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Abstract: Cortical functional connectivity, as indicated by the concurrent spontaneous activity of spatially
segregated regions, is being studied increasingly because it may determine the reaction of the brain to
external stimuli and task requirements and it is reportedly altered in many neurological and psychiatric
disorders. In functional magnetic resonance imaging (fMRI), such functional connectivity is investigated
commonly by correlating the time course of a chosen “seed voxel” with the remaining voxel time courses
in a voxel-by-voxel manner. This approach is biased by the actual choice of the seed voxel, however,
because it only shows functional connectivity for the chosen brain region while ignoring other potentially
interesting patterns of coactivation. We used spatial independent component analysis (sICA) to assess
cortical functional connectivity maps from resting state data. SICA does not depend on any chosen
temporal profile of local brain activity. We hypothesized that sICA would be able to find functionally
connected brain regions within sensory and motor regions in the absence of task-related brain activity. We
also investigated functional connectivity patterns of several parietal regions including the superior
parietal cortex and the posterior cingulate gyrus. The components of interest were selected in an
automated fashion using predefined anatomical volumes of interest. SICA yielded connectivity maps of
bilateral auditory, motor and visual cortices. Moreover, it showed that prefrontal and parietal areas are
also functionally connected within and between hemispheres during the resting state. These connectivity
maps showed an extremely high degree of consistency in spatial, temporal, and frequency parameters
within and between subjects. These results are discussed in the context of the recent debate on the
functional relevance of fluctuations of neural activity in the resting state. Hum. Brain Mapp. 22:165–178, 2004.
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INTRODUCTION
Functional neuroimaging is being applied increasingly to

issues of connectivity and communication between distant
areas of the brain. Whereas functional connectivity refers to
the correspondence over time between spatially distinct
neurophysiological events without implying any notion of
directionality, effective connectivity refers to the influence
one brain region exerts over another [Friston, 1996]. Func-
tional connectivity can be assessed by cognitive or motor
tasks [Friston, 1996; Goebel et al., 1998], but can be extracted
also from spontaneous activity of the resting brain. In the
latter case, a network of functional communication between
areas is revealed when their ongoing activity is not altered
through task or cognitive demand. Compared to task-re-
lated functional connectivity, resting state connectivity pat-
terns probably depend more on a common neural modula-
tor (e.g., thalamic input into cortical regions) or inherent
neurophysiological properties of cortico-cortical interaction
(e.g., synchronized spontaneous neural firing). With electro-
encephalography (EEG) [Tucker et al., 1986] and direct neu-
ronal recording [Fries et al., 2001; Leopold et al., 2003], it has
been documented that during resting states, cortical neurons
belonging to specific but spatially separated functional clus-
ters show correlated patterns of spontaneous activity over
time. Distinctive spatial distributions of correlated inter-
hemispheric activity have been found for motor, auditory,
and visual cortices [e.g., Shen et al., 1999; Tucker et al., 1986].
Such functional connectivity maps may provide insights into
the anatomical-functional relations that are not modulated
by cognitive or motor task performance [Greicius et al.,
2003].

The functional connectivity of the resting brain has also
been studied with functional magnetic resonance imaging
(fMRI). The blood oxygen level-dependent (BOLD) signal of
fMRI has been confirmed to reflect neural activity [Logoth-
etis et al., 2001], which is a prerequisite for the assumption
that BOLD signal functional connectivity maps may repre-
sent correlated neural activity of spatially segregated brain
regions [Leopold et al., 2003]. Caution is needed, however,
when interpreting functional connectivity in fMRI because

many other metabolic processes and local hemodynamic
properties at various time scales may contribute to the struc-
ture of BOLD signal fluctuations [Mitra et al., 1997].

The traditional method to assess functional connectivity
maps for a specific region of interest in fMRI is the “seed
voxel” approach. One or a small cluster of voxels is chosen,
whose (averaged) time course serves as a reference model
for cross-correlation analysis with the remaining brain vox-
els, yielding a spatial zero-lag cross-correlation map [Biswal
et al., 1995; Goebel et al., 1998]. The seed voxel can be
selected using anatomical (e.g., gyral or sulcal landmarks) or
functional knowledge (e.g., centre of mass of clusters of
statistical maps). Using this approach, functional connectiv-
ity maps depicting bilateral auditory [Biswal et al., 1996],
visual [Lowe et al., 1998], and motor cortex [Cordes et al.,
2001; Lowe et al., 1998; Xiong et al., 1999] that match statis-
tical maps of sensory or motor tasks have been obtained and
replicated. In addition, it has been reported that low-fre-
quency oscillations in the range of 0.1 Hz or lower contrib-
uted most to the temporal structure of the auditory, visual,
and sensorimotor functional connectivity maps [Cordes et
al., 2001].

The seed voxel approach has some inherent caveats.
Firstly, the cross-correlation map obtained depends highly
on the strategies for choosing the seed voxel, which deter-
mine the reference model. In addition, for resting state anal-
yses, the chosen model will contain a high but unknown
degree of noise-related fluctuations. Secondly, as an instance
of the univariate GLM [Friston, 1996] the cross-correlations
are computed on a voxel-by-voxel basis, thus pairing one
independent (seed voxel time course) and one dependent
(time course of a remaining voxel) variable. This approach
thus ignores the relations between multiple voxels.

