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Objectives: Post-traumatic stress disorder (PTSD) is thought to be a brain network disorder. This study aimed to

examine the resting-state functional connectivity (FC) in patients with PTSD.

Methods: Thirty-three PTSD patients and 30 age- and gender-matched healthy controls were recruited. Symptom

severity of the PTSD patients was assessed, and 62-channel EEG was measured. EEGs were recorded during the

resting state, with the eyes closed. Three nodal network measures to assess nodal centrality [nodal degree

(Dnodal; connection strength), nodal efficiency (Enodal; communication efficiency), and betweenness centrality

(BC; connection centrality)] were calculated in the delta, theta, alpha, beta, and gamma bands.

Results: Dnodal and Enodal of the beta and gamma bands were decreased in PTSD patients compared to healthy

controls. These decreased nodal centrality values were observed primarily at the frontocentral electrodes. In ad-

dition, Dnodal of the beta and gamma bands was significantly correlated with depressive symptoms and in-

creased arousal symptoms, respectively. Enodal of the beta and gamma bands was significantly correlated

with re-experience, increased arousal, and the severity and frequency of general PTSD symptoms.

Conclusion: Compared to controls, patients with PTSD were found to have decreased resting-state FC, and these

FCmeasures were significantly correlatedwith PTSD symptom severity. Our results suggest that resting-state FC

could be a useful biomarker for PTSD.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Post-traumatic stress disorder (PTSD) is a debilitating anxiety condi-

tion that develops after encountering life-threatening mental trauma

and is characterized by unremitting distressing re-experiencing of the

traumatic event, avoidance, and hyperarousal, which are thought to be

direct or indirect effects of altered memory processing. Several brain

areas whose function may be altered in PTSD have been identified:

the ventromedial prefrontal cortex (vmPFC), insula, amygdala, and hip-

pocampus (Fonzo et al., 2010; Quirk and Mueller, 2008; Stevens et al.,

2013). In a resting state MRI study, Sripada et al. (2012b) demonstrated

that functional connectivity (FC) in a PTSD group was decreased in the

rostral anterior cingulate cortex/vmPFC, and increased in the salience

network including the amygdala. In sum, decreased ventromedial pre-

frontal cognitive control and increased hippocampal and limbic activa-

tion are considered to be the core of PTSD pathology.

EEG has been employed only in a small number of studies on PTSD to

explore the differences in neural dynamics between patients and

healthy controls. Kim et al. (2012) used non-linear analysis and found

an increased nonlinear dynamic in the left hemisphere and decreased

nonlinear dynamic in the right hemisphere in patients with PTSD.

Cook et al. (2009) demonstrated that compared to control subjects, in-

dividuals who had experienced childhood trauma had significantly

higher EEG coherence, suggesting that childhood psychological trauma

may have a lasting impact on neuronal connectivity. Kemp et al. (2010)

found that alpha activity in the right-parietotemporal region was en-

hanced in PTSD group compared to major depressive disorder group,

and that right-frontal lateralization was positively correlated with

PTSD symptom severity.

While previous EEG studies have reported abnormal brain dynamics

for patients with PTSD, to date, no study has examined the large-scale

FC network in the resting state to reveal the brain network of patients

with PTSD. Recently, a growing number of studies have examined
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resting-state FC using various modalities to investigate intrinsic brain

activity. Many studies have reported the effects of various diseases on

neural connectivity and networks (Bassett and Bullmore, 2009). FC net-

works have been studied with the aim of characterizing the differences

betweennormal controls and patientswith brain network diseases such

as Alzheimer's disease, using MEG (Montez et al., 2009; Stam et al.,

2009) or EEG (Stam et al., 2007), and schizophrenia, using MEG

(Bassett et al., 2009) or EEG (Rubinov et al., 2009). Likewise, on the

basis of the known abnormal brain dynamics in patients with PTSD

(Cook et al., 2009; Kemp et al., 2010; Kim et al., 2012), we predicted

that the brain of PTSD patients would show a different resting-state FC

network than that of healthy controls; understanding these differences

would increase our understanding of PTSD pathophysiology.

