minimum.)

Suppose achieves the minimum joint rate. By

Theorem 16, this must be in some Slepian–Wolf region

for the colors. Because it is a minimum, we must have

. This can be achieved with

and or with

and .
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By assumption, there is only one such point; thus, we must

have as . Thus, the minimal

rate is as .

We know for all

by Theorem 12.

Therefore, we must have that the minimum achievable joint

rate is .

This corollary implies that minimum entropy colorings have

decreasing mutual information as increases. Thus, the closer

we are to the optimum via graph coloring, the less complicated

our Slepian–Wolf codes must be. In the limit, because mutual

information is zero, each source only needs to code to entropy.

Thus, the Slepian–Wolf codes are unnecessary when achieving

the minimal joint rate. (Nevertheless, finding the minimum en-

tropy colorings is, again, NP-hard.)

Next in Theorem 18, we consider the case when the minimum

is not uniquely achievable.

Proof: The joint rate must always satisfy

The first inequality follows from the Data Processing Inequality

on the Markov chain , and the second fol-

lows by definition of the conditional graph entropy. Similarly,

we get:

Thus, the difference between the optimal rate , and

the rate given in Corollary 17 is bounded by the following two

inequalities:

C. Functional Rate Distortion

In this section, we prove Theorem 19 and Corollary 20 for the
functional rate distortion problem.

We restate Theorem 19 for completeness

Proof: We prove that the given characterization is valid
by first showing the rate is achievable for any

, and next showing that every achievability scheme
must be in .

By Orlitsky and Roche, we know that the rate

is sufficient to determine the function at the receiver.
By definition

Thus, the rate is achievable.

Next, suppose we have any achievable rate , with corre-
sponding sequence of encoding and decoding functions and

respectively. Then the function is a

function with the property (by achiev-
ability) that (again be-

cause as is driven to 0). Thus, , completing
the proof of Theorem 19.

Next we prove Corollary 20, which states that
is an achievable rate. We show this by demonstrating that any
distribution on satisfying and

also satisfies the Yamamoto requirement (i.e., is also in
).

Proof: Suppose is such that
, or is a Markov chain. Further sup-

pose that . Then define
where is any (say, the first) with .
This is well-defined because the nonexistence of such that

is a zero probability event, and occurs with
probability one by assumption.

Further, because is an independent set, for any
, one must have , the edge set

of . By definition of , this means that for all
such that , it must be the case that

. Therefore

because both and are probability 1 events.
We have shown that for a given distribution achieving the

conditional graph entropy, there is a function on that
has expected distortion less than . In other words, any dis-
tribution satisfying and
is also in . Further, any such distribution can be associ-
ated with a coding scheme, by Orlitsky and Roche’s work [2],
that achieves the rate . When the distribution is
chosen such that is minimized, this is by definition
equal to . Thus, the rate is achievable,
proving Corollary 20 and providing a single-letter upper bound
for .

VI. CONCLUSION

This article has considered the problem of coding for com-
puting in new contexts. We considered the functional compres-
sion problem with side information and gave novel solutions for
both the zero and nonzero distortion cases. These algorithms
gave an explicit decoupling of the computing from the corre-
lation between the sources as a graph coloring problem. We
proved that this decoupling is rate-optimal. We extended this
encoding scheme to the distributed functional compression with
zero distortion. We gave an inner bound to the rate region, and
gave the conditions under which the decoupling is optimal in
the distributed case.
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We never considered the nonzero-distortion distributed func-
tional compression problem, mainly because even the case of

is unsolved. Nevertheless, it is our hope that
the methods discussed in this article will yield new results for
the more general problem.

All of our results concern two sources. An extension of these
results to sources seems plausible. However, the graph con-
structs used rely heavily on the two-source structure and would
need to be modified to deal with sources. We leave that to
future work.

Finally, we examined the applicability of our results. For
Blue Force Tracking, we saw that even simple coloring schemes
yielded large compression gains (64%).

In summary, this article is about modeling the distillation of
relevant information from disparate sources. We hope the work
presented herein serves as a step towards more research in this
area.
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