Several multivariate, model-independent methods have
been applied to resting state data to circumvent the prob-
lems of the seed voxel approach. These methods do not
depend on the choice of any seed voxel reference, but rather
use the covariance matrix of all implicated voxel time
courses as the starting point for analysis. Many of these
methods, however, use a subset of cortical voxels to estimate
functional connectivity networks. In this sense, hierarchical
clustering has been used in resting state measurements to
assess networks of functional connectivity [Cordes et al.,
2002]. Clustering techniques generate clusters of variables
based upon an index of similarity or difference that can
represent absolute (e.g., Euclidean distance) or relative units
(e.g., Pearson correlation). Unlike other clustering tech-
niques, hierarchical clustering does not depend on a pre-
defined number of clusters to be estimated. In the study by
Cordes et al. [2002], clusters of interest were chosen accord-
ing to low-frequency contributions to the time course of the
cluster centre, which yielded connectivity maps similar to
those found with the seed voxel approach. Another ap-
proach to assess functional connectivity is principal compo-
nent analysis [Friston et al., 1993]. PCA estimates a number
of orthogonal components from the covariance structure
that together explain a large part of the variance of the data.

Abbreviations

COI component of interest
CoM center of mass
GLM general linear model
ICA s-/cb- independent component analysis spatial-/cortex-

based
MP-RAGE magnetization prepared rapid gradient echo
NoV number of voxels
PCA principal component analysis
pCC posterior cingulate cortex
preC precuneus
SMC sensorimotor cortex
SPC superior parietal cortex
TE echo time
TR time of repetition
VOI volume of interest
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Although these methods could replicate the functional con-
nectivity maps obtained with the seed voxel approach, they
have some limitations. First, often a subset of brain voxels is
chosen from which the covariance matrix is estimated, thus
potentially biasing the analysis. Second, PCA considers only
second order (and not higher order) relations between vox-
els and the time courses of the components are constrained
to be orthogonal. A useful candidate method to circumvent
these drawbacks is independent component analysis (ICA),
a data-driven, multivariate signal processing approach
[Comon, 1994]. In the applications of ICA to fMRI data, the
observed 4-D signals are usually modeled as linear mixtures
of unknown, spatially independent processes (e.g., BOLD
fluctuations, head movements, artifacts, etc.), each contrib-
uting to the dataset with an unknown time profile [spatial
ICA or sICA; McKeown et al., 1998; McKeown and Se-
jnowski, 1998]. The time series are decomposed into spatial
components or modes (ICs) that each have a unique time
course (TC). The decomposition process, for which different
algorithms have been developed [Bell and Sejnowski, 1995;
Hyvärinen, 1999], maximizes the spatial statistical indepen-
dence of the components. It is important to note that the
spatial independence of the components is a much stronger
criterion than if the spatial maps, or eigenimages, were
merely constrained to be orthogonal (as in PCA). In this
sense, sICA can be considered as a generalization of PCA,
with the other prominent distinction that sICA, in contrast to
PCA, does not constrain the time courses of the components
to be mutually orthogonal.

Spatial ICA has been applied to resting state data of
anesthetized child patients by Kiviniemi et al. [2003]. These
authors were able to identify components in sensory and
motor cortices and large vessels. The frequency analysis of
parenchymal time courses showed a dominant peak at 0.03
Hz. ICA has also been applied to resting state data of the
adult human brain [Biswal and Ulmer, 1999], but no thor-
ough analysis of functional connectivity patterns was re-
ported. We apply this method to fMRI data of healthy adults
to study resting state functional connectivity of the non-
anesthetized human brain. We show that spatial ICA can be
used to assess functional connectivity within and across
hemispheres in sensory and motor cortices, as well as in
several parietal and frontal regions. In addition, we assess
the degree of reproducibility of these functional connectivity
maps within and between subjects, by analyzing their spa-
tial layout and their temporal profile.

SUBJECTS AND METHODS

Subjects

Seven healthy subjects with no history of neurological or
psychiatric disorder participated in the study (four men;
mean age, 28.6 years; age range, 22–39 years). Two subjects
were predominantly left-handed, the remaining were pre-
dominantly right-handed, as assessed using the Edinburgh
Handedness Inventory [Raczkowski et al., 1974]. The aim of
the study was explained to the subjects and all subjects gave

written informed consent before measurement. Before func-
tional and anatomical measurements, the subjects were told
to relax but remain awake, keep their eyes open and just to
“let your thoughts go as they come.” Subjects were asked
between and after sessions whether they were awake during
the previous session. All subjects confirmed that they were.

Imaging Sequences and Parameters

Functional and anatomical measurements were conducted
on a 1.5 T Magnetom Vision MRI Tomograph (Siemens,
Erlangen, Germany) using an echo-planar imaging (EPI)
sequence for functional imaging (1 volume � 12 axial slices,
number of volumes � 400, TR/TE � 1,500/60 msec, field of
view � 220 � 220 mm2, voxel size � 3.2 � 3.2 � 6.0 mm3).
Each functional session lasted 10 min. For each subject, a
T1-weighted MP-RAGE sequence was run to obtain an an-
atomical reference (voxel size � 1.0 � 1.0 � 1.0 mm3, field of
view � 256 � 256 mm2), which lasted approximately 5 min.
To prevent large head movements, the subject’s head was
fixed by placing foam pads on each side of the head within
the head cage. For each subject, the session began with one
functional measurement of resting state, followed by an
anatomical measurement, which was followed by a second
functional measurement. Functional imaging was carried
out in complete darkness, and subjects were told they
should keep their eyes open to prevent them from falling
asleep during the measurements. Subjects were also in-
structed explicitly to move as little as possible.

Functional Connectivity Analysis

Analysis of the measured BOLD signals was carried out
using the BrainVoyager 2000 v. 4.8 analysis software (online
at http://www.brainvoyager.com). The first four volumes
of each functional dataset were discarded from analysis
because of magnetic saturation effects. All functional data-
sets were preprocessed using interslice time correction and
resampled in a standardized 3-D space [Talairach and Tour-
noux, 1988]. Motion time courses were obtained by estimat-
ing the values for translation (mm) and rotation (degrees)
for each of the 396 consecutive volumes. Of 14 measured
datasets, 4 second-run datasets were discarded because of
head movements larger than 0.8 mm occurring over several
consecutive volumes, as obtained from the motion time
courses. Functional data from individual subjects were de-
picted on standardized anatomical volume and on inflated
and flattened anatomical representations, following proce-
dures described elsewhere [Kriegeskorte and Goebel, 2001;
Linden et al., 1999]. Group data were superimposed on an
anatomical brain template (courtesy of the Montreal Neuro-
logical Institute [MNI]).

