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Abstract
Prevalence of certain forms of psychopathology, such as autism and depression, differs between

genders and understanding gender differences of the neurotypical brain may provide insights into

risk and protective factors. In recent research, resting state functional magnetic resonance imaging

(rfMRI) is widely used to map the inherent functional networks of the brain. Although previous

studies have reported gender differences in rfMRI, the robustness of gender differences is not well

characterized. In this study, we use a large data set to test whether rfMRI functional connectivity

(FC) can be used to predict gender and identify FC features that are most predictive of gender.

We utilized rfMRI data from 820 healthy controls from the Human Connectome Project. By apply-

ing a predefined functional template and partial least squares regression modeling, we achieved a

gender prediction accuracy of 87% when multi-run rfMRI was used. Permutation tests confirmed

that gender prediction was reliable (p<:001). Effects of motion, age, handedness, blood pressure,

weight, and brain volume on gender prediction are discussed. Further, we found that FC features

within the default mode (DMN), fronto-parietal and sensorimotor networks contributed most to

gender prediction. In the DMN, right fusiform gyrus and right ventromedial prefrontal cortex were

important contributors. The above regions have been previously implicated in aspects of social

functioning and this suggests potential gender differences in social cognition mediated by the

DMN. Our findings demonstrate that gender can be reliably predicted using rfMRI data and

highlight the importance of controlling for gender in brain imaging studies.

1 | INTRODUCTION

Gender differences in cognitive abilities such as spatial perception, mem-

ory, and verbal skills have been reported across a wide array of studies

(See Miller & Halpern 2014 for review). While overall gender differences

in group means have been reported in specific cognitive domains, the

underlying neurobiology between genders remains unclear (Del Giudice

2009; Hyde & Plant 1995). Reports of gender differences in cognition

have spurred interest in examining structural and functional brain fea-

tures which may differ between genders and underlie previous reports

of cognitive and behavioral differences. Since the prevalence of certain

forms of psychopathology differs between genders, such as autism being

four times greater in males (Werling & Geschwind 2013) and major

depressive disorder twice as common in females (Albert 2015), under-

standing the neurobiology of gender differences may provide insights

into risk and protective factors associated with psychopathology.

A meta-analysis of structural brain imaging studies reported that

males exhibit larger total brain volume and gray and white matter tissue

volumes. There are also regional gender differences in areas such as

the amygdala, hippocampus, and insula (Ruigrok et al. 2014). When

multiple brain regions were examined, recent work concluded that

brains can be considered as “mosaics” of male and female structural

features with only a few individuals consisting entirely of male or

female brain features (Joel et al. 2015). Global trends in structural con-

nectivity have been reported as well. In a DTI study males on average

tended to exhibit more intra-hemispheric connectivity whereas females

appeared to exhibit more inter-hemispheric connectivity (Ingalhalikar

et al. 2014). Structural brain features from multiple imaging modalities

have also been used to predict gender with high accuracy (Feis et al.

2013).

Functional connectivity (FC) studies report stronger FC in the

default mode network (DMN) for females within the posterior cingulate
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cortex/precuneus and bilateral medial prefrontal cortex (Bluhm et al.

2008). Stronger intra-network FC in females and stronger inter-

network FC in males (Allen et al. 2011) and a mixture of higher and

lower FC in males and females has also been reported in lobar regions

(Filippi et al. 2013) in resting networks. Similar to findings using DTI

(Ingalhalikar et al. 2014), a study using FC reported that males exhibit

greater rightward lateralization of short-range FC compared to females

(Tomasi & Volkow 2012). Moreover, in our previous work (Zhang et al.

2016) we found significant and widespread gender differences of FC in

frontal, parietal, and temporal lobes using regression analyses. We also

reported graph properties that indicated greater local clustering in

males compared to greater global clustering in females.

Despite reports of gender differences in FC, only a few studies

have attempted prediction of gender using FC. A great number of

gender discriminative FC were found in males in motor, sensory, and

association areas, but only achieved a prediction accuracy of 62%

(Casanova et al. 2012). Smith et al. (2013) utilized rfMRI for gender pre-

diction and reported a higher prediction accuracy of 87%. In the above

studies, the total number of subjects used was small (N<148). Recent

work has found that rfMRI is extremely useful for individual prediction

of cognitive, behavioral, and demographic measures. To date, studies

have predicted individual brain maturity using resting FC in individuals

age 7–30 (Dosenbach et al. 2010) and fluid intelligence in young adults

(Finn et al. 2015). Given the lack of previous research, it remains

unclear the extent to which rfMRI can accurately predict gender.

