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ABSTRUCT: Conductive hydrogels are widely used in various applications such as artificial skin, 

flexible and implantable bioelectronics, and tissue engineering. However, it is still a challenge to 

formulate hydrogels with high electrical conductivity without compromising their 

physicochemical properties (e.g., toughness, stretchability, and biocompatibility). Additionally, 

incorporating other functions, such as self-healing, shape memory, and wet adhesion, into 

conductive hydrogels is critical to many practical applications of hydrogel bioelectronics. In this 

perspective, we highlight recent progress in the development of functional conductive hydrogels. 

We then discuss the potential applications and challenges faced by conductive hydrogels in the 

areas of wearable/implantable electronics and cell/tissue engineering. Conductive hydrogel can 

serve as an important building block for bioelectronic devices in personalized healthcare and other 

bioengineering areas. 
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Bioelectronics interfacing with human body/organ has emerged as a bridge to explore 

physiological information in our daily lives. Owing to their multifunctionality in personalized 

health monitoring, bioelectronics have been widely employed in various biomedical applications, 

including electronic skin,1-5 wearable/implantable devices,6-11 and soft robotics.12-14 Currently, 

most bioelectronics devices are based on inorganic materials with appropriate electrical 

conductivity, such as metals and silicon.15-20 However, the chemical and mechanical properties of 

those inorganic materials are strikingly different from these of biological tissues, which can lead 

to some serious problems during the implement of the inorganic materials based bioelectronic 

devices, including non-conformal contact between the devices and the surface of skin or tissue, 

unreliable signal collection, as well as causing inflammatory responses the body.21-23 Many of these 

problems cannot be easily solved by only using inorganic materials. 

Conductive hydrogels have shown great potential in bioelectronics.2, 24-30 Conductive 

hydrogels can be synthesized using either only conductive polymers, for example, poly(3,4-

ethylenedioxythiophene) (PEDOT) or polyaniline (PANI),31, 32  as the main component of the 

hydrogel matrix or incorporating conductive additives such as conductive polymers, carbon 

nanotubes (CNTs), and metal nanowires into an existing non-conductive hydrogel matrix.33-37 

Conductive hydrogels have the potential to be an alternative option to traditional inorganic 

materials in bioelectronics owing to their proper electronic, mechanical, and chemical properties. 

The high-water content of hydrogels allows the transport of biological and chemical molecules, 

thus providing an extracellular matrix-like (ECM-like) environment to facilitate the exchange of 

biological molecules and markers across interfaces. The tunable chemical structure of the polymer 

network endows conductive hydrogels with tunable mechanical properties to match those of 

tissues (elastic modulus: from 0.1 to 100 KPa).38  Owing to their excellent properties, conductive 
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hydrogels have attracted great attention in biomedical applications such as wearable/implantable 

devices and bioelectronics at cell/tissue interfaces (Figure 1). 

The main challenge for the development of conductive hydrogels for bioelectronics is to 

achieve high conductivity, while not to compromise the hydrogels’ physicochemical properties, 

such as toughness, stretchability, and biocompatibility. For hydrogels based on pure conductive 

polymers, the conductivity originates from conjugated structures (conjugated π bond) of the 

conductive polymers.39 Such conjugated structures are inherently rigid, which impairs the 

mechanical properties of conductive hydrogels. One strategy to prepare conductive hydrogels 

relies on mixing or in-situ polymerizing conductive polymers within an existed non-conductive 

hydrogel matrix to form an interpenetrating conductive hydrogel network. However, such 

hydrogels suffer from low electrical conductivity due to the non-conductive hydrogel matrix in 

interpenetrating network acting as an electrical insulator. Another common strategy to improve the 

conductivity of the hydrogels is to add conductive fillers, such as CNTs, graphene or metal 

nanoparticles/wires. This approach generally requires high contents of conductive fillers, which 

may cause phase separation of the hydrogel matrix and fillers, resulting in low stretchability, weak 

mechanical toughness, and poor fatigue resistance. Additionally, limited by their intrinsic 

weakness of inhomogeneous hydrogel networks, most of the previously reported conductive 

hydrogels are not able to sustain cyclic/multiple loading-unloading cycles. To achieve high 

conductivity and high toughness is therefore one major goal in the design of conductive hydrogels. 

Developing multifunctional conductive hydrogels is also critical to the success of hydrogel 

bioelectronics. Various functionalities, such as self-healing, strong tissue adhesion, and shape 

memory can be incorporated into conductive hydrogels via tuning the chemical composition and 

physical structure of the hydrogels.40-42 This report first reviews recent progress in multifunctional 
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conductive hydrogels for bioelectronics and tissue engineering, and then discusses the remaining 

challenges and obstacles in the field. This review aims to provide useful insights and guidelines 

into the design and development of conductive hydrogels for various biomedical applications. 
 