Functionally connected patterns of activity were esti-
mated using spatial ICA. Formally, the observed data were
modelled as:

X � MS, (1)
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where X is the n � v matrix of the observed time courses (n
� number of scans, v � number of voxels), S is the m � v
matrix whose rows Si are to be filled with the (unknown)
realizations of the spatial components (m � n � number of
components), and M is the n � m “mixing” matrix, whose
columns contain the time courses of the m components, and
is assumed to be of full rank. In this model, all the spatial
components, with the possible exception of one, are as-
sumed to be non-gaussian [Hyvärinen, 1999]. Structured
(non-gaussian) artifacts in the data (e.g., head movements,
machine and physiological artifacts) are not modelled ex-
plicitly, but instead are treated as independent sources and
are thus expected to be represented in one or more of the
components.

The problem of the ICA-decomposition of fMRI time se-
ries can be formulated as the estimation of both the matrices
of the right side of equation (1), under the constraint that the
processes Si are (in the ideal case) mutually statistically
independent. No a priori assumption is made about the
mixing matrix M, i.e., about the time courses. The amount of
statistical dependence within a fixed number of spatial com-
ponents can be quantified by means of their mutual infor-
mation [Comon, 1994]. The ICA decomposition of X thus can
be defined (up to a permutation of the components, a mul-
tiplicative constant and to the sign) as a linear transforma-
tion:

S � WX (2)

where the matrix W (the “unmixing” matrix) is determined
such that the mutual information of the target components Si

is minimized. Matrix M can be computed as the pseudo-
inverse of W.

Different ICA algorithms use different strategies [see Hy-
värinen, 1999 for review and Esposito et al., 2002 for an
empirical comparison of the two ICA algorithms used most
commonly in fMRI data analysis]. Here, the 4-D functional
datasets were decomposed using the cortex-based sICA
methodology [cbICA; Formisano et al., 2001, 2002a] that uses
a fixed-point ICA algorithm [FastICA, Hyvärinen, 1999] as
implemented in http://www.cis.hut.fi/projects/ica/fas-
tica/. The cortex-based approach restricted the ICA to a
subsample of the voxel time courses belonging to the cortical
sheet, thus reducing the data by 65–70%. This approach was
justified because we were interested primarily in cortical
functional connectivity, without restricting the analysis to
specific functionally specialized cortical regions. The Fast-
ICA algorithm minimizes the mutual information of the
components using a robust approximation of the negen-
tropy as a contrast function and a fast, iterative (non-adap-
tive) algorithm for its maximization [for a detailed descrip-
tion of the FastICA algorithm, see Hyvärinen, 1999]. After
sphering the matrix X and reducing the dimensionality of
each dataset to 200 components using PCA, the hierarchical
(deflation) mode of the FastICA algorithm was used and all
the components were estimated one-by-one. The relatively
high number of dimensions (200) was selected to preserve

the original structure of the data (the reduced dataset in-
cluded more than 99% of the original variance), as an exces-
sive reduction of the dimensionality could negatively affect
the ICA decomposition [McKeown and Sejnowski, 1998].

After the decomposition, voxel values of the ICA spatial
maps were Z-transformed and color-coded according to abso-
lute value and sign. For visualization, maps were thresholded
by Z-value (�Z� � 2.2), and cluster size (�200 mm3), using a 3-D
six-neighbor clustering algorithm [Pratt, 1991]. It should be
noted that the Z-values do not pertain to any significance
statistic, because no comparison is made to a null distribution.
Clusters of voxels within a component map that survived the
thresholds were considered as clusters of functionally con-
nected voxels. After component generation, the component
maps were analyzed further in the space and time domains
using custom software developed in MATLAB 6 (MathWorks,
Natick, MA).

Post-Hoc Analysis of Components of Interest and
Reproducibility Across Subjects

From the component decomposition of each dataset, a
subset of components of interest (COIs) was preselected
in an automated fashion using only spatial information, as
contained within two sets of volumes of interest (VOIs;
see Creation of Volumes of Interest). Before application of
VOI templates, component maps were sign-corrected. For
each component, the mean of the absolute Z-values of
voxels that matched coordinates of the VOIs was calcu-
lated (mean Z in Tables I and II). The absolute rather than
the signed voxel values were used to prevent cancellation
of signs when averaging voxel values. The components
with the three highest absolute mean values were selected
for further analysis (referred to as COIs). This criterion
was based on consistent findings that component maps
with interesting spatial patterns fell within the small
range of highest mean voxel values. In addition, each
component time course was mean-corrected, linearly de-
trended, and cross-correlated with the six motion time
courses. Components whose time courses were highly
correlated (r � 0.5) with the estimated motion time
courses were discarded from further analysis. This second
selection criterion was used because we found that in
most cases a subsample of chosen COIs contained contri-
butions from movement artifacts. This second criterion
resulted in a further reduction of the number of COIs per
VOI by one or two components. The remaining COIs were
then used for further analysis.

To analyze the contributions of different frequency
bands to spontaneous fMRI activity, a power spectrum
analysis of the COI time courses was carried out. COI time
courses were high-pass filtered (cut-off � 0.01 Hz), and
their power spectrum density was estimated using
Welch’s method [see Childers, 1987]. In particular, we
estimated the contribution of the extremely low to low
frequencies [0.01– 0.1 Hz; Cordes et al., 2001] to the overall
spectral power, using methods similar to those described

� Van De Ven et al. �

� 168 �



in Thomas et al. [2002]. We quantified the contribution of
low frequencies to the overall power as the ratio between
the estimated area under the power spectral curve in the
frequency band 0.01– 0.1 Hz and the estimated total area.
Contribution values range between 0 and 1, with higher
values indicating higher contributions of the low fre-
quency band to the overall power.