Thus, our goal was to implement gender prediction using resting

state FC for a large cohort of 820 subjects with four runs of rfMRI.

This study attempts to answer the following questions: (a) Can gender

be predicted with a high accuracy using rfMRI FC in a large data set?

(b) Can prediction accuracy be improved if FC information is combined

across multiple runs and what are the different strategies to combine

FC across runs? and (c) What FC features are important for predicting

gender?

2 | MATERIALS AND METHODS

2.1 | Data set and preprocessing

This study included 820 healthy adults (Gender: 366 males and 454

females; age: 22–37 years) from the human connectome project (HCP)

(Van Essen et al. 2012) S900 release. We use the term “Gender”

(instead of “Sex”) following the HCP data dictionary. Subject demo-

graphics are shown in Table 1. Age, handedness (Schachter et al. 1987),

blood pressure, weight and brain volumes demonstrate significant gen-

der differences. Additionally, the subject motion during rfMRI sessions

(average frame displacement across time points and runs, Power et al.

2012) is included. HCP rfMRI data were acquired on a Siemens Skyra

3T scanner housed at Washington University in St. Louis. TR5720 ms,

TE533:1 ms, spatial resolution523232 mm3. More details about

HCP data and MR imaging parameters can be found in the S900

release manual available at db.humanconnectome.org. Each subject

underwent four rfMRI runs of approximately 15 min each, two runs in

the first session (Day 1) and two runs in the second session (Day 2).

The data consisted of 1,200 volumes for each run and therefore each

subject had 4,800 volumes for the four runs. Quality assurance and

quality control strategies of HCP rfMRI are described in Marcus et al.

(2013).

Data used in this study were initially preprocessed by the HCP

team and included the standard preprocessing steps (such as motion

correction and spatial normalization) and ICA denoising to remove non-

neural spatiotemporal components (Griffanti et al. 2014; Salimi-

Khorshidi et al. 2014). In addition, the 24 head motion parameter (Sat-

terthwaite et al. 2013) time series were high-pass filtered and then

regressed out from the rfMRI time series data.

2.2 | Region of interest (ROI) and functional

connectivity

A functional brain atlas (Dosenbach et al. 2010) was used to reduce

rfMRI data of the whole brain to 160 ROIs. These ROIs of 10mm-

diameter spheres were centered around the MNI coordinates of the

functional atlas and were functionally defined from a meta-analysis of

five task fMRI studies which encompassed much of the cerebral cortex

and cerebellum (Dosenbach et al. 2010). This atlas is a popular brain

parcellation scheme and has been integrated into several brain network

analysis/visualization tools (Cao et al. 2014; Wang et al. 2015; Xia et al.

2013). For each of the 160 ROIs, an average time series was calculated

by averaging the time series of all the voxels that fell within an ROI.

This resulted in 160 ROI time series and these 160 time series were

used for further analyses. For data presentation and interpretation the

160 ROIs are divided into the following six functional modules: fronto-

parietal, default, cingulo-opercular, sensorimotor, occipital, and cerebel-

lum (Dosenbach et al. 2010).

For rfMRI of single runs, the FC matrix was calculated as Fisher’s

z-transformed Pearson correlation coefficients between time series

across the 160 ROIs. After vectorization of the 1603160 FC matrix

and elimination of duplicate FC values, each subject had an FC feature

vector of length 12,720. To check for the effect of incorporating FC

information across runs on gender prediction performance, we con-

structed the multi-run FC features in three different ways. Method 1

(Average FC): First calculate FC for each of the four runs and then

average FCs across runs; Method 2 (Concatenate TC): first concatenate

time courses of four runs together and then calculate FC; and Method

3 (Concatenate FC): First calculate FC for each run and then concate-

nate FC features across runs (the length of FC feature vector

was 12;72034550;880). For each of the four individual runs and

for the above three methods that combine all four runs, the con-

structed FC features were fed into subsequent classification analyses.

2.3 | Partial least squares regression

Classification algorithms use a number of predictor variables to predict

one or more predicted variable(s). Hughes (1968) illustrated that with a

fixed number of training samples, the predictive power reduces as the

number of predictor variables increases. Therefore, feature selection or

dimensionality reduction of the predictors is an essential step in
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machine learning applications when the number of predictors is large.