  

Figure 1．Functional conductive hydrogels for bioelectronics in biomedical applications. The left 

column presents the conductive hydrogels used for physical, chemical, and electrophysiological 

signals detection, respectively. Reproduced with permission from ref 6, 43. Copyright 2016 Nature 

Publishing Group, 2018 the Royal Society of Chemistry. The middle column summarizes 

important functions of conductive hydrogels. Reproduced with permission from ref 44-47. 

Copyright 2016, 2018 Wiley-VCH. Copyright 2018, 2019 AAAS. The right column shows the 

application of conductive hydrogels in the areas of wearable electronics, cell scaffold & tissue 

engineering, and implantable electronics, respectively. Reproduced with permission from ref 48-

51. Copyright 2019 Elsevier, 2019 Nature Publishing Group, 2018 Wiley-VCH, and 2017 The 

Royal Society of Chemistry. 
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ENGINEERING FUNCTIONAL CONDUCTIVE HYDROGELS 

Conductive hydrogels are usually prepared by (1) building single component hydrogel 

networks by self-polymerization or self-assembly of conductive polymers/fillers; (2) constructing 

interpenetrating hydrogel networks by doping conductive polymers/fillers; (3) diffusing free ions 

and (4) embedding conductive fillers/free ions into an existing non-conductive hydrogel matrix 

(Figure 2). Depending on the conductive mechanism, the fabricated hydrogels can be classified 

as electronic,39 ionic,52 and hybrid electronic-ionic conductive hydrogels.53  In general, conductive 

polymer-based hydrogels mainly rely on electronic conduction, as the conductivity origins from 

the conjugated π bond of the conductive polymers, such as PEDOT, PANI, polypyrrole (PPy), and 

polythiophene (PT).39, 54-56 Conductive filler-based hydrogels mainly rely on electronic conduction 

of the fillers, which are often graphene, CNTs, and metal nanoparticles/wires.52, 57-59 For those 

conductive hydrogels containing free ions such as salts and ionic liquids, they acquire ionic 

conductivity due to the migration of ions.27, 60 Notably, many conductive hydrogels possess both 

electronic and ionic conduction.53 For example, poly(styrene sulfonate) (PSS) doped PEDOT 

(PEDOT:PSS) is commonly used to prepare conductive hydrogels with mixed electronic-ionic 

conduction due to the charge-conducting PEDOT backbone and ion-conducting PSS chains.33 

Conductive hydrogels could exhibit tailorable conductivity by designing electronic, ionic, or 

hybrid conductive network in the hydrogel systems. To improve the conductivity, the most 

commonly used method is to construct a conductive network with long conjugated polymer chains 

for conductive polymer-based hydrogels, and to increase the density of the fillers for conductive 

filler-based hydrogels. In addition, advanced processing methods are widely used in the fabrication 

of functional conductive hydrogels, such as three-dimensional printing (bio-plotting printing, 

light-based printing, and inkjet printing),30, 61, 62 electron-beam lithography,63 and electrochemical 
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gelation.64 

 

Figure 2. Structures of several types of conductive hydrogels. Conductive hydrogel can be 

synthesized by using conductive polymers, conductive fillers, free ions, and their mixtures. The 

formed hydrogels can be classified as electronic, ionic, and the hybrid electronic-ionic conducting 

hydrogels. 

 

Many bioelectronics devices require high stretchability and conductivity in order to function 

properly during the movement of human body, which presents a big challenge for the design of 

conductive hydrogels.52, 65-68 Increasing the content of conductive fillers could improve the 

conductivity of the hydrogel. However, this may lead to phase separation between hydrogel matrix 

and fillers, which results in low stretchability. For conductive polymer-based hydrogels, the 

conjugated structures of polymer are inherently rigid, which impairs the mechanical properties of 

the fabricated hydrogels. It is difficult for a hydrogel to own high stretchability and high 

conductivity simultaneously. 

Various approaches have been employed to improve the stretchability of conductive polymer-
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based hydrogels.33, 64, 69, 70 PEDOT:PSS hydrogel exhibits moderate electrical conductivity and 

fracture strain (about 5%).71 However, the strechability of a pure PEDOT:PSS hydrogel can be 

dramatically enhanced to over 35% by introducing an interconnected network of PEDOT:PSS 

nanofibrils using solvent annealing.72 Alternatively, the stretchability of PEDOT:PSS hydrogels 

can also be enhanced by adding ionic liquid plasticizers (1-Butyl-3-methylimidazolium octyl 

surfate) (Figure 3a), which results in a conductive hydrogel with a conductivity comparable to 

pure PEDOT:PSS (over 4100 S/cm) even under 100% strain.73 Double/multi-network hydrogels 

have also been developed to achieve high strechability while maintaining the conductivity of the 

hydrogels. An interpenetrating polyaniline (PANI) and poly(acrylamide-co-hydroxyethyl methyl 

acrylate) (P-(AAm-co-HEMA)) double-network conductive hydrogel was fabricated with the 

assistance of hydrogen bond between hydrogel networks (Figure 3b).74 The interpenetrating 

networks endowed high conductive hydrogel with outstanding strength (about 220% strain) and 

toughness (over 9 MJ/m3), together with excellent linearity under high strain levels. 

