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“Resting-state” fMRI has substantially contributed to the understanding of human and 
non-human functional brain organization by the analysis of correlated patterns in spon-
taneous activity within dedicated brain systems. Spontaneous neural activity is indirectly 
measured from the blood oxygenation level-dependent signal as acquired by echo 
planar imaging, when subjects quietly “resting” in the scanner. Animal models including 
disease or knockout models allow a broad spectrum of experimental manipulations 
not applicable in humans. The non-invasive fMRI approach provides a promising tool 
for cross-species comparative investigations. This review focuses on the principles of 
“resting-state” functional connectivity analysis and its applications to living animals. The 
translational aspect from in vivo animal models toward clinical applications in humans 
is emphasized. We introduce the fMRI-based investigation of the non-human brain’s 
hemodynamics, the methodological issues in the data postprocessing, and the functional 
data interpretation from different abstraction levels. The longer term goal of integrating 
fMRI connectivity data with structural connectomes obtained with tracing and optical 
imaging approaches is presented and will allow the interrogation of fMRI data in terms of 
directional flow of information and may identify the structural underpinnings of observed 
functional connectivity patterns.

Keywords: translational MRi, in  vivo animal model, neurodegeneration, connectome, mouse, rats, monkey,  
gene manipulation

iNTRODUCTiON

An unexpected observation in the noisy fMRI signal obtained from humans quietly “resting” in the 
absence of any specific task has ultimately led to the discovery of a phenomenon now well known 
as “intrinsic” or “resting-state” functional connectivity (1, 2). In 1995, Biswal and colleagues dem-
onstrated that the apparent fMRI noise displayed coherent temporal patterns most prominently at 
low frequencies within anatomically distinct and spatially distributed neuron populations (3). Many 
efforts aimed at demonstrating that spontaneous fluctuations in the fMRI signal obtained at “rest” 
maintain meaningful functional activity (2, 4–6). Patterns of functional activity are topologically 
organized (7–9) within defined brain systems even across species (10), rather than representing arti-
factual byproducts of non-neurophysiological process including motion, cardiac, or respiratory fac-
tors. These landmark studies have received further overwhelming support from different approaches 
including positron emission tomography (11–13), magnetoencephalography (14), optical imaging 
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FigURe 1 | Longitudinal multiparametric study concept for functional connectivity analysis in the animal model. Two cohorts comprising wild-type 
animals (control group) and disease model undergo in vivo investigations followed by neuropathological analyses post mortem. This study design allows for the 
systematic analysis for the functional brain organization and its potential changes over time in association with phenotype-depending behavioral and 
histopathological parameters.
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(15), single-unit and local field potential recordings (16), and 
electroencephalography (17, 18) that systematically investigated 
ongoing spontaneous brain activity in relation to each other. 
Nowadays, the investigation of the spontaneous fMRI signal 
has grown into a major and rapidly expanding field for studying 
functional brain organization (19). In summary, in vivo imaging 
becomes an increasingly important phenotyping instrument in 
order to accelerate our understanding of the architecture in both 
healthy and diseased brains (20).

Besides the eponymous “resting” condition (3, 11), organized 
spontaneous activity in the fMRI signal has also been demon-
strated under various states of consciousness including sleep  
(21, 22), anesthesia (23), coma, and minimally conscious state 
(24), in developing brain (18, 25), aging and brain maturation 
(26), and their potential genetic aspects (27, 28). A major compel-
ling aspect of the fMRI signal has been the organized spontane-
ous brain activity across different species including mice (29–35), 
rats (29, 36–42), rabbits (43), dogs (44), and pigeons (45), with 
monkeys (21, 46–53), mice, and rats (54) representing the largest 
fraction of “resting-state” (rs-)fMRI investigations.

The purpose of this review is to introduce the principles of 
rs-fMRI with specification to animal measurements and applica-
tions to the animal model. We will address methodological issues 
from experimental design to rs-fMRI data acquisition. The focus 
will be on the emerging concept of translational imaging from 
in vivo animal models of brain diseases to clinical applications 
in humans that may eventually form the groundwork for fun-
damentally novel therapeutic approaches. The continuous and 
compelling engagement is highlighted in studying the functional 
connectivity patterns underlying cellular and molecular events 
in living animals since there are currently no sufficient in vitro 
or in  silico models that can serve as alternatives to the use of 
in  vivo animal models (55). This review will provide insights 
into the broad spectrum of data analysis and their interpreta-
tion at different abstraction levels, including voxel-wise statistics 

and the graph theoretical analysis of functional connectome 
organization.

eXPLORiNg FUNCTiONAL 
CONNeCTiviTY iN THe LiviNg ANiMAL

In contrast to the exponential growth of “resting-state” publica-
tions in humans (56), functional connectivity investigations of 
non-human species is considerably less often applied. Comparative 
“resting-state” fMRI studies in living animals will accelerate the 
ability to define and test translational animal models of brain 
pathophysiology (Figure 1). Altering the physiological condition 
of the animal model has been demonstrated to influence both 
brain “wiring” (57) and the patterns of functional connectivity 
(58). Humans and animals share similar features of functional 
brain network organization and support perceptual and cognitive 
core properties that are closely related to behavior (48, 59). Animal 
models allow genetic modification and can provide insights into 
the functional brain organization and the alterations in different 
disease models. Appropriate measures of functional connectivity 
may be used as surrogate markers or potentially biomarkers and 
may form a readout to validate animal models in conjunction 
with new therapeutic strategies (46).