In this study as gender is predicted from a large number of predictors

(at least 12,720 FC) the curse of dimensionality needs to be addressed.

Principal component analysis (PCA) is a benchmark dimensionality

reduction method that applies a linear projection of the predictors in a

manner that best explains the predictor variables. But PCA does not

help to find associations between the predictor and predicted variables.

Partial least squares (PLS) regression is considered as a supervised ver-

sion of PCA, and derives linear combinations of the original predictor

variables that best predict the predicted variable (Abdi 2010). The PLS

method has been demonstrated to be well suited for analyzing associa-

tions between measures of brain functional activity and behavior

(Krishnan et al. 2011; McIntosh and Lobaugh 2004; Qin et al. 2015;

Ziegler et al. 2013). FC features are not linearly independent and PLS

regression deals with multi-collinearity by attempting to find latent var-

iables which model the predictor variable space X (Equation 1) and

simultaneously predict the predicted variable Y (Equation 2)

X5TPT (1)

bY5TBCT5X PT
1
BCT

� �
5XBPLS (2)

The values of p predictors from n subjects are collected in a n3p

matrix X. The n subjects described by m dependent variables are

stored in an n3m matrix Y (m51 for the gender prediction case). The n

3l matrix T contains l latent variables ordered according to the amount

of variance of Y that they explain. P and C are loadings for X and Y,

respectively. B is an l3l diagonal matrix in which the non-zero entries

correspond to the covariance of X and Y for each latent variable. The

superscript T indicates the transpose operation to the matrix. PT
1

is

the Moore-Penrose pseudoinverse of PT . The predicted response vari-

able bY can be considered as a linear combination of either latent

variables bY5TBCT
� �

or the original predictors bY5XBPLS. In the latter

case, linear coefficients are contained in the p3m matrix BPLS. The pro-

cess of solving PLS regression is described in the supplementary mate-

rial. Combining the predicted response variable and the true response

variable, performance of the prediction can be evaluated and this will

be discussed in the next section.

2.4 | Cross-validation of the prediction

Ten-fold cross validation, which balances the requirements of sufficient

training samples to reach a good fit and large test sets to yield stable

estimates of predictive accuracy (Varoquaux et al. 2016), was applied

to implement gender prediction. In Figure 1a, for each of the 10-folds,

10% of the subjects were left out as the test set and the remaining

served as the training set. For explanatory purposes (to ensure that

weights across features were comparable), feature standardization via

z-transforms were implemented before feeding the training data to the

PLS regression classifier (i.e., Xtr was demeaned and then divided by

the standard deviation so that the values of each feature had zero-

mean and unit-variance). After training was completed, the feature val-

ues of test set Xts were standardized by the mean/standard deviation

derived from the training set (http://scikit-learn.org/stable/modules/

preprocessing.html), and were then combined with the linear coeffi-

cient BPLS to generate the predicted continuous response cYts . Yts

and cYts from 10 folds were combined to construct the receiver

operating characteristic (ROC) curve for different classification

thresholds. The area under curve (AUC) of the ROC was derived as a

summary performance index for the classifier on the 820 subjects

studied. Given that the gender variable was labeled as one for male

and two for female, classification accuracy was calculated at a

threshold of 1.5.

TABLE 1 Subject demographics (N5820)

Male–Female
Male (N5366)
Mean (Std)

Female (N5454)
Mean (Std)

Gender difference
(t statistic, p value)

Age (year) 28.0 (3.7) 29.4 (3.6) 25.4, 1E-7*

Education (year) 14.8 (1.8) 15.0 (1.8) 21.6, 0.1

Income** 5.0 (2.2) 5.0 (2.1) 20.1, 0.9

Handedness*** 60.9 (43.1) 69.9 (44.4) 22.9, 4E-3*

Blood pressure systolic 129 (13) 120 (13) 9.7, 5E-21*

Blood pressure diastolic 79 (10) 75 (10) 5.0, 8E-7*

Weight (pound) 190 (36) 156 (36) 13.5, 8E-38*

Brain volume (cm3)
(Gray matter1White Matter1CSF)