Engineering proper interactions between the hydrogel network and the conductive fillers can 

substantially enhance the toughness and stretchablility of filler based conductive hydrogels.75, 76 

Graphene oxide (GO) and CNT materials are widely used as fillers to prepare high stretchable 

conductive hydrogels benefited from their multi-functionality in building strong covalent/or non-

covalent interactions with most polymer chains.77, 78 Lu et al. developed a stretchable 

polyacrymide-based (PAM) conductive hydrogel by introducing GO and polydopamine (PDA) 

into a PAM pre-gel solution. GO was converted into partially reduced graphene oxide (pGO) or 

fully reduced graphene oxide (rGO) through PDA reduction GO, forming a conducting pathway. 

The unreduced GO filler, PDA, and PAM are able to form strong non-covalent interactions, 

including hydrogen bonding, π-π stacking, and electrostatic interactions (Figure 3c). Taking 
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advantages of the non-covalent interactions, the prepared PDA-pGO-PAM hydrogel achieved 

impressive stretchability (extension ratio λ = 35), and good electrical conductivity (0.08 S cm-1).79 

Additionally, macromolecular/micro-spheres, devised as zippable and energy-dissipating centers, 

have also been incorporated into conductive hydrogel networks to enhance the roughness of the 

hydrogels.80 Zhang et al. synthesized a hydrogel with two-phase structure by in situ polymerization 

of polyacrylamide (PAAm) and PANI with chitosan microspheres (CSMs).44 Due to the existence 

of energy-dissipating centers (CSMs) and inter-penetrating double networks (PAAm and PANI) 

(Figure 3d), the formed conductive hydrogel exhibited extremely stretchability (626%), toughness 

(879 kPa), along with high conductivity (5 Sm-1 with aniline concentration of 0.1 molL-1). Various 

other methods have also been utilized for preparing stretchable and tough conductive hydrogels 

such as those based on molecular sliding mechanism, pre-stretching/folding template, and 

deformable structures (wavy, island-bridge, and serpentine).81-87 

 

Figure 3. Schematic of tough and stretchable conductive hydrogels: (a) a highly stretchable 

conductive PEDOT:PSS hydrogel by incorporating ionic additives-assisted [Reproduced with 

permission from ref 73. Copyright 2017 AAAS.], (b) an interpenetrating PANI/P(AAm-co-HEMA) 

hydrogels featured with high conductivity and stretchable ability [Reproduced with permission 
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from ref 74. Copyright 2018 American Chemical Society.], (c) a nanocomposite conductive 

hydrogel reinforced by pGO [Reproduced with permission from ref 79. Copyright 2017 Wiley-

VCH.], and (d) an ultra-stretchable conductive hydrogel formed by embedding chitosan 

microspheres into PAAm and PANI networks [Reproduced with permission from ref 44. Copyright 

2016 Wiley-VCH.]. 

 

Conductive hydrogels with self-healing properties can significantly prolong the service time 

of bioelectronic devices, and thus are very useful in a variety of applications, including 

cardiovascular repair, electronic skin and soft robotics.88-90 Many conductive hydrogels with high 

self-healing property are based on the intrinsic repair method via designing reversible (weak) 

interactions in the polymer networks. Under low external stress, the weak bonds can break first 

and adsorb the energy to protect the covalent polymer network. When the covalent polymer 

network of the hydrogel is damaged under higher external stress, the reversible bonds will reform 

to restore the properties of the hydrogel. Both noncovalent interactions including electrostatic 

interaction,91 hydrophobic interaction,92, 93 hydrogen bond,94 and host-gust interaction,95 as well as 

dynamic covalent bonds such as Diels-Alder reaction,96 imine bond,97, 98 boronate ester bond,99 

coordination bond,100 and reversible radical reaction,101 have been widely used to construct self-

healing hydrogels (Figure 4a). The same strategies can be adopted in conductive hydrogel systems. 