The spatial overlap of COIs across subjects was verified
using intersubject consistency maps that were computed
based on data from the first measurement of each subject (n
� 7). In these maps, the voxel value indicates in what
proportion of subjects a voxel pertained to the COI in ques-
tion. For instance, a voxel value of 1 indicates that the
Z-value at that voxel exceeded the threshold of Z � 2.2 in all
subjects. The maps were thresholded at a minimum of three
subjects (map value �0.29) and were superimposed upon
the MNI anatomy template.

Reproducibility Within Subjects

For subjects who had two valid measurements (n � 3; Sub-
jects 1, 4, and 6) the COI reproducibility was assessed by
verifying the spatial overlap between corresponding COIs ob-
tained in different sessions (spatial correlations between sign-
corrected maps) and by evaluating their cross-spectral density
using Welch’s method [see Childers, 1978]. The similarity of
the replicated COIs was verified also based on two component-
descriptive parameters: (1) the degree of clustering of suprath-
reshold voxels (number of clustered voxels/number of su-
prathreshold voxels) within the component maps, which
served as an index of spatial structure for each component; and
(2) the one-lag serial autocorrelation coefficient of the COI time
course, which served as a measure of temporal structure
[Formisano et al., 2002a]. Both measures ranged from 0 to 1. It
has been shown that COIs tend to possess a sparse and spa-
tially clustered distribution of high Z-values and have an in-

TABLE I. Detection characteristics of the components of interest for the first volume of interest set comprising
sensory and motor cortices for the first sessions

VOI

Subject no.

1 2 3 4 5 6 7

Left SMC Mean Z 1.87 1.86 2.11 2.61a — 1.66 4.71
Mean Zsupra 3.83 3.46 3.41 4.40 — 3.60 5.96
Nvox in 9.65 2.62 7.36 11.17 — 7.13 18.77
Rank 1 2 1 1 — 2 1

Right SMC Mean Z 2.24 4.19 2.67 1.94a — 2.23 4.65
Mean Zsupra 3.61 5.16 4.35 3.78 — 3.68 5.33
Nvox in 12.12 18.48 10.98 8.77 — 10.83 16.50
Rank 1 1 1 1 — 1 1

Left AC1 Mean Z 1.62 1.31a 2.64 1.16 1.14a 1.36 1.63
Mean Zsupra 4.03 2.99 3.85 3.97 3.50 3.20 3.42
Nvox in 10.26 7.14 19.85 3.92 5.03 8.61 12.37
Rank 1 1 1 2 2 2 1

Left AC2 Mean Z 1.39 — — — — — —
Mean Zsupra 3.35 — — — — — —
Nvox in 7.48 — — — — — —
Rank 3 — — — — — —

Right AC1 Mean Z — 1.20a 1.54 1.47 0.74a 2.19 1.67
Mean Zsupra — 2.88 3.47 3.96 2.71 4.03 3.58
Nvox in — 6.72 11.13 9.68 4.54 14.95 10.42
Rank — 1 1 2 3 1 1

Right AC2 Mean Z 0.88 — — — — — —
Mean Zsupra 3.06 — — — — — —
Nvox in 3.45 — — — — — —
Rank 3 — — — — — —

PVC Mean Z 2.90 1.18 2.82 2.82 3.18 2.95 1.63
Mean Zsupra 4.29 3.36 4.46 5.25 4.71 4.85 4.00
Nvox in 41.95 11.66 50.59 32.78 45.20 51.69 23.27
Rank 1 1 1 1 1 1 1

Maps were sign-corrected across sessions.
a Left and right sensory or motor VOI selected the same component, indicating that the component map represented bilateral connectivity
patterns, except where indicated (a). SMC, sensorimotor cortex; AC, auditory cortex; PVC, primary visual cortex; mean Z, mean �Z� values
of the voxel values captured within the respective VOI template; mean Zsupra, mean �Z� values of voxel values within VOI template that
exceed the Z-threshold of 2.2; Nvox in, percent of suprathreshold voxels within template; Rank, ranking position within the selected
subsample of COIs (n � 3) for each VOI template.
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termediate to high temporal structure, which is reflected in
intermediate to high values of these measures [Formisano et
al., 2002a; van de Ven et al., 2002].

Creation of Volumes of Interest

To preselect COIs based on standardized anatomical or
functional information, we created two sets of VOIs. The
first set comprised VOIs of auditory, visual, and sensorimo-
tor regions, which are often the regions of interest in resting
state functional connectivity analysis. For the auditory cor-
tex VOI, a probabilistic mapping of Heschl’s gyrus, the
putative site of primary auditory cortex, was used [Radema-
cher et al., 2001]. Such maps depict the probability for any
anatomical voxel to belong to left or right Heschl’s gyrus
with respect to an anatomically averaged template. In our
study, the probability level of the maps was thresholded at
a minimum of 20% to capture the high anatomical and
functional variability of the auditory cortices (left CoM: x
� �40, y � �20, z � 8, NoV � 4,910; right CoM: x � 45, y
� �13, z � 10, NoV � 4,541). For visual cortex VOIs, the
area around the calcarine fissure was chosen (CoM: 0, �79,
1, NoV � 10,576). For the sensorimotor cortex VOIs, regions
were chosen using anatomical landmarks (pre- and postcen-
tral gyri) and functional activity clusters from a study that

used button presses to identify periods of auditory halluci-
nations [van de Ven et al., 2002] (left CoM: �37, �24, 43,
NoV � 3,732; right CoM: 41, �22, 52, NoV � 5,159).