We hypothesized that patients with PTSD would show altered FC

around the frontal and temporal areas and that the nodal network fea-

tures of the resting state-FC network would be significantly correlated

with PTSD symptom severity. To test our hypotheses, we evaluated

the nodal features using centrality measures of the resting-state FC net-

work of high-density EEG signals obtained from 33 patients with PTSD

and 30 age- and gender-matched healthy controls. To the best of our

knowledge, this is the first study to employ resting-state FC obtained

using EEG for examining the changes that occur in PTSD.

2. Methods

2.1. Participants

Our study involved 33 patients with PTSD (mean age 37.6; 17 men)

and 30 age- and gender-matched healthy control subjects (mean age

34.1 years; 16men),whowere recruited from thePsychiatryDepartment

of Inje University Ilsan Paik Hospital. All the patients had developed PTSD

after experiencingmotor vehicle accidents, andwere diagnosed using the

StructuredClinical Interview forDSM, 4th edition (SCID) Axis I Psychiatric

Disorders (First et al., 1997). Out of 33 patients with PTSD, 28were taking

antidepressants: 17 were taking selective serotonin reuptake inhibitors

(SSRIs); 5, venlafaxine; 3, mirtazapine; 2, duloxetine; and 1, bupropion.

Twenty-nine patients were taking benzodiazepine: 13 were taking

lorazepam; 12, clonazepam; 2, alprazolam; and 2, diazepam.

Healthy controls were recruited from the local community through

local newspapers and posters. During screening, the controls were evalu-

ated using the SCID Axis I Psychiatric Disorders (First et al., 1997) and re-

ceived a physical examination. All participants had no history of major

trauma such as a serious car accident, combat experience, sexual assault,

serious physical injury etc. Additionally, theywere not takingmedications

with potentially psychoactive effects. They also completed theMinnesota

Multiphasic Personality Inventory (MMPI) (Kim, 1996). Only those

with MMPI scores falling within the normal range were included in

the study. Exclusion criteria included the presence of any identifiable

psychiatric or neurological disorder, hearing impairment, head inju-

ry, personal history of psychiatric disease, family history of psychiat-

ric illness, mental retardation, alcohol or substance abuse, and any

physical illness that can affect cognitive function or cause hearing

loss. All participants were right-handed, as determined by asking

which hand they tended to use for writing and for other precise

motor skills. After being informed of the details of the study, all sub-

jects provided their written informed consent prior to participation.

The study protocol was approved by the Institutional Review Board

of Inje University Ilsan Paik Hospital. The demographics of the two

groups are provided in Table 1; there were no significant group differ-

ences with regard to gender distribution, or age, except for a difference

in education.

2.2. Psychological measurements

The Davidson Trauma Scale (DTS) and Structured Interview for PTSD

(SIP) were administered to the patients with PTSD. DTS and SIP have

been standardized for the Korean population (Kim et al., 2009; Seo

et al., 2008). The DTS is a self-reported measure that reflects the fre-

quency and severity of PTSD symptoms and has been demonstrated to

be sensitive to the treatment effects of SSRIs in patients with PTSD

symptoms (Davidson et al., 2002). It is a 17-item self-reportedquestion-

naire that scores the severity and frequency of PTSD symptoms on a 5-

point Likert-type scale. The DTS is simple to administer and takes less

than 10 min. It has been administered in a variety of populations, in-

cluding men and women with different traumata. The Korean version

of theDTS (K-DTS) (Seo et al., 2008) has shown good internal consisten-

cy (Cronbach α = 0.97) and test–retest reliability (r = 0.93). The SIP

scale (Davidson et al., 1997) comprises 17 items that reflect the follow-

ing DSM-IV criteria for PTSD: re-experiencing (5 items), avoidance and

numbing (7 items), and increased arousal (5 items). Each item is rated

on a scale of 0–4. The Korean version of the SIP (K-SIP) (Kim et al.,

2009) has shown good internal consistency (Cronbach α = 0.92) and

test–retest reliability (r = 0.87).