For example, electrostatic interactions (between carboxylic groups, NH2 groups, and ferric ions) 

have been incorporated in PPy-based conductive hydrogels to generate hydrogels with self-healing 

capabilities to restore the mechanical and conductive properties of the hydrogels.102, 103 Ren et al. 

reported a self-healing PPy/alginate-gelatin hydrogel based on the Schiff-base units formed 

between the aldehyde groups (form oxidized sodium alginate) and amines groups (from gelatin), 
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which act as dynamic crosslinking points to repair the hydrogel.104 

Other approaches have also been employed to develop self-healing conductive hydrogels. By 

introducing a conductive PPy network into an agarose hydrogel system, Jaehyun et al. developed 

an agarose/PPy-based self-healing conductive hydrogel responds to external stimuli.105  Agarose 

undergoes a thermally reversible sol-gel transition (above 120oC), which gives rise to a self-healing 

function to the hydrogel. The conductivity of the gel increases while the self-healing property 

deteriorates as a function of PPy concentration. Some self-healing conductive hydrogels are 

developed through the assistance of a substrate or composite material. For example, Han et al. 

reported a CNT-based self-healing conductive hydrogel with the assistance of a repairable 

carrageenan/PAAm hydrogel layer (Figure 4b).106 A CNT film was transferred onto a 

carrageenan/PAAm hydrogel layer via a transfer printing process. The double helices of 

carrageenan can transfer to free coils at a temperature of above 50℃, and reform new double 

helices below the melting temperature, which provides the self-healing capability to the 

carrageenan/PAAm hydrogel substrate. The mechanical properties of the hydrogel can be further 

improved by the large number of hydrogen bonds formed between the carrageenan and PAAm 

chains. 

By properly controlling the gelation time, conductive hydrogels can be injectable.107, 108 

Injectable conductive hydrogels can serve as tissue scaffold and delivery vehicles for electrical 

signal sensitive cell therapy, avoiding potential infection and pain caused by surgery. Hydrogels 

based on N-carboxyethyl chitosan (CECS) and dextran-grafted tetraanilin (Dex-AT) showed 

adequate electrical conductivity (10-2 mS cm-1), and can be injected into rat subcutaneously for 

muscle regeneration and cell therapy (Figure 4c i).109 Chen et al. developed an injectable self-

healing conductive hydrogel by introducing 2-ureido-4[1H]-pyrimidinone (UPy) into a PANI/PSS 
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polymer network (Figure 4c ii).110 The UPy groups can form dynamic multiple hydrogen bonds 

with each other and serve as the crosslinking points of the PANI/PSS network. The formed 

conductive hydrogel can be molded into different shapes and injected through a needle. 

 

Figure 4. Self-healing and injectable conductive hydrogels. (a) Schematic illustration and 

mechanism diagram of fabricating intrinsic self-healing conductive hydrogels. (b) A self-healing 

conductive hydrogel based on transferring CNT film into a repairable carrageenan/PAAm hydrogel. 

Reproduced with permission from ref 106. Copyright 2020 American Chemical Society. (c) 

Injectable self-healing conductive hydrogels. The upper panel (i) shows the subcutaneous injection 

of a Dex-AT/CECS conductive hydrogel. Reproduced with permission from ref 109. Copyright 

2019 Elsevier. The lower panel (ii) shows an injectable PANI/PSS-UPy conductive hydrogel that 

can pass through a needle and be molded into different shapes. Reproduced with permission from 

ref 110. Copyright 2019 American Chemical Society. 
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Strong and sustainable adhesion to various surfaces, especially on wet biological tissue/organ 

surfaces, is critical to many in vivo applications of conductive hydrogel based bioelectronic 

devices.111-114 Conductive hydrogels can achieve adhesion on various biological surfaces via 

different interfacial interactions, such as covalent bonds, hydrogen bonds, and physical 

entanglement.45, 115 However, to achieve strong adhesion on biological surfaces is challenging as 

the interfacial water may separate two surfaces at the molecular level and hinder the interactions. 

Designing proper interfacial interactions and controlling/utilizing the interfacial water are the two 

main approaches for engineering conductive hydrogel adhesives on both dry and wet surfaces. 

By engineering proper interfacial interactions on both surfaces, conductive hydrogels can 

achieve strong adhesion to the target dry surface. For example, PEDOT:PSS hydrogels can adhere 

to diverse conducting and insulating substrates by adding a thin hydrophilic polyurethane (PU) 

adhesive layer between the dry substrate and wet hydrogel (Figure 5a).116 To achieve strong 

adhesion, the substrate was functionalized with primary amine groups, which provide effective 

interfacial interactions (covalent bonds and/or electrostatic interactions) between the substrate and 

the adhesive PU polymer layer. Additionally, the interfacial water can swell the PU layer, which 

promotes the diffusion of PEDOT:PSS precursors into the PU matrix, forming an inter-penetrating 

polymer network between the two polymer layers. 