1214 (97) 1063 (82) 24.0, 9E-97*

Motion: Frame displacement (mm) 0.16 (0.06) 0.17 (0.06) 20.9, 0.4

*Indicates statistical significance for p< .05.
**Total household income categories: <$10,0005 1, 10K-19,99952, 20K-29,9995 3, 30K-39,99954, 40K-49,9995 5, 50K-74,99956, 75K-
99,99957, �100,0005 8.
***Schachter et al. (1987).
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Two resampling techniques were applied to characterize the statis-

tical significance of the results: the overall prediction performance was

assessed by permutation test and the importance of the feature

weights were assessed via bootstrap test. In the permutation test (Fig-

ure 1b), associations between features and predicted variable (gender)

were randomized, that is, the gender values were randomly permuted

(from Y to �Y ) while the feature matrix was kept intact. 10-fold cross

validation was repeated for each permutation and AUC values from

1000 permutations were used to construct a null distribution of AUC

values. In addition, bootstrap was used to derive statistical significance

of feature weights (Figure 1c). For each fold in cross validation, subjects

in the training set were resampled with replacement (from Xtr;Ytr

to Xbo;Ybo) and the bootstrapped training set was fed into PLS regres-

sion to generate a new set of feature weights BPLS bo. For each feature

weight, the bootstrap ratio Rbo was calculated as the mean of the 1000

bootstrapped feature weights divided by their standard deviation. The

bootstrap ratio is akin to a Student t criterion so if a ratio was large

enough (a value of 2 or 3 roughly corresponds to a5:05 or a5:003 for

a t test) then the corresponding feature was considered significant for

the prediction (Fowler 2013). The statistical strength of each feature

was then derived as the absolute value of the average bootstrap ratio

across 10 folds (Pereira et al. 2009).

3 | RESULTS

3.1 | Gender classification results: AUC and accuracy

Results of gender classification for both individual-run and multi-

run predictions are provided in Table 2. Here the number of com-

ponents in PLS regression was fixed to be 10. For gender predic-

tion using FC features of single run rfMRI (Run 1 to Run 4), the

AUC and classification accuracy are 0:88160:006 and

79:9%60:9%, respectively. To check the robustness of classifica-

tion, we also predict gender where the training and test data are

from different rfMRI runs. Results of this robustness test are

shown in Supporting Information Table 1 and the prediction per-

formance was close to the performance of training and testing

within the same rfMRI run. However, as data from multiple rfMRI

runs were incorporated, classification performance improved to

0.93 for AUC and 85% for accuracy. There were marginal differen-

ces in discrimination capability between the three multi-run meth-

ods. While “Concatenate FC” had the highest AUC value, the

classification accuracy at the default threshold of 1.5 was slightly

higher for the “Average FC” scheme.

Table 3 illustrates the AUC values of gender prediction after

regressing out a confound showing significant gender difference in

FIGURE 1 Cross validation of gender prediction, permutation test, and bootstrap resampling. (a) Flow chart of gender prediction. (b)
Permutation test applied to evaluate prediction performance. (c) Bootstrap test used to identify important FC features. X contains predictor
(FC feature) variables and Y contains the dependent variables (in this case the gender variable, one for male and two for female). Subscripts
tr and ts are for training and test sets, respectively. bY contains the predicted gender variable. In b, �Y represents randomized Y. In c, Rbo

contains the bootstrap ratios of feature weights. Matrix dimensions are indicated by p 512;720; total number of FC featuresð Þ; m
51; number of predicted variablesð Þ; ntr 5738; number of training subjectsð Þ and nts 582;ð number of testing subjectsÞ [Color figure can be
viewed at wileyonlinelibrary.com]
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Table 1. Here the number of PLS components was 10 and results for a

range of 1–10 components are presented in Supporting Information

Tables 2 and 3. The frame displacement is not significantly different

between males and females, but was checked as FC can change with

motion. The confounding variables were sorted by statistical signifi-

cance of gender difference. The reduction in gender prediction AUC

was found to be associated with the significance of gender difference.

Removing a confound that did not show a statistically strong gender

difference (e.g., frame displacement, handedness, and age) did not

reduce the gender prediction performance. For confounds where the

gender difference was highly significant (e.g., blood pressure, weight,

and brain volume), gender prediction performance dropped by a larger

margin. However, all gender prediction performances remained at

AUC>0.76. The highest performance drop was noted when brain vol-

ume was regressed out and as brain volume is strongly correlated to

gender, we further investigate the effect of brain volume in a separate

section below.

The effect of number of components, a hyper-parameter in the

predictive model, was investigated and the results are illustrated in

Supporting Information Figure 1. AUC was below 0.7 when only

one component of the PLS regression was used. AUC quickly

improved as more components were added and plateaued at around

five components. Then from 5 to 20 components, AUC remained at

around 0.88 and 0.93 for individual-run and multi-run predictions,

respectively. We also note that for a particular number of components,

classification performance for multi-run methods exceeds that of single

run performance.