Comorbid depressive and anxiety symptoms in patients with PTSD

were evaluated using the Beck Depression Inventory (BDI) (Beck et al.,

1961), Hamilton Depression Rating Scale (HAMD) (Hamilton, 1960),

and Hamilton Anxiety Scale (HAMA) (Hamilton, 1959).

2.3. EEG acquisition and preprocessing

EEG signals were recorded using a NeuroScan SynAmps amplifier

(Compumedics, El Paso, TX) from 62 surface electrodes (FP1, FPZ, FP2,

AF3, AF4, F7, F5, F3, F1, FZ, F2, F4, F6, F8, FT7, FC5, FC3, FC1, FCZ, FC2,

FC4, FC6, FT8, T7, C5, C3, C1, CZ, C2, C4, C6, T8, TP7, CP5, CP3, CP1, CPZ,

CP2, CP4, CP6, TP8, P7, P5, P3, P1, PZ, P2, P4, P6, P8, PO7, PO5, PO3,

POZ, PO4, PO6, PO8, CB1, O1, OZ, O2, and CB2) mounted on a Quick

Cap, using a modified 10–20 placement scheme. The ground elec-

trode was placed on the forehead, and the reference electrodes

were located at the Cz electrode. The vertical electrooculogram

(EOG) was recorded using two electrodes: one located above and

one located below the right eye. The horizontal EOG was recorded

at the outer canthus of each eye. The electrode impedance was less

than 5 kΩ.

Signals from all channels were amplified, filtered (DC-100 Hz), and

digitized with a sampling frequency of 1 kHz. Resting-state EEGs were

recorded for 5 min with the eyes closed. Gross movement artifacts

were removed from the recorded data by visual inspection, and epochs

(epoch length 2.048 s) for each subject were obtained. Epochs were

rejected if they included significant physiological artifacts (amplitude

exceeding ± 75 μV) at all cortical electrode sites. Finally, 15 artifact-

free epochs (epoch length 2.048 s) were obtained for each subject, in

order to calculate mutual information (MI) and allow further network

analysis.

Table 1

Demographic and clinical characteristics of patients with PTSD and healthy controls.

PTSD

(n = 33)

Healthy controls

(n = 30)

Mean (SD) Mean (SD) t (χ2) df p

Age (years) 37.64 (14.69) 34.07 (12.60) 1.03 61 0.307

Sex (male: female) 16:17 14:16 0.021⁎ 1 0.85

Education (years) 12.39 (2.39) 13.83 (2.95) −2.11 61 0.041

K-DTS 84.94 (20.21)

K-SIP 42.00 (9.57)

BDI 27.85 (12.16)

HAMD 20.45 (8.38)

HAMA 24.70 (9.00)

Note: *, χ2; PTSD, posttraumatic stress disorder; DTS, Davidson Trauma scale; SIP, Struc-

tured Interview for PTSD; BDI, Beck Depression Inventory; HAMD, Hamilton Depression

Rating Scale; HAMA, Hamilton Anxiety Rating Scale.
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2.4. Estimation of functional connectivity

MI,which quantifies the shared information between two time series

based on information theory, was employed as ameasure of FC between

EEG channels in the five frequency bands corresponding to the classical

EEG bands: delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–

30Hz), and gamma (30–50Hz).MI has been used as themeasure of cou-

pling between two time series and information flow to evaluate brain

connectivity in both EEG and MEG (Alonso et al., 2010; Caballero-

Gaudes et al., 2013; Jeong et al., 2001; Jin et al., 2010, 2011a,b,c, 2012).

We used weighted graphs defined by MI without thresholding.