Utilizing interfacial water from the wet and hydrogel surfaces to facilitate the formation of 

interfacial interactions is a main strategy for engineering conductive hydrogels with strong 

adhesion on wet surfaces. With proper water content (about 44%), the Young’s modulus of natural 

silk fibroin hydrogel is similar to that of human skin, which enhances its adhesive ability to sweaty 

human skin and wet surface (pig heart) (Figure 5b).117 When adhered to human skin, this SF/PPy 

conductive hydrogel can obtain a stable ECG signals under different skin deformation (squeezed, 
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pressed and stretched) (Figure 5c). Strong adhesion can also be achieved by controlling the 

gelation of the conductive hydrogels at the interface, as the precursors of the conductive hydrogel 

can diffuse through the interfacial water and penetrate into the target surface, subsequently forming 

an interpenetrating network upon gelation.118 

 

Figure 5. Adhesive conductive hydrogels. (a) Schematic and pictures showing adhesion of 

conductive polymer hydrogel on insulated/conductive substrates. Reproduced with permission 

from ref 116. Copyright 2020 AAAS. An adhesive conductive hydrogel fabricated by interfacial 

polymerized PPy and SF: (b) adhesion on sweaty human skin and wet pig heart surface; (c) used 

for electrocardiography (ECG) signal monitoring upon different skin deformation. Reproduced 

with permission from ref 117. Copyright 2020 American Chemical Society. 

 

Conductive hydrogels with shape memory function have great potential in applications such 
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as bioelectronics sensors, actuators, and soft robotics.119-121 A shape memory hydrogel typically 

contains netpoints and stimuli responsive molecular switches. Upon external stimulation, the 

switches become flexible, and the netpoints are stable, resulting in an entropic elastic behavior of 

the hydrogel network that recovers from a temporary shape to its permanent shape (Figure 6a). 

Hydrogels responsive to multiple stimuli can be synthesized by including multiple types of 

switches, e.g., temperature, light, and solvent responsive motifs, into the hydrogel polymer 

network. 

  

Figure 6. Shape memory conductive hydrogels. (a) Shape change mechanism of dual/multiple 

shape memory hydrogels. (b) An electro-stimulated shape memory conductive hydrogel based on 

CNTs and EVA/PCL. Reproduced with permission from ref 122. Copyright 2016 American 

Chemical Society. (c) A shape memory conductive hydrogel by constructing Fe3+ interactions in 

PVA/catechol hydrogel matrix. Reproduced with permission from ref 123. Copyright 2020 
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Elsevier. The formed shape memory conductive hydrogel exhibited shape memory behavior in 

response to multiple stimuli, including temperature, solvent and Fe3+ concentration. 

 

The key obstacles for developing shape memory conductive hydrogels include to maintain a 

stable electrical performance during deformation, and to ameliorate the weak mechanical 

properties and dull stimuli-responsive characteristics of the hydrogels. Thermo-activated shape 

memory conductive hydrogels could be achieved by incorporating conductive fillers (e.g., CNTs, 

graphene platelets, and metal oxides) into a shape memory PU hydrogel matrix.124 Similar 

approach was taken to fabricate an electro-activated hydrogel by blending CNTs into a 

poly(ethylene vinyl acetate)/poly(ε-caprolactone) (EVA/PCL) hydrogel matrix (Figure 6b).122 

Notably, introducing proper physical or chemical interactions can enhance the mechanical 

properties of shape memory conductive hydrogels. A 5,5,6,6-tetrahydroxy-3,3,3,3-tetramethyl-

1,1-spirobisindane (TTSBI)-Fe3+/poly (vinyl alcohol) (PVA) hydrogel matrix conductive hydrogel 

manifested strong mechanical properties due to the construction of hydrogen bonds, hydrophobic 

interactions, and metal coordination bonds in the hydrogel matrix (Figure 6c).123 The hydrogel 

showed shape memory response to multiple stimuli, including temperature, solvent and Fe3+ due 

to the crystalline domains of the PVA chains, solvent-polymer interactions, and catechol/Fe3+ 

interactions, respectively. To match the mechanical properties and geometrical features between 

the flexible electrode and nerve interface, a shape memory flexible electrode based on mesh 

serpentine Au and the mixture of polycaprolactone diol (PCL), poly(hexamethylene diisocyanate) 

(PHMD), and hexamethylene diisocyanate (HDI), was developed for peripheral nerve recording 

and stimulation application.47 This hydrogel can self-climb onto the peripheral nerves driven by 

body temperature, and matches the geometry of the peripheral nerve, thus avoiding the irreversible 
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neural damage caused by complicated surgical implantation. 

The biocompatibility, includes non-immunogenic responses and non-toxic side effects, of a 

conductive hydrogel is a stringent demand for bioelectronics in human health-related 

applications.125 All the components in a conductive hydrogel need to meet the criteria of 

biocompatibility, including the polymer network, cross-linkers, conductive fillers, and their 

degradation products. However, this requirement often brings a dilemma in material selection. 

Natural polymers (e.g., gelatin, agarose, chitin, hyaluronic acid, and silk fibroin) are ideal building 

blocks for biocompatible hydrogels, but they suffer from a few drawbacks including poor 

conductivity and material processability. The optimization of natural polymers mainly relies on 

facile chemical modification or functional group grafting.126, 127 Such modifications may raise 

safety concerns due to the chemicals used and functional groups introduced in the process. On the 

other hand, synthetic polymers, such as PLA, PEG, and PEODT:PSS provide controllable 

physical/chemical properties to the hydrogels, while their biocompatibility and bioactivity are 

typically lower than those of natural polymers. A further challenge of developing biocompatible 

conductive hydrogels is the integration of biocompatibility with other functions, such as good 

conductivity, high mechanical strength, and self-healing properties. 