Statistical significance of overall performance for gender classifica-

tion was tested by 1,000 permutations. Results for the three multi-run

methods are shown in Figure 2. For all three schemes, as expected, null

distributions of the AUC were centered around 0.5, indicating that per-

formance of the classifier was no better than random guessing for the

randomly permuted data sets in which the subject labels between pre-

dictors and responses were randomized. Not a single AUC value for

permuted labels fell beyond the AUC obtained from real labels, and this

demonstrates that the statistical significance of gender prediction is

high (p < :001).

3.2 | Important FC features in gender discrimination

As classification performance was higher for multi-run methods, we illus-

trate important FC features only for multi-run predictions. Distribution

TABLE 2 AUC and accuracy for gender classification using PLS regression when number of components was 10

RUN1 RUN2 RUN3 RUN4 Average FC Concatenate TC Concatenate FC

AUC 0.884 0.883 0.873 0.885 0.931 0.930 0.936

Accuracy (%)a 79.2 81.0 79.2 80.2 86.6 85.5 85.7

aClassification Accuracy for threshold51.5 in PLS regression prediction.

TABLE 3 Effect of regressing out potential confounds on the gender prediction performance (the Average FC method)

Frame displacement Handedness Age Blood pressure Weight Brain volume

Male–Female
Gender difference
(t-statistic, p-value)

20.9, 0.4 22.9, 4E-3 25.4, 1E-7 Systolic:
9.7, 5E-21
Diastolic:
5.0, 8E-7

13.5, 8E-38 24.0, 9E-97

Gender prediction AUC 0.93 (0.00)* 0.93 (0.00) 0.92 (20.01) 0.89 (20.04) 0.85 (20.08) 0.76 (20.17)

*Within parenthesis are the drop in AUC compared to the AUC before regressing out the confound.

FIGURE 2 Permutation tests of AUC indices when multi-run functional connectivity features are used for gender prediction. The histo-
grams show the null distributions of AUC when gender labels were randomly permuted and the solid red line indicates the AUC obtained
for the true gender labels [Color figure can be viewed at wileyonlinelibrary.com]
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of FC with feature weights above a bootstrap ratio of 3 is provided in

Figure 3. “Average FC” (Figure 3a) and “Concatenate TC” (Figure 3b)

demonstrated both similar patterns and similar numbers of FC features

above the threshold. For the “Concatenate FC” method (Figure 3c),

because the number of features was 1272034 (four for each FC), we

averaged the bootstrap ratio of FC across the runs. For weights that are

above 3, the number of features is much less for “Concatenate FC” com-

pared to “Average FC” and “Concatenate TC.” Important FC features are

FIGURE 3 Pattern for feature importance. Top: distribution of FC with feature weights that are larger than 3 for the three multi-run gen-
der predictions. Numbers of surviving features are: 322 for (a) Average FC, 325 for (b) Concatenate TC, and 128 for (c) Concatenate FC.
Black dashed lines in FC matrices separate the 160 ROIs into six functional modules. Bottom: for each network, average of all feature
weights for intra-network FC and inter-network FC [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 4 Robustness of important features. Top: FC features with weights larger than 3 for three multi-run gender predictions are com-
bined to explore the overlap of the three multi-run methods. Within the DMN block, the fusiform and the ventromedial prefrontal cortex
(vmPFC) demonstrated consistently higher feature weights (these nodes are circled in black). Bottom: Brain maps depicting FC features that
are important for gender prediction common across the three multi-run methods. ROI spheres are color-coded by network [Color figure can
be viewed at wileyonlinelibrary.com]
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widespread across the brain, however, after separating the 160 ROIs

into 6 networks (as defined in the original paper of Dosenbach et al.

2010), the block representing intra-network DMN FC features is promi-

nent for all three methods.

In order to analyze patterns of feature contributions at the network

level, and to see which networks contributed most to gender prediction,

average intra-network and inter-network feature weights without thresh-

olding were calculated for each of the six networks. Patterns from the three

multi-run predictions are very similar and differences between “Average

FC” and “Concatenate TC” schemes are minimal. Across all three methods,

inter-network feature weights are close among the six networks and there

are no cases where an inter-network feature has an obviously higher weight

than the intra-network counterpart. Of the networks examined, the DMN

has the highest intra-network feature weight, followed by fronto-parietal

and sensorimotor networks. The other three networks (cingulo-opercular,

occipital, and cerebellum) have comparable weights between intra-network

and inter-network features. These trends held across all three methods

with the exception of the occipital network in “Concatenate FC” method

has a higher weight than the cingulo-opercular network and the cerebellum.