The second set of VOIs was derived from functional and
anatomical information, and comprised cortical regions
within the parietal lobe: bilateral intraparietal sulcus region
(IPS) (left CoM: �30, �60, 38, NoV � 6,592; right CoM: 28,
�54, 45, NoV � 7,089) and the posterior cingulate cortex/
precuneus (pCC/ventral preC) (CoM: �1, �47, 24, NoV
� 13,319). These regions were used for a post-hoc COI
selection to detect parietal resting state networks. The addi-
tion of these VOIs to the sensory and motor VOIs reflects our
interest in parietal regions, which we investigated in a num-
ber of studies of visuospatial paradigms [e.g., Formisano et
al., 2002b; Trojano et al., 2000].

RESULTS

Volumes of Interest of Sensory and Motor Cortex

For each dataset, some of the three selected COIs per VOI
template were discarded because they reflected contribu-
tions of artifacts (criteria are described above). In most cases,
the VOI-based preselection using the VOIs of sensory and
motor cortices (first VOI set) yielded one COI connectivity

TABLE II. Detection characteristics of the components of interest for the second volume of interest set comprising
parietal regions for the first sessions

VOI

Subject no.

1 2 3 4 5 6 7

Left IPCa Mean Z 1.70b 2.66b 1.06b 1.60b 0.85b 1.66b 0.98b

Mean Zsupra 4.48 4.30 4.26 3.83 3.28 3.88 4.11
Nvox in 12.23 17.74 7.07 9.32 5.57 13.01 5.59
Rank 1 1 2 1 2 1 3

Right IPCa Mean Z 1.60b 3.37b 1.50b 2.67b 0.94b 2.38b 1.52b

Mean Zsupra 4.10 4.72 4.87 4.48 2.26 4.79 5.45
Nvox in 8.87 19.47 8.39 16.60 8.79 15.69 4.99
Rank 2 1 2 1 3 1 2

pCC Mean Z 1.92 2.33 2.03 1.32 1.65 1.70 1.69
Mean Zsupra 4.54 4.45 4.10 3.27 4.06 3.97 4.98
Nvox in 26.57 28.07 24.11 16.80 20.36 23.83 23.92
Rank 1 1 1 3 2 1 1

pCC/preC1 Mean Z 1.797 — �1.254 �0.376 1.733 0.760 1.127
Mean Zsupra 4.716 — �3.362 �0.705 3.965 2.713 3.985
Nvox in 24.93 — 18.64 19.50 20.79 18.69 13.53
Rank 2 — 3 2 1 2 2

pCC/preC2 Mean Z — — — 2.33 0.67 — �0.33
Mean Zsupra — — — 4.11 2.49 — 0.70
Nvox in — — — 31.23 11.41 — 12.33
Rank — — — 1 3 — 3

a Left and right inferior parietal cortex (IPC) components also included clusters in dorsolateral prefrontal cortex and frontal eye fields in
the same hemisphere.
b Left and right parietal VOI selected the same component, indicating that the component map represented bilateral connectivity patterns,
except where indicated (b). pCC, posterior cingulate cortex; preC, precuneus; mean Z, mean �Z� values of the voxel values captured within
the respective VOI template; mean Zsupra mean �Z� values of voxel values within VOI template that exceed the Z-threshold of 2.2; Nvox in,
percent of suprathreshold voxels within template; Rank, ranking position within the selected subsample of COIs (n � 3) for each VOI
template.
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map of the bilateral primary and secondary auditory cortex
(AC), one map of bilateral visual cortex (PVC), and one map
of bilateral SMC (Table I). Selection of the same component
by the left and right sensory or motor VOI indicated that the
component contained bilateral connectivity patterns. These
COIs ranked highest in the VOI-based selection (see Table I).
In addition, these components were largely free from motion
artifacts.

In one subject, no left or right COI of the sensorimotor
cortex passed the selection criteria. In another subject, the
left and right SMC were represented separately by two
different COIs. The functional connectivity clusters for the
left and right auditory cortex were represented separately by
two different COIs in two subjects. For the first session of
Subject 1, two bilateral auditory cortex components were

selected. One COI was more centered upon Heschl’s gyrus
in both hemispheres, whereas the other COI incorporated
regions in the anterior and posterior superior temporal gy-
rus. In the second session of Subject 1, only one COI for the
auditory cortex was found, which was not a spatial summa-
tion of the two COIs from the first session. For all subjects, a
COI was found with functional connectivity clusters that
included the calcarine fissure in both hemispheres. Figure 1
shows the COI maps of auditory, visual and sensorimotor
regions of one representative subject (Subject 6). These con-
nectivity clusters showed a marked consistency of spatial
characteristics among the various decompositions, as is re-
flected by the intersubject consistency maps in Figure 2.
Surprisingly, a functional connectivity cluster centered on
the middle and lower parts of the central sulcus (CS) was

Figure 1.
Upper panel: COIs obtained by using the
first (VOI 1) and second (VOI 2) set of VOIs of
Subject 6. Colors indicate the different COIs.
White lines on flatmap indicate borders of
VOI templates. Insets: VOI templates of first
and second VOI set presented in glass brain
format. Lower panel: Estimate of power
spectral densities of the COI time courses
(normalized according to maximum value of
power), showing that highest powers are
found within the low to very low frequency
range (0.01–0.1 Hz). Broken line indicates 0.1
Hz. For explanation of abbreviations, see ab-
breviation list and text.
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identified by the SMC or the AC VOI in most cases (see Fig.
2), although we did not explicitly create a VOI for the entire
extent of the bilateral central sulcus. The detection of this
region of connectivity can be attributed to the fact that SMC
and AC VOI-voxels extended into the top or lower end of
the CS clusters, respectively (see Fig. 2).