Silk fibroin (SF) is a widely used biomaterial for constructing conductive hydrogels (Figure 

7a), owing to its good biocompatibility and biodegradability.128-131 SF is composed of three parts: 

a heavy chain (∼390 kDa), a light chain (∼26 kDa), and a glycoprotein chain (∼28 kDa). The 

heavy chain of the SF contains hydrophobic and hydrophilic domains (Figure 7b), forming the 

ordered crystalline and amorphous domains in the fibroin, respectively. The crystalline domain (β-

sheet) can serve as physically crosslinking points of the hydrogel, thereby avoiding the addition of 

potentially hazardous chemical cross-linkers. The conductivity of SF hydrogels can be easily tuned 
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by incorporating conductive fillers, such as carbon-based materials, metal nanomaterials, and 

conductive polymers into the hydrogel network (Figure 7c).132, 133 SF can also be combined with 

synthetic polymers to form hybrid hydrogels with desirable functions for various applications. For 

example, a hybrid of PAM and SF (PAM/SF) hydrogel showed tunable mechanical properties and 

excellent stretchability (600% strain). The conductivity of the hydrogel can be tuned by 

introducing GO and PEDOT:PSS into the PAM/SF hydrogel matrix.134 A mixture of SF and PVA 

could form a hydrogel with improved stability and water absorption properties. Yang et al. 

developed a SF/PVA/Borax conductive hydrogel with high stretchable ability, self-healing 

properties, and strong adhesion to artificial skin.135 Although SF could be used as a biocompatible 

and degradable substrate for hydrogel electronics, they still face challenges such as (1) 

biocompatible concerns introduced by conductive polymers and fillers, (2) rational structural 

design to achieve high elasticity without chemical modification, and (3) the integration of 

additional desired functions (e.g., adhesion to tissue/organs). 

  

Figure 7. Biocompatible conductive hydrogels. (a) Hierarchical structure illustration of nature silk 

fiber. (b) Structure illustration of silk fibroin’s heavy chain. Reproduced with permission from ref 

129. Copyright 2019 American Chemical Society. (c) Schematic diagram of preparing an 
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interpenetrating silk/biopolymer conductive hydrogel by doping with bio-conductive fillers. 

 

The properties of conductive hydrogels can be tailored for different applications.136-138 For 

example, conductive hydrogels face the challenge of fatigue fracture under overload and 

exhaustion conditions, especially in the presence of severe mechanical damage. Developing anti-

fatigue fracture conductive hydrogels can greatly improve the durability of the hydrogel-based 

electronics in long-term useage.139 Under subzero temperature conditions, most conductive 

hydrogels inevitably lose their elasticity and conductivity because of the frozen aqueous solvent. 

To break this barrier, anti-freezing conductive hydrogels have been explored.140-143 Anti-bacterial 

conductive hydrogels have also been widely tested in wound healing.108, 144 All these examples 

demonstrate that to meet the actual needs of the practical applications is critical for the design and 

fabrication of a functional conductive hydrogel. Integrating versatile functions to one conductive 

hydrogel still remains a challenging task.145-147 

 

APPLICATIONS AND CHALLENGES OF CONDUCTIVE HYDROGELS IN 

BIOELECTRONICS. 

Conductive hydrogel is an ideal building block for many wearable electronic devices for the 

monitoring of biophysical and biochemical markers of human body (Table 1).148, 149 Due to their 

capability of converting mechanical stimuli into electrical signals, conductive hydrogels can be 

used in fabricating pressure and strain sensors.150 Sensors based on MXene (Ti3C2Tx)-PVA 

hydrogel effectively detected motion and subtle changes of a human body, and demonstrated high 

stretchability, conformable skin adhesion, and preferably self-healing properties (Figure 8a).46 

Multifunctional conductive hydrogels have also been used for making skin-attachable flexible 
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electrodes for the detection of electrophysiological signals, including ECG, electromyography 

(EMG), and electroencephalography (EEG) signals (Figure 8b). Wang et al. reported skin-

attachable PAA/PEDOT hydrogel electrodes that can detect physiological signals of ECG and 

EMG.151 The proposed PAA/PEDOT hydrogel electrodes were sufficiently sensitive for non-

invasive physiological signals detection. As electrophysiological signals are typically weak, 

improving the conductivity and the signal-to-noise ratio (SNR) is the primary concern in the 

material design. Additionally, as the electrodes are directly attached to human body for continuous 

signal monitoring, skin adhesion, long-term stability, and biocompatibility are also important 

criteria for the design of the hydrogels. 