To check the robustness of identified important features across

three multi-run gender prediction methods, FC features for each

method were thresholded at a feature weight of three and then binar-

ized and combined across methods. From this we determined the over-

lap among the three methods. In the top of Figure 4 important FC

features and their overlap across methods are identified by the color

bars where grey stands for presence in one method, blue, green and

purple are for presence in two methods, and red represents presence

in all three methods. From Figure 4 few cases of “Average FC1Con-

catenate FC” and “Concatenate TC1Concatenate FC” were evident.

Instead “Average FC1Concatenate TC” (blue, 200 features) and “All

three methods” (red, 97 features) dominated, together constituting

79% of all 375 surviving features. 30% of all important features estab-

lished by the three methods (29 out of 97) reside in the intra-DMN

block, making it a prominent block with red dots. The two lines circled

indicate that FC between right fusiform/right vmPFC and other nodes

in the DMN regularly have higher contributions in gender classification.

Specific pairs of FC with high feature weights in the DMN, observed

across all three methods, included connectivity between the right fusi-

form and inferior temporal and occipital cortex, intraparietal sulcus,

posterior cingulate, precuneus, superior frontal, and ventromedial

FIGURE 5 Overlap between important features of gender
prediction and brain volume prediction. Important features are
defined by combining features with absolute bootstrap ratios
above the threshold and across three multi-run methods. For one
specific threshold, those features are divided into three categories:
unique feature for volume prediction (green), unique feature for
gender prediction (blue), and overlapping feature for both predic-
tions (red). The numbers of corresponding features are labeled in
the bar plot and fractions are indicated in the y-axis. Results for
three levels of threshold are shown [Color figure can be viewed at
wileyonlinelibrary.com]

FIGURE 6 Distribution of important features for gender and brain volume predictions in the 1603160 square matrix (for the threshold of
three, correspond to the middle bar shown in Figure 5). Three types of features are labeled as dots with different colors (154 green dots,
142 blue dots, and 52 red dots). 1–6 represent the six network modules [Color figure can be viewed at wileyonlinelibrary.com]
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prefrontal cortex and connectivity between the right ventromedial pre-

frontal cortex, anterior prefrontal cortex, inferior temporal regions,

occipital cortex, posterior cingulate, and precuneus. Three views of a

brain map displaying the 97 FC features that were common across all

three methods are shown in Figure 4. 78% (76 out of 97) of these FC

features are between nodes in the first four networks (fronto-parietal,

default, cingulo-opercular, and sensorimotor), which roughly corre-

spond to the frontal, parietal, and temporal lobes of the brain.

3.3 | Gender prediction versus brain volume

prediction

Brain volume is one variable demonstrating a significant gender difference.

In our study, we also implemented brain volume (gray matter1white mat-

ter1 cerebrospinal fluid) prediction. Using the same scheme as in predicting

gender (10-fold cross-validation and 10 components in PLS regression), all

three multi-run methods achieved high correlations between predicted vol-

umes and actual volumes (0.675, 0.678, and 0.675 for 820 subjects). In

order to show that gender prediction and brain volume prediction are dif-

ferent (or say that the significant gender difference in brain volume is not

dominating in gender prediction), we look at the important features in both

gender and brain volume predictions and examine towhat extent these fea-

tures overlap. Figure 5 illustrates the quantitative results for the ratio of

overlapping and unique features. At three different levels of threshold, the

number of features which are both important for gender and brain volume

predictions is small compared to the unique features for either volume or

gender prediction. Although the percentage of overlapping features

increases as the threshold decreases, it is at most less than 20%.

The distribution of important features for both predictions when

the threshold is three is shown in Figure 6. Red dots which represent

the overlapping features are scattered across the brain and do not

have a clear pattern. The top 20 most important features for gender

and brain volume predictions are listed in Table 4. Two common FC

features present in both predictions are highlighted.