Neurophysiological Substrate
The functional networks revealed by rs-fMRI (Figure 2) provide 
a more general picture of brain function across species. Brain 
regions that are coactive during specific tasks (as measured by 
“task-based” fMRI) tend to be integrated within correspond-
ing functional networks (as obtained by rs-fMRI) (9). This 
groundbreaking observation in more than 30,000 fMRI data 
sets by Smith and coworkers (9) allow the conclusion that task-
induced activation maps underestimate the size and number of 
functionally coupled neuron populations (1). Many suggestions 
have emerged explaining the underlying mechanisms which link 
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FigURe 2 | Large-scale correlation patterns of the “resting-state” fMRi signal. Data are shown from five wild-type mice acquired from a high-field (11.7 T) 
small animal MRI. Orthogonal brain section heat maps showing mean voxels for which the fMRI signal was correlated with bilateral seed regions in secondary 
somatosensory cortex (S2), which allows the identification of the somatosensory functional motor network. The z(r) values indicate the strength of correlation.
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neural activity to hemodynamic responses. There are proposals 
of rehearsal, learning consolidation, future preparation (60), 
and variations of neuronal excitability (61), but there is not yet 
conclusive evidence for any of these concepts. Factors such as 
anesthesia influence the shape of functional connectivity patterns 
(62); however, the well-defined networks including the default 
mode (32, 63) remain stable across species and its integrity and 
topological principles remain preserved as demonstrated for 
widely dissimilar physiologic states in rats (64).

A further indirect conclusion about the fundamental role of  
the brains’ ongoing activity in (nearby) all species can be drawn 
from a metabolic perspective since ongoing activity is energeti-
cally costly (2) while brain organization across species is economi-
cally optimized (65). This statement is in agreement with the fact 
that the mammalian brain has maintained the hierarchy of brain 
oscillations, irrespective of the species’ brain size (66). Brain 
oscillations are topologically organized across species which is  
in line with evolutionary processes (10). Moreover, it appears save 
to assume that low frequency correlations are a general feature 
of neural systems (67). Currently, the understanding of ongoing 
spontaneous activity and its neurophysiological substrate is still 
under investigation (68).

Animal Models
Animal research has a pivotal role in neuroscience and has sub-
stantially contributed to our understanding of various conditions 
and diseases. The benefits of animal research have been tremen-
dous and have substantially contributed to ongoing advance-
ment of medicine and neuroscience as well as the health of both 
human and animals (69). Each experiment in living animals has 
to be designed within a strict ethical framework. The beneficial 
effects on humans have been proven, even though scientists are 
encouraged to further improve better public understanding and 
to emphasize implications on humans (55).

Comparative conclusions from cross-species functional  
connectivity investigations argue that the functional interaction  
of brain networks support the broad variety of different cognitive 
processes and provide essential features for survival (46). A large 
body of evidence attributed abnormal functional connectivity pat-
terns to multiple psychiatric, neurological (70), and developmental 
disorders (71). Since advanced genetic techniques allow manipula-
tion of the genome and precise control of gene expression in rodents, 
transgenic models of human neuropathology are becoming 
increasingly important. One challenge is to differentiate between 
normal aging and the onset of a pathological neurodegenerative 
processes. For neurodegenerative diseases including Alzheimer’s 
disease, Parkinson’s disease, and amyotrophic lateral sclerosis, it 
is known and broadly accepted that the underlying pathological 
process in human propagates in a characteristic fashion and can 
be attributed to different subclinical and clinical disease stages 
(72). Animal models of functional brain organization at different 
neurodegenerative disease stages may allow to define possible 
readouts for possible surrogate markers and enhanced drug trials. 
Transgenic mouse models of neurodegenerative pathology revealed 
abnormal functional connectivity patterns in agreement with find-
ings in humans (54). In particular, these findings resulted from 
studies in cholesterol transporter apolipoprotein ε (ApoE) mutant 
mice, a genotype associated with an increased risk to develop 
neurodegeneration (73). In ApoE4 mice mutants, functional 
connectivity has been successfully used as a readout to evaluate 
dietary treatment that improved brain connectivity (74). A role 
for microglia in promoting the maturation of circuit connectivity 
during development has been demonstrated in Cx3cr1KO mice 
compared to wild-type animals by using functional connectivity 
measures as a readout for neurodevelopmental impairment (71). 
This study addressed the gap between neurochemical mechanisms 
of microglia-mediated synaptic pruning und functional connec-
tivity. Many other studies in transgenic models such as autism 
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TAbLe 1 | State-of-the-art “resting-state” (rs-)fMRi protocols for key laboratory animals compared with humans.

Resting-state (rs-)fMRi (mice) (71) rs-fMRi (rats) (35) rs-fMRi (monkeys) (83) rs-fMRi (humans) (84)

Field strength (T) 7.0 9.4 7.0 3.0
Slices, n 16 12 30 47
Slice thickness (mm) 0.75 1.00 1.50 3.00
Voxel size (mm) 0.23 × 0.23 × 0.75 0.23 × 0.23 × 1.00 1.30 × 1.30 × 1.50 3.00 × 3.00 × 3.00
TR (ms) 1,000 2,000 2,000 3,000
TE (ms) 15 16 16 30
FOV (mm) 23 × 20 × 12 30 × 30 × 12 96 × 96 × 45 216 × 216 × 216
Volumes, n 360 150 300 124

Depicted are representative scan parameters for whole-brain rs-fMRI data acquisition using echo planar imaging (EPI, T2
∗).
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(75) reported abnormal functional connectivity in association 
with a phenotype. Standardized brain trauma models in animals 
have not been established yet. Studying functional alterations 
associated with traumatic injuries (76) under controlled condi-
tions in the animal model may gain detailed insights into altered 
patterns of functional connectivity and the effects after recovery. 
We can hypothesize that the functional brain network is regionally 
damaged and this lesion may trigger functional reorganization 
as a compensatory response. The impact and its location can be 
controlled together with the phenotype (transgenic mice models 
exist that are defined by the responsibility and resistance against 
traumatic brain injuries) in animal experiments (77), which is not 
possible in humans. Functional (re-)organization in association 
with a behavioral correlate could be a valuable readout for the 
investigation of traumatic injuries.