Volumes of Interest of Parietal Areas

For the second VOI set, the pCC/ventral preC VOI se-
lected one or two COIs comprising connectivity clusters in
bilateral pCC/preC, and one COI connectivity map com-
prising preC and bilateral superior parietal lobule (SPL) in
most of the decompositions (Fig. 1 and 2; Table II). The left
and right IPS VOI selected one COI connectivity map com-
prising either the left or the right inferior parietal cortex
(IPC) from most of the decompositions. The IPC connectivity
maps consistently comprised small connectivity clusters in
left or right dorsolateral prefrontal cortex (DLPFC) and fron-
tal eye fields (FEF). In all cases, the COI for the IPC con-
tained unilateral clusters, suggesting that these regions may
not be connected functionally across hemispheres during
rest.

Frequency Analysis of the Component of Interest
Time Courses

The frequency plots for the COIs containing auditory,
sensorimotor, and visual regions showed that the largest
contributions to the frequency spectrum were within the
extremely low range (0.01–0.05 Hz) of the component time

course. Frequency plots for Subject 6 are presented in the
lower part of Figure 1. For COIs selected by the second VOI
set that comprised parietal regions, higher powers were
observed for the higher frequencies. The contribution ratio
of the spectral power in the frequency range of 0.01–0.1 Hz
to the whole spectral range was estimated for the COIs of all
first sessions. On average, all values exceeded the ratio of
0.4, which indicates that much of the spectral power is
explained by the frequency powers of the low to very low
range (Fig. 3).

Reproducibility

In a post hoc investigation, we looked at the reproducibil-
ity of the COIs in spatial, temporal, and frequency domains
within the same subject (nsubject � 3; Subjects 1, 4, and 6).
COIs as identified by the sensory–motor and parietal VOI
sets showed a high degree of spatial consistency across the
two sessions of all three subjects (Table III). The upper part
of Figure 4 depicts this consistency for Subject 1. The lower
part of Figure 4 shows the consistency in frequency contri-
butions of the COI time courses across the two sessions of
the same subject in the form of cross-spectrum densities.
This overlap in spectral density was found for most repro-
duced COIs from the first and second session, which was
reflected by the large contribution of extremely low frequen-
cies to the COIs from the first VOI set (0.01–0.05 Hz), and
low frequencies to the COIs from the second VOI set (0.05
Hz and higher; Table IV). The similarity of the first and
second session COIs was also found in component-descrip-
tive parameters (degree of clustering of suprathreshold vox-

Figure 2.
Intersubject consistency maps of first and sec-
ond VOI set for the first session of all subjects.
Maps are obtained by summing the suprath-
reshold voxels contained within the respective
COIs across subjects, and divided by the total
number of subjects. Map values range from
0–1, and are thresholded at �0.29. Maps are
depicted on MNI template flatmaps. White
lines on flatmap indicate borders of VOI
templates.
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els and temporal structure of the COI time course), as is
depicted in Figure 5. The pairs of COIs pertaining to similar
anatomical regions can be found in close proximity in the
plane defined by these component-descriptive parameters.
In addition, the component pairs can be found consistently
in a specific quadrant (upper right) of the 2-D plot, indicat-
ing that these components show a consistently high degree
of spatial clustering of functionally connected voxels and
that the time courses are highly structured.

DISCUSSION

We analyzed functional connectivity from resting state
datasets with spatial cortex-based independent component
analysis. Using a VOI approach to automatically preselect a
small number of components for further analysis, we found
independent COIs for bilateral auditory, sensorimotor, and

visual regions, as well as several parietal (preC, SPC, IPC)
regions. Most of these components indicated a high degree
of functional connectivity between homologous areas in the
two hemispheres, presumably subserved by transcallosal
connections. The left and right IPC regions, however,
showed a consistent decoupling between hemispheres,
whereas they were connected strongly to frontal regions
(DLPFC/FEF) of the same hemisphere. Such a pattern has
been reported in task-related studies as well [Formisano and
Goebel, 2003], suggesting that parietal homologous areas do
not necessarily subserve homologous functions. Unexpect-
edly, for each subject ICA revealed a component map show-
ing bilateral central sulcus connectivity stretching from mo-
tor cortices to inferior frontal gyri. Frequency-power
analysis of the COI time courses showed that extremely low
frequencies (0.01–0.05 Hz) contributed largely to the fre-
quency spectrum. Spatiotemporal decomposition and selec-
tion of the COIs proved to be highly consistent across as well
as within subjects.

Our results are similar to previously reported functional
connectivity maps of auditory, visual, and motor cortices in
space [Biswal et al., 1997; Cordes et al., 2001; Lowe et al.,
1998] and in time [Cordes et al., 2001; Xiong et al., 1999]. Our
spatial ICA application yielded only one component for each
region of interest in most cases, however, whereas Kiviniemi
et al. [2003] reported multiple components for sensory and
motor regions. This difference may reflect different samples
(young patients vs. healthy adults) and measurement situa-
tions (anesthetized vs. awake) of the two studies. In addi-
tion, we used an automated component selection procedure
that yielded only one, in some cases two COIs with the
highest average absolute Z-values, instead of selection by
visual inspection of target areas. The spatial location and
extent of our sICA-derived connectivity maps of parietal
areas show a high similarity to clusters of activity elicited by
several visuospatial tasks, using both hypothesis- [e.g.,
Goebel et al., 1998; Trojano et al., 2000] and data-driven
analyses [Formisano and Goebel, 2003].

The contribution of low and very low frequencies to the
COI time courses suggests that the COIs reliably represent
the functional connectivity patterns in the time domain as
well. Functional connectivity as measured by multiunit cell

Figure 3.
Dispersion plot of the contribution ratio of spectral power within
the low to very low frequency range (0.01–0.1 Hz) for COIs for
the sessions of all subjects (dots), and the average contribution for
each COI (plus sign). L/R SMC, left/right sensorimotor cortex; L/R
AC, left/right auditory cortex; L/R IPC, left/right inferior parietal
cortex.