We estimated MI values of the band-pass filtered time series to cre-

ate an association matrix between EEG channels. MI was calculated

using the following equation:

MI ¼ MIXY ¼ MIYX ¼ MI X tð Þ; Y tð Þð Þ ¼ −
1

2
log2 1−a2ð Þ

where, a is the correlation coefficient between the two time series X(t)

and Y(t). Here, we assumed the two time series X(t) and Y(t) are Gauss-

ian distributed functions. This equation is referred to as the linearized

information flow between the two signals and considers only second

moments in the data (Nichols et al., 2006). MI matrices of each epoch

and frequency bandwere calculated, and then, 15MImatrices were av-

eraged for the following estimation of graph theoretic measures.

2.5. Nodal centrality measures

For FC network analysis, weighted and undirected graphs from the

MI matrix were evaluated. Binary graphs can indicate the existence of

connections, whileweighted graphs can be used to indicate the strength

of connections (Reijneveld et al., 2007). According to previous studies

(Barrat et al., 2004; Barthelemy et al., 2005; Newman, 2004; Onnela

et al., 2005; Park et al., 2004; Stam et al., 2009), weighted graphs can

be more accurate models of real networks.

Basically, N is the set of all nodes, and n is the number of nodes. The

total number of nodes was 62, corresponding to the number of EEG

channels. The links between two nodes, i and j, are associated with the

connectionweights,wij. Theweights were normalized by themaximum

value of theMImatrix so as to produce 0≤wij≤ 1 for all nodes (Rubinov

and Sporns, 2010). The shortest weighted path length of the path from

node i to node j, the so called di,jw, was calculated as ∑wst∈gw
i→ j

f wstð Þ,

where f is an inverse from the weight to length, and gi → jw is the

shortest weighted path between the two nodes i and j (Rubinov and

Sporns, 2010).

Nodal network properties were assessed using three centrality mea-

sures: nodal degree (Dnodal), nodal efficiency (Enodal), andbetweenness

centrality (BC). Dnodal indicates the total weight connected to a node,

reflecting the strength of the connection represented at a node. It was

calculated at each node i, as∑j ∈ Nwijwith the connection weightswij.

Enodal can be defined as the inverse of the harmonic mean of the

shortest path length between a node i and all other nodes in a network

(Achard and Bullmore, 2007). It is regarded as ameasure of the commu-

nication efficiency (Wang et al., 2009). It is derived from the following

equation:

Enodal ið Þ ¼
1

n−1

X

j∈N; j≠i

1

dwi; j

BC is defined as the fraction of all of the shortest paths in the net-

work that pass through a given node (Rubinov and Sporns, 2010).

Thus, it measures how often nodes occur on the shortest paths between

other nodes (Buckner et al., 2009). It is defined by the following equa-

tion: BC ¼ ∑
h; j∈N
h≠ j;h≠i; j≠i

ghj ið Þ

ghj
, where ghj is the number of shortest paths

between node h and j, and ghj(i) is the number of shortest paths

between node h and j passing through i. BC is normalized by the mean

value of BCs in a network (He et al., 2008; Wang et al., 2010); later,

we denote it as normBC.

Extraction of the shortest path length from a weight matrix and cal-

culation of each nodal networkmetricswere performed using functions

from the Brain Connectivity Toolbox (http://www.brain-connectivity-

toolbox.net/).

2.6. Statistical analysis

Normality of the nodal network measures was graphically assessed.

If the data are normal, the plot should be linear. The data had a normal

distribution (Fig. S1). A two-sample t-test was performed to detect sta-

tistical intergroup differences in each nodal centrality for each frequen-

cy band. The significance level was applied after a Bonferroni correction

(p b 0.05/N= 0.00086, N=62). Pearson's correlation coefficientswere

evaluated in order to investigate the relationship between the nodal

measures and symptom severity as a clinical variable.

All statistical analysis was performed using Statistics Toolbox in

MATLAB.

2.7. Visualization

Pajek software (http://pajek.imfm.si/doku.php) was employed for

the network visualization of the functional connectivity network. To

present the data, the group-averaged, normalized MI matrices at each

band were thresholded by the mean + SD value of all the subjects.

The thresholding was done only for the visualization. Otherwise, the

network would not be recognizable due to too many connections. The

scalp plotting program used in the present study, “headplot” in

MATLAB script, was adapted from Delorme et al. (2007).