Thus, as long as we do not have a full brain model proven to 
provide all complex neural and neurochemical properties neces-
sary for modeling brain dysfunctions and therapeutical concepts 
for different phenotypes, there will be the need for animal models 
as a biological system capturing the complex humans’ overall 
brain architecture as closely as possible. Medical advances of the 
past decades underpin their role in the development of therapeutic 
concepts that may eventually pave the way for causal treatments 
of neurodegenerative diseases. Many studies reported altered 
functional architecture of intrinsic activity in neurological and 
psychiatric disorders (78); hence, here we review respective stud-
ies on translational animals utilizing rs-fMRI. Animal models 
encompassing disease or knockout models allow for a great range 
of experimental manipulations which are not applicable to humans. 
Moreover, postmortem validation of the underlying pathological 
process—which is very limited in human studies—is easier to 
achieve in animal studies. Most studies of functional connectiv-
ity utilize the non-invasive fMRI approach because it provides a 
promising tool for cross-species comparative approaches.

PRiNCiPLeS OF “ReSTiNg-STATe”  
fMRi DATA ACQUiSiTiON

In humans, “resting-state” data are easy-to-acquire by typically 
asking subjects to “rest” quietly with their eyes closed and 
motionless in the MRI scanner for about 5 min; indeed, “rest” is 
poorly defined and has been attributed to a control condition in 
the context of a commonly used block design in “task-based” fMRI 
studies. The definition of “rest” (or better “task-free” condition) 

becomes even more complicated and nearby impossible to control 
for in the context of non-human rs-fMRI. The vast majority of 
rs-fMRI investigations in animals including small animals require 
anesthesia which minimizes motion artifacts, physiological stress, 
and training requirements (46). Motion corruption is a critical 
issue due to its high susceptibility during fMRI data acquisition 
(19). Despite the limitations of controlling the “rest” condition 
and the various types of anesthesia and consciousness states, the 
functional data are largely comparable even across species.

The “resting-state” fMRI sequence is a T2
∗-weighted signal that 

is sensitive for neurally driven changes of the oxy-to-deoxyhemo-
globin ratio, i.e., blood oxygenation level dependent (BOLD), 
which changes the magnetic properties (79). The resulting fMRI 
data set consists of a series of echo planar images, i.e., volumes 
that are equidistantly obtained during the scan. The voxel size is 
identical for each volume and defines the spatial resolution; the 
time needed to record each volume (repetition time) defines the 
temporal resolution (79). Table 1 provides representative exam-
ples of commonly used scan parameters for rs-fMRI data acquisi-
tion in key laboratory animals. The voxel size varies across species 
depending on the MRI scanner, whereas the typical number of 
voxels of a brain is relatively constant across species. For instance, 
a typical voxel size for whole-brain scans of an 11.7-T ultra-high-
field MRI used to scan mice is about 150 μm × 150 μm in-plane 
resolution and 250–500 µm slice thickness; in comparison, a typi-
cal spatial resolution of a state-of-the-art 3 T for humans is about 
2 mm × 2 mm and slice thickness of 1.5–3 mm. Smaller voxel sizes 
allow a better separation of different tissue types at the expense of 
adverse signal-to-noise ratio and decreased temporal resolution 
(a volume takes longer to acquire). Larger voxel sizes covering 
different tissue types may contain shared hemodynamic activity 
from different neuronal populations—a phenomenon called 
partial volume effects. The temporal resolution is typically around 
2 s, which is appropriate to measure slow-frequency fluctuations 
(<0.1 Hz), i.e., infra-slow waves (0.01 < f < 0.10 Hz) (21), as it 
is intended by “resting-state” fMRI. However, a time repetition 
is associated with limitations arising from the Nyquist–Shannon 
“sampling theorem”—a fundamental law of digital signal process-
ing: the frequency band being investigated is limited to 0 < f < 1/
(2  ×  TR). That means, for TR  =  2  s is the highest frequency 
0.25 Hz and all frequencies >0.25 Hz (e.g., cardiac pulse of about 
1 Hz = 60/min) are confounding the signal, i.e., aliased, and can-
not be filtered. Hence, other frequency bands such as the typical 
EEG bands ranging from slow-frequency (0.1–1.0 Hz) and delta 
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(1–4 Hz) (80) to gamma (25–100 Hz) (81) cannot be investigated 
using “resting-state” fMRI. Efforts have been made and related 
research continuous to optimize both spatial and temporal 
resolution by using acceleration techniques to permit more rapid 
whole-brain-based volume acquisition (82).

ANALYSiS OF SPONTANeOUS NeURAL 
ACTiviTY FROM THe fMRi SigNAL

Although the rs-fMRI data acquisition is relatively easy even in 
the living animal, the analysis is not. Several major denoising 
approaches have been suggested to provide an optimal estimate 
of the neurally driven variance in the “resting-state” fMRI signal. 
The measured signal is considerably confounded by non-neural 
signals including motion artifacts, respiration, cardiac pulse, and 
their variations over time such that only about 4% of the total vari-
ance [for high quality data of the human connectome project (85)]  
in the fMRI signal accounts for neurally driven signals (86). 
Hence, the vast majority of the preprocessing pipeline of the 
fMRI signal copes with denoising of the data, i.e., extracting the 
neurally driven fMRI signal.