TABLE III. Intra-subject spatial correlations

Subject no.

COI

Bilateral AC Bilateral SMC PVC Left IPC Right IPC pCC preC CS

1 0.45a 0.62 0.75 0.70 0.52 0.64 0.79 0.57
4 0.35 0.25a 0.67 0.54 0.62 0.26 0.80 0.48
6 0.26a 0.21a 0.69 0.75 0.83 0.79 0.71 0.66

Intra-subject spatial correlations between the Z-scored sign-corrected spatial component of interest (COI) maps of Session 1 and 2 of Subjects
1, 4, and 6. All correlation values are highly significant (P � 0.0001).
a When in one of the sessions the left and right regions of interest were represented by two separate components, the sign-corrected COIs
were averaged into a single map. AC, auditory cortex; SMC, sensorimotor cortex; IPC, inferior parietal cortex; pCC, posterior cingulate
cortex; preC, precuneus; CS, central sulcus.
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recording is associated often with frequencies in the � range,
and can show high coherence over short and long cortical
distances [Fries et al., 2001; Leopold et al., 2003]. It has been
demonstrated, however, that fluctuations with a frequency
range similar to that observed in our COI time courses (�0.1
Hz) over a very large time scale (minutes) are a meaningful
indicator of coherent fluctuations of higher frequencies (e.g.,
� range) that occur over a very short time scale (millisec-
onds) [Leopold et al., 2003]. Functional connectivity maps,
as measured by fMRI, thus might be good estimators of
large-scale functional connectivity at the neural level. Con-
nectivity in BOLD signal maps, however, may also represent
couplings in blood flow or capillary processes. The low
frequencies reported in our study, as well as in other studies,
have been linked to oscillations of cerebral blood flow reg-
ulation [Mitra et al., 1997], which have been found in fre-
quency ranges as low as 0.04 Hz [Obrig et al., 2000]. Our
current approach cannot convey any information about the
direction of such connectivity patterns because the analyses
are based only on zero-lag covariation over time. In addi-
tion, fMRI functional connectivity is limited by a coarse
temporal resolution (i.e., in the range of seconds), whereas at

Figure 4.
Upper panel: Spatiotemporal replication of
COI functional connectivity maps of session 1
(blue) and 2 (red) of Subject 1. Overlapping
regions are depicted in purple. For reference
of the anatomical-functional clusters, see Fig-
ures 1 and 2. Lower panel: Cross-spectral
densities for replicated COIs of Subject 1 are
given for each of the paired COIs (normalized
for maximum value). A high spectral density
indicates high power for that frequency in
both COI time courses.

TABLE IV. Contribution ratio of spectral power within
0.01–0.1 Hz to the total spectral range of similar

components of interest in the two sessions (S1 and S2)
of Subjects 1, 4, and 6

VOI

Subject 1* Subject 4 Subject 6

MeanS1 S2 S1 S2 S1 S2

Left SMC 0.40 0.36 0.50 0.25 0.40 0.61 0.42
Right SMC 0.40 0.36 0.50 0.25 0.40 0.49 0.40
Left AC 0.50 0.35 0.24 0.55 0.44 0.35 0.41
Right AC 0.50 0.35 0.56 0.55 0.44 0.59 0.50
PVC 0.29 0.38 0.58 0.32 0.67 0.75 0.50
Left IPC 0.62 0.37 0.49 0.57 0.54 0.45 0.51
Right IPC 0.35 0.51 0.29 0.49 0.71 0.38 0.46
pCC 0.40 0.45 0.67 0.39 0.53 0.49 0.49
pCC/preC 0.52 0.58 0.85 0.41 0.42 0.49 0.54
CG 0.76 0.79 0.71 0.59 0.80 0.83 0.75

*Left/right auditory cortex (AC) components of interest (COIs) of
Subject 1, session 1 (S1) is left/right AC1 in Table 1. SMC, sensori-
motor cortex; PVC, primary visual cortex; IPC, inferior parietal
cortex; pCC, posterior cingulate cortex; preC, precuneus; CG, cen-
tral gyrus.
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the same time subcortical activity (e.g., thalamic activity
patterns) is explicitly neglected by the cortex-based analysis.
These constraints clearly prevent an interpretation in the

context of possible biochemical or neurophysiological mod-
ulators of such connectivity patterns.

Spatial ICA does not rely on a predefined temporal model,
and is therefore very suitable for functional connectivity
analysis of resting state data, where a general model of ideal
brain activity cannot be generated. Although several param-
eters of the dataset may vary within and between subjects
(e.g., head movement, anatomical variation), VOI-cbICA
was able to reproduce functional connectivity maps of sen-
sory, motor, and parietofrontal regions in most cases. Even
more so, comparison of component-descriptive parameters
such as spatial layout of the functional clusters, frequency
spectrum, and temporal structure of the COI time courses
yields a high consistency between COIs obtained from dif-
ferent datasets. This is especially interesting in light of ear-
lier studies where COIs related to acoustic stimulation [van
de Ven et al., 2002], visual stimulation, and motor perfor-
mance [Formisano et al., 2002a] were extracted from differ-
ent tasks and measurements. The identified COIs showed a
high degree of similarity in several component-descriptive
parameters across the various studies, as well.

CbICA is able to separate functionally connected net-
works from motion-related artifacts and other BOLD-signal
patterns not related to neural activity. ICA has been applied
as a noise reducer before [McKeown et al., 1998; McKeown
and Sejnowski, 1998; Thomas et al., 2002], but was aimed
mainly at separating noise-related time courses from task
activity related to block- or event-related designs. In our
study of resting state measurements, noise reduction was an
important part of the analysis, because no prespecified hy-
pothesis can be used to estimate and separate interesting
BOLD signals from potentially noise-related activity pat-
terns [McKeown et al., 1998; Thomas et al., 2002].