Apart from biophysical sensors, conductive hydrogels have also been used in sensors for 

detecting biochemical markers. Li et al. reported biochemical sensors based on PANI hydrogel for 

the real-time detection of lactate, glucose, and triglycerides in human serum samples.61 The PANI 

hydrogel precursor, platinum nanoparticles, and enzyme solutions (glucose oxidase, lactic oxidase, 

and lipase/glycerol kinase/L-α-glycerophosphate oxidase) were inkjet-printed on the designated 

electrodes one by one to form a multiplexed biosensor (Figure 8c). The hydrophilic porous 

structure of the PANI hydrogel increases the enzymatic reactivity and facilitates the transportation 

of metabolite molecules, thus improving the electrode’s sensor sensitively. 
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Figure 8. Wearable bioelectronics based on multifunctional conductive hydrogels. (a) Body 

motion detection using a PVA flexible conductive hydrogel sensor. Reproduced with permission 

from ref 46. Copyright 2018 AAAS. (b) Physiological signal detection using skin-attachable 

conductive hydrogel electrodes. Reproduced with permission from ref 151. Copyright 2019 

Elsevier. (c) Multiplexed biomarks detection using PANI hydrogel based electrodes. Reproduced 

with permission from ref 61. Copyright 2018 American Chemical Society. 

 

Conductive hydrogels have also demonstrated great potential in implantable bioelectronics 

and tissue engineering (Table 1). The high-water content and porous structure of the hydrogel 

provide an extracellular matrix-like environment with matched mechanical properties to the tissue, 

giving conductive hydrogels significant advantages over traditional inorganic materials such as 

silicon and metals. The biocompatibility and/or biodegradability of the hydrogels are essential to 

various in vivo applications, along with mechanical robustness and adhesion to biological tissues. 
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Table 1 Examples of multifunctional conductive hydrogels in bioelectronics. 

Hydrogel network Features Processing methods Application Ref. 
Tough and stretchable conductive hydrogels   
Pure PEDOT:PSS Stretchability 

(>35% strain) 
Solvent annealing 
 

Bioelectronic devices 72 
 

PEDOT:PSS/IL Conductivity 
(>4100 S/cm) 

Solution mixing and 
annealing 

LED and FET 
devices 

73 

PANI/P-(AAm-co-
HEMA) 

Stretchability 
(about 220% strain) 

Precursor reduction Strain sensors 
 

74 

PAAm/PANI 
 

Stretchability 
(626% strain) 

In situ polymerization Strain sensors 44 

MXene (Ti3C2Tx)-PVA Strain sensitivity 
(Gauge factor: 25) 

Physical mixing Pressure/strain 
sensors 

46 

Self-healing & injectable conductive hydrogels   
PPy/alginate-gelatin Healed 

(In 40 min) 
Low-temperature 
fabrication (-20℃) 

Repairable circuits 104 

Carrageenan/PAAm Strain sensitivity 
(Gauge factor: 343) 

Solvent replacement and 
transfer 

Bio-signals detection 106 

Dex-AT/CECS Conductivity 
(10-2 mS/cm) 

Chemical modification Muscle regeneration 109 

Graphene/SF/Ca2+ Healed (100%) 
(In 3s) 

Mask printing Strain/humidity 
sensor 

133 

Adhesive conductive hydrogels    
PEDOT:PSS/PU Adhesion strength 

(>120 kPa) 
Electrodeposition Conductive adhesives 116 

PPy/SF Adhesion strength 
(>1.5 MPa) 

Interfacial 
polymerization 

ECG signals 
monitoring 

117 

PDA/CNTs Adhesion strength 
(>50 KPa) 

Glycerol-water binary 
solvent 

Bio-signals detection 45 

Shape memory conductive hydrogels    
EVA/PCL/CNTs Triggering voltage 

(20 V) 
Physical mixing Electro-actuator 122 

PVA/catechol-Fe3+
 Tensile strength 

(3.25 MPa) 

Freeze-thaw and solvent 
exchange 

Intelligent actuators 123 

PCL/PHMD/HDI Elastic modulus 
(100 MPa to 300 kPa) 

Transfer printing Peripheral nerve 
stimulation 

47 

Biocompatible conductive hydrogels    
PAM-SF/GO-
PEDOT:PSS 

Stretchability 
(600% strain) 

Physical mixing Strain/pressure 
sensors 

134 

SF-PVA/Borax Stretchability 
(>5000% strain) 

Physical mixing Biocompatible 
sensing platform 

135 

PEDOT-based 
microelectrode 

Stretchability 
(>200% strain) 

Photolithography Implantable 
bioelectronics 

49 

PPy-PDA/gelatin-Fe3+ Conductivity 
(6.51×10-4 S/cm) 

In situ polymerization Cardiac Patches 50 

PEDOT/PU Conductivity 
(120 S/cm) 