Preprocessing “Resting-State” fMRi Data
Preprocessing typically includes motion correction, spatial 
smoothing, temporal demeaning, detrending and band-pass fil-
tering, regression of nuisance covariates, and normalization into 
a common stereotaxic space (87). These steps are commonly used 
across species (32, 71, 88) and are briefly explained. Nearby all 
fMRI studies correct for motion artifacts that occur even under 
anesthesia due to respiration, cardiac pulse, and muscle relaxa-
tion. Head motion can lead to severe image degradation (89) and 
can result in false-positive functional connectivity (19). Motion 
correction can be done by computing an estimate of each volume 
with respect to a reference volume (e.g., the first volume) for all 
degrees of freedom (x, y, z, pitch, roll, yaw), which allows for a 
rigid brain transformation (90). Some investigators suggested 
to withhold motion-contaminated images from analysis and 
provided elaborated approaches that model motion influences 
to the fMRI signal (89, 91). Spatial filtering is applied to each 
of the volumes by typically using a Gaussian blur filter (3-D bell 
shape representing normal distribution) in order to improve the 
signal-to-noise ratio at the expense of “blurring” the images,  
i.e., decreasing spatial resolution, according to the “matched fil-
ter” design. The filter parameters are given as the full-width at half 
maximum (FWHM) for each spatial dimension (x, y, z); the filter 
length of twice the voxel size in dimension given by the scanner 
protocol is a common choice, e.g., for a (hypothetically) isotropic 
(400 µm)3 voxel size of a small animal MRI a good choice would 
be a Gaussian filter with 800 µm FWHM in each dimension (92).

Possible scanner drifts during the rs-fMRI data acquisition 
should be voxel-wise removed along each time series by linear 
detrending (93). Linear detrending can be performed by subtract-
ing the linear fit of the voxel time-course. The frequency spectrum 
of the time series for each voxel is commonly band-pass filtered 
using cutoff frequencies in the range of about 0.01 < f < 0.1 Hz 
(70), some investigators perform low-pass filtering (f < 0.1 Hz). 
Temporal filtering is required in order to limit the frequency 

spectrum to the neurophysiologically interesting infra-slow 
waves that are termed the spontaneous low frequency fluctua-
tions. Usually, the first volumes (about 10 volumes) are discarded 
from further analysis due to the transient temporal filter response 
(87) and to allow the subject to adapted to the experimental con-
dition (94), for instance, relaxation and minor changes in head 
position due respiratory or cardiac factors may likely occur at the 
beginning of an experiment even under anesthesia.

Aiming at further denoising, most rs-fMRI investigators 
remove various nuisance covariates by using non-physiological 
signals as a regressor in a general linear model (95). These 
nuisance regressors include motion estimates and tissue-based 
regressors; in addition, the derivatives and backward differences 
can be used. Tissue-based regressors can be computed from the 
averaged signal across voxels form a ventricle mask, from the 
cerebrospinal fluid signal, from a white matter mask, from a 
whole-brain mask, and from the signal of the skull or background 
clutter (91). In summary, preprocessing is mandatory and can 
substantially improve the data quality in animal MRI scanning, 
although post  hoc rs-fMRI denoising and artifact reduction 
remains challenging. The discussed preprocessing steps are 
similar for human and data from living animals.

There are numerous techniques available for denoising the  
rs-fMRI signal, but there is no gold-standard yet. The performance 
of these techniques depends on the preprocessing steps utilized 
and its order (96). A standard preprocessing pipeline can include 
any of the following steps: motion correction, resampling, remov-
ing of non-physiological signals, nuisance regression, temporal 
filtering, and spatial smoothing. Each of these steps requires a 
set of parameters. The steps and their order of the preprocess-
ing pipeline should be carefully selected with respect to the MR 
acquisition parameters, species-specific traits, and the overall 
aim of the investigation. Table 2 provides a comprehensive sum-
mary of commonly used techniques in recent animal rs-fMRI 
investigations.

Providing Data in a Common  
Stereotaxic Space
For data analyses across multiple MRI scans from different 
animals (of a given species), it is essential to align the acquired 
echo planar images into a common anatomical space in order 
to have a clear concept of localization in the brain. That means 
the spatially matched (i.e., “registered”) images should ideally 
provide the same spatial location in each subject. Good spatial 
normalization is a challenging procedure given that the brain’s 
complex cortical folding differs dramatically between individu-
als even of the same species (100). Investigators of human studies 
typically transform the images into the Montreal Neurological 
Institute (MNI) stereotaxic standard space (101); common 
practices are linear and non-linear (non-affine) registration 
algorithms (102). For animal MRI data, no such commonly 
accepted stereotaxic standard space has yet emerged, even not for 
key laboratory animals. However, neuroanatomical information 
for the adult and developing brain in mice, humans, and other 
non-human primate from the online public resource Allen Brain 
Atlas (103) can be used as a template in standardized coordinates. 
The Allen Mouse brain atlas, for instance, includes a full-color, 
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TAbLe 2 | Frequently used preprocessing steps in the rs-fMRi data analysis pipeline (including denoising) according to recent animal studies,  
e.g., Ref. (43, 71, 97–99).