Arfanakis et al. [2000] used ICA to identify and remove
task-related activity from functional datasets. The resulting
data matrix contained only non-task-related activity that
comprised the baseline conditions and noise components.
Functional connectivity networks in sensory and motor re-
gions were then identified with a seed voxel approach. The
task-related activity patterns, however, were identified
based on a cross-correlation between the stimulus protocol
and the component time courses. Extracting independent
components by relying on the stimulus protocol may ignore
possible task-dependent activity patterns that are not obvi-
ously captured by the shape of the protocol. Such a method
may then leave traces of task-dependent activity in the sub-
volume of the resting state dataset, resulting in task-depen-
dent connectivity. Our approach functions independently of

Figure 5.
Scatter of the COIs of the first (white) and second (black) sessions
according to a spatial (degree of clustering) and a temporal (ab-
solute values of the one-lag autocorrelation coefficient) measure.
From top to bottom the plots are of Subject 1, 4, and 6. Asterisk,
AC; plus sign, PVC; open circle, SMC; open square, CS; up triangle,
preC; down triangle, pCC; left triangle, SPC; star, IPC/DLPFC.
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time course information, whereas it emphasizes spatial in-
formation as a criterion for selection of COIs.

The finding of pCC/preC functional connectivity COIs is
of special interest in light of recent findings on default states
of brain activity in these and other regions. A decrease in
BOLD signal in ventral anterior and posterior cingulate
cortex during task performance in comparison to baseline
activity has been reported on by Raichle et al. [2001]. This
relationship was investigated by Greicius et al. [2003], who
looked at activity in these regions during task execution and
during resting state measurements. Not only did they find
that these regions were connected functionally in the resting
state, but that activity in these regions was inversely corre-
lated with activity in prefrontal regions involved in working
memory. This finding is supportive of a default brain state of
activity that is disrupted when a task is carried out [Raichle
et al., 2001]; however, the COI functional connectivity maps
obtained in our study that comprised the pCC/preC did not
contain clusters in the anterior cingulate cortex. This may
suggest that the reported correlations between the regions
do not describe a statistically dependent relation. This can be
the case when a third region modulates the activity of the
regions contained in the COI.

This study has several limitations. First, we chose to de-
compose each dataset using a relatively large number of
independent components. An excessive reduction of the
dimensionality may be particularly problematic for analysis
of resting state measurements because the interesting
sources are expected to be weak compared to other, artifac-
tual sources [Green and Cordes, 2002]. Conversely, setting
the number of components too high may result in function-
ally connected regions split into separate components. For
example, in one case the bilateral auditory cortex was rep-
resented in two components, whereas the left and right IPC
were each captured in a single component map in all cases.
In most cases, however, the sensory and motor connectivity
maps showed a bilateral pattern similar to connectivity pat-
terns reported in other studies, indicating that our choice of
component number did not play a major role in determining
our results. Interestingly, in another resting state study us-
ing ICA in which a relatively small number of components
was estimated, multiple connectivity maps for sensory and
motor areas were found [Kiviniemi et al., 2003]. We con-
clude that further research on the optimum number of com-
ponents for decomposition of fMRI data is needed. Second,
we used an ICA algorithm that assumes that the time
courses of cortical areas within one component are synchro-
nous, which will result in the representation of areas with
time courses that differ only in latency in separate compo-
nents [Calhoun et al., 2003a]. This might be useful for study-
ing, e.g., mental chronometry, when decompositions can be
associated with different processing stages related to task
performance [Formisano and Goebel, 2003]. Third, we did
not assess subjects’ compliance with the explicit instruction
to keep their eyes open during the measurement, which was
carried out in complete darkness. Assessment or control of
eye movements during resting state measurements may be-

come more important when psychiatric patients are in-
volved, and can be done by using eye movement tracking
devices that are scanner-compatible.

Current models of functional and effective connectivity in
the brain need to be supplemented by investigation of direct
or indirect anatomical connections between functionally
connected cortical areas. Recent developments in the field of
diffusion tensor imaging (DTI) may allow for the estimation
of trajectories of white matter fiber tracts in the brain. One
recent study combined seed voxel-based assessment of func-
tional connectivity in the normal human resting brain with
DTI, and reported high functional connectivity for spatially
distinct areas that were connected through white matter
tracts [Koch et al., 2002]. Correlations between the temporal
patterns of spatially distant areas remained high, however,
even when direct anatomical connections were lacking,
showing that the relation between anatomical and functional
connectivity is not straightforward.

A disrupted or otherwise altered pattern of communica-
tion within and between specialized brain areas or networks
has been suggested to be involved in a number of neuro-
logical and psychiatric disorders. Such alterations may re-
sult in a default brain state that differs from the putative
default state in healthy individuals. For instance, a reduced
interhemispheric resting state connectivity based on BOLD
measurements has been shown in multiple sclerosis patients
[Lowe et al., 2002], whereas reduced functional and effective
connectivity might be related to symptoms of schizophrenia
[Friston, 1998; Hoffman and McGlashan, 1993]. Analysis of
the connectivity patterns of the resting or default brain of
these and other disorders is likely to provide useful insights
into their underlying pathologies [Calhoun et al., 2003b].
Moreover, such analysis may supplement fMRI studies that
use cognitive paradigms that typically comprise alternating
periods of task and rest, which is used as baseline. The use
of resting state brain activity as a baseline has been debated
heavily [Gusnard and Raichle, 2001; Stark and Squire, 2001].
In this context, a better understanding of the patterns of
resting state activity should lead to an improved interpreta-
tion of task- or stimulus-related activation in fMRI studies.
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