Electro-polymerization Cell scaffold 150 

Others functional conductive hydrogels   
Chitosan/PANI Antibacterial hydrogel Chemical modification Wound healing 108 
PAAm/alginate/CaCl2 Anti-freezing hydrogel Physical mixing Pressure sensors 140 
PAM/cellulose-nano 
crystals/CNTs 

Anti-fatigue-fracture 
hydrogel 

Solution mixing Strain/pressure 
sensors 

137 
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The first reported PEDOT/PU conductive hydrogel exhibited good biocompatibility to both 

muscle and nerve cells (Figure 9a).152 A degradable chitosan-graft-aniline tetramer (CS-AT) 

conductive hydrogel with self-healing and antibacterial activity was developed and used for 

cardiac cell therapy (Figure 9b).153 Due to the early success of applying conductive hydrogels in 

tissue engineering, the potential of conductive hydrogels has been rapidly explored in various 

aspects of tissue engineering such as like nerve cell behavior regulation and wound healing,49, 154-

156 as well as implantable bioelectronics for neurological signal detection.49, 157 Liu et al. reported 

a PEDOT-based implantable electronics for low-voltage neuromodulation (Figure 9c and d). The 

electronics can be used to electrically stimulate the sciatic nerve in a mouse and exhibit good 

stability and biocompatibility for long-term implantation. 

 

Figure 9. Tissues interface bioelectronics based on multifunctional conductive hydrogels. (a) Cell 

induction and differentiation based on PEDOT/PU conductive hydrogel. Reproduced with 

permission from ref 152. Copyright 2014 Wiley-VCH. The hydrogel showed good 
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biocompatibility, stretchability, and conductivity. (b) Cardiac cell therapy based on degradable CS-

AT conductive hydrogel. Reproduced with permission from ref 153. Copyright 2016 American 

Chemical Society. (c) Implantable bioelectronics based on PEDOT conductive hydrogel for 

localized low voltage neuromodulation in a mouse. (d) Images of the PEDOT-based microelectrode 

(MECH) wrapped around the mouse’s sciatic nerve. Reproduced with permission from ref 49. 

Copyright 2019 Nature Publishing Group. 

 

CONCLUSIONS AND PERSPECTIVES 

Many challenges still need to be addressed in order to fulfill the full potential of conductive 

hydrogels.158, 159 Currently, incorporating conductive polymers, carbon-based materials, and their 

derivatives into a non-conductive hydrogel matrix is still the dominate approach for formulating 

conductive hydrogels.26, 73, 160 Conductive hydrogels formed by these traditional methods have 

good processability but often have unstable conductivity. One approach to improve the electrical 

conductivity is to synthesis single-component conductive hydrogels, thereby avoiding non-

conductive network of the hydrogel matrix.33, 72 By adding crosslinking sites and biodegradable 

linkers to various conductive polymers, they can form single-component conductive hydrogels by 

in situ polymerization or self-assembly with significantly improved conductivity and bioactivity.26, 

161  

The integration of conductive hydrogel with biological tissue is another challenge in the field. 

Inorganic bioelectronics often cause neuroinflammatory responses induced by chemical and 

mechanical mismatch between inorganic bioelectronics and biological tissues.16, 21 In strong 

contrast, hydrogel based bioelectronics show lower neuroinflammatory responses benefited from 

their similar mechanical property to that of biological tissue.162 However, the electron current (or 
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hole current in some cases) carried by hydrogel electronics have to be converted to ion current at 

electrode/biological tissue interfaces to stimulate the biological systems. This switching requires 

a high voltage (about 1V in water) between the electrode/biological tissue interfaces, which can 

cause local heat effect, electrode degradation, and biocompatibility issues.125 Ionic hydrogel 

electronics could avoid the current conversion at the electrode/tissue interfaces, and eliminate the 

associated adverse effects form the high converted voltage. However, ionic hydrogels often suffer 

from problems caused by ion diffusion.163 

Despite the great progress over the past decade, conductive hydrogels are still in their infancy. 

Future attempts shall focus on (i) methods to improve and maintain stable conductivity and (ii) the 

robust integration of conductive hydrogels in bioelectronic devices. Apart from issues on the 

materials sides, we shall also pay more attentions to the biological interactions between 

bioelectronics and tissues, which are essential to the design of practical hydrogel electronics. 

Biocompatible conductive hydrogels with self-healing, shape memory, and tissue adhesion 

properties are critical for the development of next generation bioelectronics. While high 

conductivity, mechanical robustness, and high stretchability are the basic requirements for most 

hydrogel-based electronics, many practical applications have called for the needs of developing 

conductive hydrogel with additional functionalities such as shape memory, self-healing, and tissue 

adhesiveness. For hydrogels operating at the tissue/cell interfaces, biocompatibility and 

biodegradability are also important concerns. It is critical to fabricate conductive hydrogels with 

tailored properties to meet the actual needs of different applications in the era of personalized 

healthcare. 
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