3. Results

FC network differences between the healthy controls and PTSD pa-

tients at each frequency band are shown in Fig. 1. Different FC networks

between the healthy controls and PTSD patients were observed. It is no-

ticeable that less connections over the anterior brain region in the PTSD

patients group in the beta and gamma frequency bands.

3.1. Nodal network measures

3.1.1. Dnodal centrality

In the beta frequency band, the Dnodal value of FCz was greater in

healthy controls than in patients with PTSD [FCz, 0.056(0.003) vs.

0.041(0.002), t = 3.936, df= 61, p= 0.0002]. In the gamma frequency

band, the Dnodal values of AF4, FC1, FC2, FC4, and C1 were greater in

healthy controls than in patients with PTSD [AF3, 0.077(0.006) vs.

0.051(0.004), t = 3.616, df = 61, p = 0.0006; FC1, 0.068(0.006) vs.

0.045(0.003), t = 3.671, df = 61, p = 0.0005; FC2, 0.073(0.006)

vs. 0.049(0.003), t = 3.600, df = 61, p = 0.0006; FC4, 0.078(0.007)

vs. 0.051(0.004), t = 3.786, df = 61, p = 0.0004; C1, 0.064(0.007) vs.

0.038(0.003), t= 3.600, df= 61, p= 0.0006]. Fig. 2 illustrates the elec-

trodes showing significant differences between the two groups at each

frequency band.

3.1.2. Enodal centrality

In the beta frequency band, the Enodal values of FC4 and C1 were

greater in healthy controls than in patients with PTSD [FC4,

0.919(0.019) vs. 0.803(0.025), t = 3.711, df = 61, p = 0.0004; C1,

0.767(0.029) vs. 0.630(0.023), t = 3.718, df = 61, p = 0.0004]. In the

gamma frequency band, the Enodal values of FC6 and C1 were greater

in healthy controls than in patients with PTSD [FC6, 0.958(0.030) vs.

0.812(0.028), t = 3.626, df = 61, p = 0.0006; C1, 0.824(0.032) vs.

0.676(0.026), t = 3.623, df = 61, p = 0.0006]. Fig. 2 illustrates the
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electrodes showing significant differences between the two groups at

each frequency band.

3.1.3. normBC centrality

There were no significant differences in normBC between healthy

controls and patients with PTSD.

3.2. Correlation between symptom severity and centrality

3.2.1. Dnodal centrality

In the beta frequency band, the Dnodal of FCz was significantly cor-

related with the HAMD score (r = −0.384, p = 0.028). In the gamma

frequency band, the Dnodal of FC2 was significantly correlated with

the score for SIP-increased arousal (r = 0.379, p = 0.030). Fig. 3 illus-

trates the scattergrams showing the significant correlations between

the Dnodal centralities and clinical variables.

3.2.2. Enodal centrality

In the beta frequency band, the Enodal of FC4was significantly corre-

lated with the scores for SIP-re-experience (r = −0.433, p = 0.012).

The Enodal of C1 was significantly correlated with the scores for SIP-

total (r = −0.421, p = 0.015), SIP-re-experience (r = −0.401, p =

0.021), SIP-increased arousal (r = −0.379, p = 0.030), DTS-total (r =

−0.381, p = 0.029), and DTS-frequency (r = −0.417, p = 0.016). In

the gamma frequency band, the Enodal of C1was significantly correlated

with the scores for DTS-total (r=−0.504, p= 0.003), DTS-frequency

(r =−0.505, p = 0.003), and DTS-severity (r =−0.475, p = 0.005).

Fig. 3 illustrates the scattergrams showing the significant correlations

between the Enodal centralities and clinical variables.

4. Discussion

Our study revealed that patients with PTSD have alterations in the

resting-state brain FC network. Our main findings are that patients

Fig. 1. Graphical representations of functional connectivity (FC) network in healthy controls and PTSD patients at each frequency band. Grand-averaged MI matrices at each frequency

were thresholded by a mean + SD MI value of all the nodes across the subjects. Upper row shows the FC networks in the healthy controls, and lower row indicates the FC networks in

the PTSD patients (L, left side; R, right side). Arrows mean less connections over the anterior brain region in the PTSD patients group in the beta and gamma frequency bands.