Description Possible drawbacks Typical values

Head motion 
correction

Reduces the potential influence of head motion (which is also 
present in anesthetized animal)

Partial volume effects All six degrees of freedom

Resampling Provides data in a common grid with user-defined voxel sizes 
(which is particularly interesting for merging protocols)

Partial volume effects Cubic grid, size depends on the species 
and overall aim of the rs-fMRI investigation

Regression of 
nuisance covariates: 
global signal

Reduces linear and non-linear dependence of signals that are 
assumed to represent no useful physiological information

Removal of superimposed 
neural signals

Motion estimates, white matter, CSF,  
global signal

Temporal filtering Attenuates non-physiological frequencies and restrict the signal 
to the infra-slow wave spectrum 

Attenuation of physiological 
frequencies around the cut-off 
frequencies

0.01 Hz < f < 0.08 Hz

Spatial smoothing Increases signal-to-noise ratio by reducing uncorrelated noise Blurred spatial resolution Two times the native spatial resolution 
according to the rs-fMRI protocol

Discarding volumes Removes transient temporal filter response and scanner 
oscillation at the beginning; allows the subject to adapted to the 
condition

Reduction of number of 
volumes

10–15

Fisher’s r-to-z 
transformation

Improves normality of correlation coefficients Non-linear transformation –
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high-resolution anatomic reference atlas accompanied by a 
systematic, hierarchically organized taxonomy of mouse brain 
structures that can be used as a basis for spatial normalization. 
A wiring diagram of the whole mouse brain at a mesoscale has 
been defined using standardized labeling, tracing, and imaging 
of axonal connections (104). Although the mesoscale structural 
connectome definition of the mouse has received great support 
(105), a functional parcellation of the mouse brain has not been 
presented, so far. For rats, a stereotaxic MRI template set for the 
rat brain with tissue class distribution has been published (106).

Normalization is generally achieved by co-registering all 
images from a study to a common echo planar image template 
(101). Different algorithms can be utilized to warp the individual 
images on the common template (107, 108). These commonly 
applied algorithms use a multiparametric affine transformation 
followed by non-linear mean squared difference matching. The 
normalization approach is principally similar for animal MRI 
data and humans and the quality of normalization into a common 
space mainly depends on the used template. The template image 
used could be one predefined template such as MNI template 
for humans (109) or a study-specific template can be created 
by averaging across a number of different subjects (e.g., whole 
study population, sub-cohort regarding phenotype, age, scanner 
protocol) that have been transformed in a common space (110). 
Customized study-specific templates in a common stereotaxic 
space are highly recommended for registrations purposes (111) 
because inter-subject normalization within the study cohort, for 
instance, with respect to global brain atrophy (e.g., in neurode-
generative disease models), is considerably improved. State-of-
the-art animal fMRI analyses techniques (71) used a digitalized 
version of a mouse brain atlas utilized to create a template for fMRI 
data analysis. For instance, “resting-state” in dogs (44), a rarely 
investigated species for which no well-accepted brain atlas in a 
common space exist, used the functional image of one dog as the 
template on which the other dog was matched on. Normalization 
without using a common template can be performed by defin-
ing landmarks that allow a transformation according to the 

coordinates of these landmarks. Müller et al. (108) has suggest a 
landmark-based normalization procedure prior to a registration 
to a common template by manually defining eight landmarks in 
the first volume for each rodent (57, 112), a procedure adapted 
from human studies. The normalization procedure is typically 
refined by non-linear normalization of the individual echo planar 
images onto the study-specific template following the basic ideas 
of Ashburner and Friston (107) of minimizing the squared differ-
ences of regional intensities. In summary, the quality of normali-
zation determines the ability to compare results between subjects 
or groups. At least small errors are inherent to any normalization 
procedure and differences in individual brain anatomy including 
the complex cortical convolution cannot be completely overcome 
by normalization into a common stereotaxic space.

Functional Connectivity-based brain 
Parcellation
For spatial normalization, (study-specific) templates are required. 
Templates commonly refer to atlas-based definitions of the 
respective species (103), but the underlying brain structure does 
not adequately capture functionally segregated modules, i.e., 
“nodes” in the graph theoretical context, because it involves the 
risk of mixing different time courses within a single node (113) 
The definition of nodes across the whole brain is challenging but 
mandatory for robust and reliable functional connectivity analy-
ses. Data-driven approaches including independent component 
analysis (114) have been introduced for brain parcellation and 
for delineating resting-state functional networks in humans 
(115) and rodent (32). Graph theory-based approaches provide 
another data-driven approach for functional brain network 
identification without the need for a  priori information (116).  
A data-driven whole-brain functional parcellation algorithm that 
jointly optimizes the group and the individual parcellation has 
been introduced for the human brain (113, 117). The resulting 
functional brain atlas has been released (113), and it comprises 
up to approximately 300 functionally homogeneous subunits. 
The application of this data-driven procedure to rs-fMRI data 
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FigURe 3 | Hypothetical model of functional connectivity alterations 
in association with behavioral performance in the course of 
neurodegeneration. The pattern of functional connectivity changes (black 
line) and its association with behavior (blue line) indicated that functional 
connectivity increases in a potentially compensatory response to ongoing cell 
degeneration in order to maintain “normal” behavioral performance as long as 
possible. When a critical cell loss is reached, i.e., the functional reserves are 
exhausted, behavioral performance declines, and functional connectivity 
decreases upon a disconnection syndrome with poor behavioral 
performances presented in an advanced disease state. It remains open 
whether functional connectivity is already altered in an asymptomatic phase 
of an underlying neurodegenerative pathological process (dashed lines).
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of animals could be promising for studying functional brain 
organization more accurately, which is mainly important when 
behavioral differences between groups or across time are being 
analyzed.