4 | DISCUSSIONS

4.1 | Gender prediction performance and potential

confounds

For the HCP rfMRI data but with a smaller number of subjects, our pre-

vious study (Zhang et al. 2016) showed that even for FC with the most

TABLE 4 Top 20 FC features (with the highest absolute bootstrap ratios) for gender and brain Volume predictions

For Gender prediction For Brain volume prediction

Precuneus (DE)—temporal (SE) Occipital (DE)—med-cerebellum (CE)

Post-cingulate (DE)—sup-frontal (DE) dlPFC (FP)—vent-aPFC (FP)

Fusiform (DE)—inf-temporal (DE) vFC (CO)—precentral-gyrus (SE)

Occipital (DE)—thalamus (CO) Post-cingulate (DE)—vmPFC (DE)

mFC (CO)—thalamus (CO) Occipital (OC)—post-occipital (OC)

IPS (DE)—mPFC (DE) Angular-gyrus (DE)—fusiform (DE)

IPL (FP)—mid-insula (SE) vPFC (FP)—fusiform (DE)

Occipital (DE)—med-cerebellum (CE) Thalamus (CO)—occipital (OC)

vmPFC (DE)—vFC (CO) Precuneus (DE)—temporal (SE)

Fusiform (DE)—post-cingulate (DE) Precuneus (DE)—occipital (OC)

Fusiform (DE)—sup-frontal (DE) Thalamus (CO)—thalamus (CO)

Occipital (OC)—inf-cerebellum (CE) Post-cingulate (DE)—med-cerebellum (CE)

IPS (FP)—inf-temporal (DE) Fusiform (DE)—vmPFC (DE)

Post-cingulate (DE)—vmPFC (DE) vlPFC (FP)—fusiform (CO)

vmPFC (DE)—post-occipital (OC) vFC (CO) — precentral-gyrus (SE)

vlPFC (DE)—med-cerebellum (CE) Angular-gyrus (DE)—med-cerebellum (CE)

Angular-gyrus (DE)—fusiform (DE) Occipital (DE)—vlPFC (DE)

dFC (SE)—SMA (SE) Thalamus (CO)—occipital (OC)

Thalamus (CO)—occipital (OC) Precentral-gyrus (SE)—SMA (SE)

IPL (FP)—temporal (SE) dlPFC (FP)—vlPFC (FP)

Note. Each row represents an FC between two ROIs. FC features are ordered (high to low) based on the average absolute bootstrap ratio across three
multi-run methods. FC features that are common between gender prediction and brain volume prediction are highlighted in bold font. The network to
which the ROI belongs to is presented in parenthesis.
Network acronym: FP5 fronto-parietal; DE5default; CO5 cingulo-opercular; SE5 sensorimotor; OC5occipital; CE5 cerebellum
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significant gender effect the FC values were on a spectrum and there

was a large overlap between histograms for males and females. This

result indicated that it is difficult to achieve a high gender classification

accuracy by looking at a single FC feature. In this study we applied PLS

regression to learn the weighting or the contribution of the original FC

features and we made a combination of all FC features to derive a new

jointly informative FC feature for gender prediction. This multivariate

approach allowed for a robust classification of gender using rfMRI. For

four individual runs of rfMRI scans, each of which was 15 min in dura-

tion, we achieved a consistent classification accuracy of 80% and an

AUC of 0.88. Given that the four scans were collected on 2 different

days, the consistency of prediction performance reflects the reproduci-

bility of rfMRI data and resulting FC analyses. Experiments with three

different ways of combining rfMRI data across four single runs

observed an increased AUC from 0.88 to 0.93 and an increased classifi-

cation accuracy from 80% to 85% for the default threshold (Table 2).

Results of permutation tests (Figure 2), in which correspondence

between FC features and gender labels were permuted, demonstrate

the significant associations between FC and gender and thus enable

successful gender prediction. While high prediction accuracies were

achieved by single runs of rfMRI, the integration of FC across multiple

runs further improved performance. This is explained by the incorpora-

tion of an additional “averaging” step, by either averaging FC across

runs or calculating FC from concatenated time series of runs, to facili-

tate noise removal and better characterization of the “true” underlying

FC patterns. For the “Concatenate FC” scheme, the number of predic-

tors was quadrupled through the incorporation of four runs into the

prediction procedure. Regardless of the method, incorporating multiple

runs has been shown to provide more stable connectivity estimates

(Glasser et al. 2016). Another recent study (Laumann et al. 2015)

reports that highly reliable correlation estimates require considerable

data. Therefore, in summary, combination of rfMRI data from multiple

runs enables more stable and reliable FC patterns to be characterized.