Fig. 2. T-maps showing intergroup differences in each nodal centrality at each frequency band. Yellow dots correspond to the locations, which have shown significantly decreased values

for patientswith PTSD compared to healthy controls (Dnodal: FCz for the beta band and AF3, FC1, FC2, FC4, and C1 for the gamma band; Enodal: FC4z and C1 for the beta band, and C1 and

FC6 for the gamma band). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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with PTSD have decreased FC in terms of connection strength and effi-

ciency over the frontocentral electrodes, and these FC metrics were sig-

nificantly correlated with PTSD symptom severity.

In the present study, FC of the frontal region was decreased in pa-

tients with PTSD compared to healthy controls. This finding is thought

to reflect frontal lobe dysfunction in patients with PTSD, which has

been consistently reported. However, not all regions of the frontal cor-

tex play the same role in patients with PTSD. The dorsal anterior cingu-

late (dACC) appears to be hyperactive in PTSD (Milad et al., 2009),

whereas the vmPFC is often observed to be hypoactive and shows de-

creased connectivity with medial temporal structures (Sripada et al.,

2012a,b; Stevens et al., 2013). In particular, two brain areas—the amyg-

dala and the vmPFC—have been proposed as key regions with alter-

ations in patients with PTSD (Myers-Schulz and Koenigs, 2012). In

patients with PTSD, a defect in functioning of the vmPFC, which exerts

inhibitory control over the amygdala, impairs amygdala inhibition,

resulting in unchecked amygdala activity and pathological distress

(Rauch et al., 2006; Shin et al., 2006).

Furthermore, we found decreased FC only in the higher frequency

bands: beta and gamma. Because the beta and gamma bands are be-

lieved to be involved with higher cognitive functions (Holschneider

and Leuchter, 1995; Lee et al., 2010; Moon and Lee, 2011), the FC at

these high-frequency bands could indicate the higher cognitive infor-

mation flow. Furthermore, previous qEEG studies (Begic et al., 2001;

Ehlers et al., 2006) have revealed that patients with PTSD have in-

creased beta and gamma band activity over the frontal regions and sug-

gested that these altered high-frequency activities are indicative of

pathological cortical hyper-excitability in these patients. Cook et al.

(2009) reported that compared to controls subjects, adults with a histo-

ry of childhood trauma have higher alpha and beta band coherence over

the right centrotemporoparietal area. Generally, coherence tends to be

higher in individuals with earlier traumas. Taken together, these results

suggest that the frontal region of patients with PTSD might be in a

hyper-excitable state with increased coherence; however, there is low

regional connectivity in the functional state. The hyper-excitability

and low regional connectivity seem contradictive in the pathophysiolo-

gy of patients with PTSD. However, it can be hypothesized that the

frontal hyper-excitability of the brains of PTSD patients has low efficien-

cy in controlling the subcortical limbic regions because of its low FC.

In addition, in the present study, decreased FC was found in the

Dnodal and Enodal metrics for the frontocentral electrodes. Dnodal

and Enodal indicate the total strength of the connection represented

at a node and the communication efficiency, respectively. Therefore,

our results suggest that compared to healthy controls, patients with

PTSD have weaker connection strength and communication efficiency

in the frontocentral regions. In addition, efficiency as a network mea-

sure can be used to investigate the adaptive functional reorganization

based on the economical properties of the brain networks (Achard

and Bullmore, 2007; Jin et al., 2012; Kitzbichler et al., 2011). Thus, de-

creased Enodal metrics in the frontocentral regions may be related to

the adaptive reorganization of the resting-state FC network in patients

with PTSD, due to the traumatic experience. This decreased communi-

cation efficiency would reflect a defect in frontal inhibitory control

over the amygdala, resulting in amygdala activation. In future studies,

the concept of adaptive reorganization should be examined with a lon-

gitudinal follow-up design.