Functional Connectivity Measures
After the rs-fMRI data have undergone steps of preprocessing, 
a broad spectrum of functional connectivity analysis methods 
including measures of coherences, frequency spectral analysis, 
dynamics, and causal influences among time series is available 
(118). The simplest measure of signal similarity is the Pearson 
correlation coefficient which is widely used to measure the 
strength of pairwise region-to-region connectivity of the slow 
BOLD fluctuations and which allows for the definition of 
functional connectivity networks (Figure 3). The specification 
of regions of interests (also termed “seeds”) depends on the 
study design and is by definition a hypothesis-driven approach 
(119), in contrast to data-driven independent component 
analysis (mentioned as a tool for denoising), a mathematically 
sophisticated signal decomposition technique that allows to 
separate various “independent” sources (114). Both techniques 
have been successfully applied to investigate functional con-
nectivity organization in human and living animals including 
rodents (32, 71).

The set of pairwise region-to-region connectivity measures 
(e.g., Pearson’s correlations) obtained from a fine-grain voxel-
wise parcellation of the brain can be used for graph theoretic 
analysis at a higher abstraction level (120). A brain’s functional 
organization has features of complex networks at the whole-brain 

scale and the cellular level (121). Connectome-related differences 
in brains across species follow an allometric scaling relation 
across the entire spectrum of simpler to higher order species (10). 
Features such as highly connected neuron populations (“hubs”) 
(122), modularity (116), rich-club organization (123), and effi-
cient small-world topology (70) can be systematically quantified 
by means of graph theory (124) across species.

Recent advances in mathematical tools to infer connectiv-
ity and to estimate the connectivity strength have been made, 
which are particularly useful in small samples as it is the case 
for most animal rs-fMRI studies. Graphical models that allow 
to reach reliable estimation of the inverse covariance even 
when the sample size is close to or even less than the number of 
brain regions investigated have been demonstrated in positron 
emission tomography-based connectivity analysis to be prom-
ising candidates for rs-fMRI investigations (125). Moreover, 
graphical models allow for graph-based analysis and have been 
proven to be used in a discriminative way in an unsupervised 
classification framework (126). These approaches in pattern 
classification and unsupervised learning algorithms allow to 
separate groups, e.g., with respect to the disease model, on 
the basis of features extracted from imaging data as proven in 
human studies (127, 128).

Longitudinal Data
The conceptual design of multiparametric studies (as illustrated 
in Figure  1) highlights the increasing importance of longitu-
dinal measurements (129). Follow-up data enable to investigate 
the intra-subject rate of functional connectivity changes over 
time, which is especially useful when studying developmental 
processes or tracing the course of disease propagation (98). 
Information on intra-subject changes over time additionally 
allow to longitudinally compare groups with each other in order 
to investigate whether multiple groups, e.g., different phenotypes, 
change over time with respect to functional brain connectivity 
alterations across a time period of interest. Longitudinal studies 
in animals, in particular in rodents, are of special interest since 
the study can be designed across the entire lifespan in contrast to 
humans where longitudinal studies have to be designed for many 
years or even decades to capture a sizeable part of the human 
lifespan.

iNTeRPReTATiON OF FUNCTiONAL 
CONNeCTiviTY DATA

At the very basic level, strong patterns of low-frequency BOLD 
coherence among functionally related brain areas creates strong 
suspicion that two (anatomically) distinct brain regions are neu-
rally communicating in an organized fashion. The brain’s many 
regions—in humans and living animals—appear to functionally 
interact with each other in the “resting” condition (130) and even 
when a subject (24) or an animal is under anesthesia (53). The 
very nature of the underlying neurophysiological mechanism still 
remains not fully explained; however, many conclusions can be 
drawn about the functional brain organization. In what follows 
sheds light on commonly observed rs-fMRI patterns in healthy 
and diseased brains and their possible interpretation.
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“To Rise and to Fall”: On the Meaning of 
Altered Functional Connectivity
It is safe to assume that each deviation from “normal” connecti-
vity represents an abnormal possibly pathological condition of 
the brain (131), although the very nature of the underlying ongo-
ing BOLD fluctuations under diverse conditions ranging from 
“rest” to deep anesthesia across species is not fully understood. 
Functional connectivity can alter in both directions defining 
decreased (hypo-) and increased (hyperconnectivity) conditions, 
as observed from “seed-based” correlation analysis.

It is virtually straightforward to explain decreased functional 
connectivity that may eventually lead to a full disconnection syn-
drome in the context of cell degeneration or impaired functioning 
of segregated brain modules. Disrupted functional integration 
with decreased connectivity is associated with cognitive deficits 
(132) and poor behavioral performance as demonstrated in 
transgenic mice (71).

By contrast, increased functional connectivity, i.e., stronger 
BOLD synchronization, is more challenging to interpret; increased 
functional connectivity has been demonstrated in various neuro-
degenerative conditions in human studies (133–137) and in rats 
(138, 139). Increased functional connectivity is often interpreted 
as an adaptive response to an underlying pathological process 
that could be explained by recruiting additional “resources” by 
functional reorganization in order to compensate for neural mal-
functions and to maintain cognitive and physical performance 
(136). This model is supported by rs-fMRI investigations in rats 
following neuropathic injury (138) where functional reorganiza-
tion including patterns of increased functional connectivity 
has been demonstrated. At a clinical level, in patients with 
Parkinson’s disease, who exhibit a neuropsychologically con-
firmed “normal” cognitive performance, the observed patterns 
of increased functional connectivity across cortical functional 
networks in comparison with age-matched healthy controls 
are likely attributed to functional “compensatory” reorganiza-
tion (135) in general agreement with finding in rats. There is 
growing evidence that increased functional connectivity can 
be the first state of abnormal brain functioning in neurological 
conditions including epilepsy as demonstrated for rats (139) and 
in the course of neurodegenerative diseases (131, 135). Given 
that functional connectivity is increased in an early state of the 
disease and a disconnection syndrome is present in an advanced 
state of the disease due to ongoing cell damage, a hypothetical 
model of functional connectivity alterations in association with 
behavioral performance can be proposed (Figure 3): functional 
connectivity increases upon the neural “reserves” are exhausted 
while maintaining “normal” behavior. Due to ongoing cell loss 
(e.g., neurodegenerative disease) or focal damage of respective 
functional modules (e.g., traumatic brain injury), core nodes 
of the respective functional connectivity networks decreases 
functional connectivity with other nodes of the networks and 
become eventually functionally disconnected in case of ongo-
ing cell loss without remission (137). The likely transient state 
from patterns of increased to decreased functional connectivity 
may be accompanied by behavioral and cognitive decline. There 
appears to be increased functional coupling in the asymptomatic 

phase of neurodegenerative diseases consistent with our model as  
supported by a recent study on subjects at genetic risk (140). This 
further calls transgenic animal models to validate the suggested 
model of functional alterations in the course of a disease and 
animal studies with prospective to define abnormal patterns of 
functional connectivity prior to disease onset are required.

Another explanation for increased functional connectivity 
could be the loss of the inhibitory influence that may lead to 
pathological firing associated with abnormally increased func-
tional connectivity (133). This would mean that brain regions 
excessively firing in a coherent fashion are no longer able to both 
share “useful” information with each or to interact with other 
functional modules (87, 137). Animal models are needed to 
challenge this hypothesis and to investigate the pathophysiology 
of increased functional connectivity in more detail.

Connectomics—Functional Connectivity 
from a Network Perspective
The brain is an efficient representation of a complex system  
(65, 141) and has remarkable properties across species. It consists 
of spatially distributed and functionally specialized regions that 
continuously share information with each other (70). Graph 
theoretical approaches for the analysis of functional networks 
provide a powerful way of quantifying properties of the brain’s 
functional system (121). A functional network is defined in graph 
theory as a set of nodes, i.e., functionally segregated brain regions, 
and edges, i.e., a functional connectivity measure, between two 
nodes (123). The definition of nodes is a critical factor as dis-
cussed in the context of (functional) brain parcellation. Given 
that a set of a sufficient number of nodes has been defined, graph 
topology can be quantitatively described by a broad spectrum 
of network measures. An association matrix of functional con-
nectivity measures form the basis for a graph analysis (142) and 
contains pairwise measures of functional connectivity, typically 
Pearson’s correlation coefficient of slow BOLD fluctuations in 
both nodes. Many measures of useful properties that characterize 
the functional network organization can be computed including 
basic concepts, measures of segregation, integration, motifs, and 
resilience, and other concepts such as “network small-worldness” 
(124). The graph theoretical measure that is going to be applied 
should be guided according to a clear hypothesis and is fully 
appropriate for functional connectivity investigations in the 
animal model. For instance, a graph theoretical approach has 
been recently applied for the investigation of functional con-
nectivity in rats prior and after stressful event exposure (143) 
and in rats following neuropathic injury (138). The basic concept 
of graph-based connectomic analysis between the animals’ and 
the humans’ brain are nearby identical, and it has been demon-
strated that fundamental properties of brain topology in rats are 
conserved in the same manner as in the human brain (38). In 
summary, modeling the functional brain connectivity as a graph, 
with nodes being segregated functional modules and edges being 
functional “region-to-region” connectivity strengths, opens a 
new avenue for investigating functional brain organization in 
multiple neurological and psychiatric conditions in a transla-
tional framework.

http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://www.frontiersin.org/Neurology/archive


9

Gorges et al. “Resting-State” fMRI in the Animal Model

Frontiers in Neurology | www.frontiersin.org May 2017 | Volume 8 | Article 200

Limitations and Pitfalls
The presence of noise and artifacts limits the study of functional 
brain organization and inadequate removal of artifact can fun-
damentally change the conclusions of each and every rs-fMRI 
study. However, a perfect separation between neurally driven 
BOLD activity and noise is practically impossible (144), despite 
the many advanced and continuing efforts being made for 
denoising the fMRI signal (145). Thus, it is crucial to interpret 
the outcomes with caution. The nature of BOLD fluctuations and 
the temporally correlated characteristics are an indirect measure 
for functional connectivity and is technically constrained by the 
poor signal-to-noise ratio and limited spatial resolution (146) 
although many advances in scanner technology, image acquisi-
tion protocols, and experimental design have emerged (79). The 
spatial and temporal limitations of the “noisy” BOLD signal could 
not be fully overcome by the standardized preprocessing pipe-
line for fMRI data (147) and conclusions drawn should always 
incorporate the given limitations of the methodology. However, 
improvements of analysis techniques have considerably helped 
to improve the results toward a more reliable interpretation that 
always have to be seen in a context with the conclusions drawn 
from the functional MRI data across species.

Various states of consciousness and possible drug administra-
tion cannot be (fully) disentangled from “normal” variability of 
patterns in functional brain connectivity. Many factors dynamically 
confound brain functioning, and the challenge remains to define 
robust measures that allow for the definition of an abnormal or 
pathological state. Caution must be taken when interpreting func-
tional connectivity data since network measures were bound to be 
unstable across thresholds, i.e., thresholds that defined whether 
two voxels are functionally connected with each other (148). This 
methodological limitation has been overcome by an elaborated 
connectome-based functional connectivity analysis based on 
a data-driven graph-based parcellation analysis (113) such that 
functional connectivity profiles act as a “fingerprint” and are both 
robust and reliable across subjects (149). Comparing groups that 
may exhibit systematic differences, e.g., motion, can confound the 
results, e.g., in disease models of movement disorders.