A number of studies have reported decreased FC of the default mode

network in patients with PTSD; however, these studies used fMRI with

limited temporal resolution. Sripada et al. (2012a) demonstrated de-

creased FC of the default mode network in the rostral anterior cingulate

cortex/vmPFC of patients with PTSD. Bluhm et al. (2009) reported that

their PTSD group exhibited particularly diminished levels of connectiv-

ity between the posterior cingulated cortex seed region and the right

frontal region as well as the left thalamus. There are also conflicting

fMRI reports that have shown increased frontal activation in the

resting-state following a life threatening traumatic event (Qin et al.,

2012; Yin et al., 2011, 2012). However, these PTSD studies did not re-

cruit healthy controls as a control group, making it difficult to compare

their results with those of other, which were contrasted with healthy

controls. Possibly, the different modalities of fMRI and EEG, as well as

different characteristics of the patients with PTSD and control subjects

might have contributed to the inconsistent results. fMRI can investigate

brain dynamics of very limited frequency bands under 1Hz. However, in

the present EEG study, we found the altered nodal centralities in

Fig. 3. Scattergrams showing the significant correlations between Enodal and Dnodal centralities and clinical variables. DTS-total: Davidson Trauma Scale—total score, HAMD: Hamilton

Depression Scale, SIP: Structured Interview for PTSD.
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resting-state FC in both the beta and gamma band. Further EEG studies

are required to properly examine high-frequency brain dynamics in pa-

tients with PTSD.

We found significant correlations between the Dnodal and Enodal

metrics and symptom severity of PTSD patients; the metrics showed

significant negative correlations with DTS, SIP, and HAMD scores. In

this vein, communication efficiency at the central region showed a neg-

ative correlation with SIPS-increased arousal symptoms. However,

there was a significant positive correlation between SIPS-increased

arousal and connection strength at the frontal region in the gamma fre-

quency. These divergent correlations could reflect functional differences

between frontal and central regions. Furthermore, these findings sug-

gest that the connection strength (Dnodal) and communication effi-

ciency (Enodal) are not in the same direction in the hyper-arousal

symptom of patients with PTSD.

This is similar to the results of Bae et al. (2011), who reported that

SIP-increased arousal score was positively correlated with P300 source

activity in the frontal areas, while SIP-avoidance and numbing were

negatively correlated this source activity in patients with PTSD. In addi-

tion, Begic et al. (2001) suggested that the increased beta activity in pa-

tients with PTSD is related to cortical hyperexcitability, prolonged

wakefulness, or attention disturbances. In the present study, the

symptom-dependent disparate correlations seem to be reflecting the

diverse pathophysiological change in the brain of patients with PTSD.

In summary, our results suggest that PTSD symptom severity and

depressive symptoms are related with a decrease in FC, while increased

arousal is related with increased FC in the frontal lobe.

Our study has a number of limitations. Firstly, all patients with PTSD

were taking psychotropic medications. Therefore, we could not rule out

potential medication effects in this study. Secondly, we analyzed only

the cortical level FC. It is difficult to infer any sub-cortical abnormality

from the cortical level analysis. Despite these limitations, our results

have their strengths because this is the first EEG resting-state analysis

in patients with PTSD. Our results suggest that EEG could be a useful

tool for connectivity analysis, and further research is highly recom-

mended for a spectrum of psychiatric illnesses.

In conclusion, compared to healthy controls, patients with PTSD

have decreased Dnodal and Enodal values in the resting-state FC net-

work at frontocentral electrodes, in the beta and gamma bands. These

nodal network measures, representing connection strength and com-

munication efficiency, were significantly correlated with symptom se-

verity in patients with PTSD. Our results suggest that nodal network

features of the FC network in the resting-state EEG could prove to be a

useful biomarker for PTSD.

Supplementary data to this article can be found online at http://dx.

doi.org/10.1016/j.pnpbp.2014.01.008.
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