The contribution of inhibitory and excitatory neuronal cou-
pling to functional connectivity measures cannot be disentangled 
(8). The by-default limited spatial resolution of “resting-state” data 
and the limited signal-to-noise ratio of the BOLD signal make spa-
tial smoothing a necessary preprocessing analysis step, in order to 
increase the signal-to-noise ratio, at the expense of partially mixing 
the signal between gray matter and the neighboring white matter. 
Hence, the clusters cannot be fully disentangled between gray and 
white matter. The animals’ head motion-induced artifacts—even 
present under anesthesia—might contribute to the rs-fMRI signal 
and are believed to produce spurious correlation patterns (19), 
which should be considered in any interpretation of the results.

Toward the integration of Structural 
Connectomes and fMRi Functional 
Connectivity
In the last few years, large-scale mapping of physical con-
nectivity in the rodent brain has become feasible, thanks to 

the convergence of viral and non-viral tracing approaches with 
high-throughput technologies for image acquisition and image 
reconstruction. The Allen Mouse Brain Connectivity Atlas 
(104) initiative has used adeno-associated virus to express green 
fluorescent protein systematically across a large number of 
cortical and subcortical structures and then, using a dedicated 
imaging technique based on serial sectioning and two-photon 
imaging, has produced imaging datasets spanning the whole 
mouse brain for each of the injection. Once reconstructed, the 
resulting database has provided mesoscale connectivity down to 
cellular level. An independent effort, based on non-viral tracing 
systems (150), has provided a comparable connectome map with 
mesoscale resolution in which cortical subnetworks could be 
identified. Additional connectome datasets with cellular resolu-
tion have been obtained for specific subnetworks such as basal 
ganglia (151). These structural information provide a conceptual 
framework for the interpretation of functional connectivity data 
by allowing the selection of subnetworks, to be explored in fMRI 
data, based on the known directionality of connections between 
areas. However, each node of the mesoscale maps is populated by 
multiple local microcircuits endowed with both long- and short-
range connectivity. While this subpopulation of neurons may not 
be directly detectable by fMRI data, they may have a significant 
footprint in terms of brain-wide activity. These subnetworks are 
now also amenable for investigation and manipulation: the use 
of rabies vectors (152) allows retrograde monosynaptically con-
nected neuronal networks to be imaged at very high resolution 
[e.g., Ref. (153)] and directionality of connectivity can be used to 
complement fMRI information (e.g., by reconstructing all synap-
tically connected input to a given structure). In other terms, once 
the spreading of functional events within networks is observed, 
the structural datasets either at mesoscale or at single-cell resolu-
tion allow their direct mechanistic interpretations in terms of the 
simplest neuronal ensembles involved in the generation of the 
observed functional patterns.

In particular, the directionality of connectivity is, theoretically, 
easy to determine in structural connectomes since the origin of 
the axons and their destination can be distinguished; however, 
the existence of dense networks of reciprocal connectivity [in 
cortico-cortical or cortico-subcortical loops (104)] may require 
additional experimental strategies (e.g., in  vivo silencing via 
chemio- or optogenetics) to determine the causal chain of 
connectivity.

Mesoscale connectomes obtained with current optical imag-
ing technologies may offer a significant resolution advantage 
compared to MRI techniques (single axons can be individually 
resolved) although the size of the source volume (e.g., the volume 
of the injection site) encompasses several whole cortical columns; 
however, the structural connectomes do not offer a dynamic 
image of the connectivity but only a static picture of the averaged 
connectivity diagram. Furthermore, structural data do not hint at 
the relative functional importance of connectivity: a small num-
ber of axons from modulatory subcortical structures may have a 
much larger impact on the dynamic organization of functional 
networks than large number of intracortical connectivity.

In order to achieve the most effective combination of high- 
resolution connectomes and fMRI connectivity maps, the 
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integration of datasets obtained with largely distinct technological  
platforms will become necessary, including approaches for co- 
registering datasets with very different resolution. Ideally, the use 
of light-sheet microscopes may allow the coregistration of the 
same brain samples first in fMRI in vivo and thereafter at single-
cell resolution ex vivo, allowing functional–structural connectiv-
ity to be correlated at single individual level.

CONCLUDiNg ReMARKS

“Resting-state” functional connectivity analysis is a rapidly expan-
ding approach to study the functional brain organization and has 
emerged as a major area of neuroimaging in both humans and 
animals. The emerging view that intrinsic activity might provide a 
more complete picture of brain function than task-induced activ-
ity has opened new pathways and allows for functional connectiv-
ity investigations even in anesthetized animals. Extending the use 
of rs-fMRI investigations in various types of clinical conditions 
using appropriate animal models is a promising avenue of ongoing 
research that may help to form a groundwork for understanding 
the fundamental properties of the functional organization in 
such models in a unique way (105, 150). Continuing research of 
functional organization in key laboratory animals (e.g., macaque 
and rodents) may allow for the definition of imaging surrogate 

marker in the future that may support the development of new 
causal therapeutic concepts. Computational methods excluding 
animal experimentation underlie many limitations in addressing 
the understanding of brain function. Today, translational frame-
works including various models are more necessary than ever 
for the study of the brain’s function and dysfunction across the 
lifespan or the full course of the disease.
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