This more precise delineation of individual FC traits, in turn, empowers

higher gender classification accuracy.

We explored the potential confounds that may affect the gender

prediction performance. In Table 3, for the frame displacement and

handedness which demonstrated no or weak gender difference,

regressing them out from the FC features had little effect on the gen-

der prediction AUC. However, as the gender difference of a confound

became more significant, a higher reduction in the gender prediction

performance was noted. This is reasonable and is expected. As the aim

of this study is to predict gender, regressing out a confound that is

highly correlated with the gender variable from every single FC feature

can remove gender specific information from the predictors, and there-

fore, forcing the prediction performance to be weaker. However, even

after regressing out the confounds, a high gender prediction accuracy

could still be achieved (80% for regressing out blood pressure, 78% for

regressing out weight and 70% for regressing out brain volume), illus-

trating the robust associations between FC features and gender. For

brain volume, which demonstrated the most significant gender differ-

ence, we implemented the brain volume prediction algorithm using the

same scheme as in gender prediction. Evident correlations were

achieved between predicted and actual brain volumes. Different FC

feature patterns across gender and brain volume predictions (Figures 5

and 6 and Table 4) demonstrate the distinction between these two pre-

dictions, and therefore, reduce the concern of confounding effect of

brain volume in gender prediction.

4.2 | Effect of implementation schemes on results

The three schemes implemented for multi-run gender predictions

achieved accuracies with only marginal differences. Moreover, two of

the methods (“Average FC” and “Concatenate TC”) achieved very simi-

lar results with regard to feature weights (Figure 3). These methods

represent two ways of deriving FC features utilizing separate scans.

For the “Concatenate FC” method, there were four features corre-

sponding to each FC. The effect of one FC was distributed across four

similar features and this may explain why it generated less important

features (for the same threshold compared to the other two methods).

Except for this difference, the three ways of combining rfMRI data

from multiple runs demonstrated consistent findings regarding the pat-

tern of FC feature weights. The observation that 79% of important fea-

tures were either identified by the first two methods or all three

methods (Figure 4) demonstrates the robustness of the FC feature

importance found in this study.

4.3 | Important features for gender discrimination

In this study, we found that components of the DMN exhibited the

greatest FC feature weight across all methods (Figure 3). In the top 20

predictive FC features for gender prediction (see Table 4), seven are

within the default mode network. Another seven FC features involve a

DMN ROI and the other six FC features were distributed between the

other five networks. The DMN has been shown to be related to many

different functions such as theory of mind (Spreng & Grady 2010),

social cognition (Mars et al. 2012), and episodic memory (Sestieri et al.

2011). Previous research has reported conflicting findings regarding

gender differences in the DMN with one study reporting females

exhibit stronger FC in posterior cingulate and precuneus regions as

well as medial prefrontal cortex (Bluhm et al. 2008) and others report-

ing no gender differences within the DMN (Weissman-Fogel et al.

2010).

Within the DMN we observed large FC feature weights which

were consistent across all three methods (Figure 4) in the right fusiform

gyrus and right ventromedial prefrontal cortex (VMPFC). The connec-

tivity pairs in these regions included connectivity between the right

fusiform and inferior temporal and occipital cortex, intraparietal sulcus,

posterior cingulate, precuneus, superior frontal, and ventromedial pre-

frontal cortex and connectivity between the right ventromedial pre-

frontal cortex, anterior prefrontal cortex, inferior temporal regions,

occipital cortex, posterior cingulate, and precuneus. The fusiform gyrus

is located in the inferior temporal lobe and contains the fusiform face

area which is responsible for face processing (Schultz et al. 2003).

Previous work has shown that women and men exhibit differences

in their ability to remember faces with women often outperforming
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men (Herlitz & Lov�en 2013). Additionally, the lateralization in this

region has also been shown to differ based on gender; men exhibit

more rightward lateralized face processing while women exhibit more

bilateral function (Proverbio et al. 2006). In the VMPFC it has been

reported that men and women exhibit differences in lateralization as

well with men exhibiting social, emotional, and decision making deficits

following lesions in the right VMPFC but not when the left VMPFC

was involved. The opposite finding was found in women (Tranel et al.

2005). Taken together, previous research supports the findings of this

article. Connectivity measures with high feature weights in these

regions may be important for understanding the aforementioned gen-

der differences in cognition and social cognitive abilities which have

been reported previously. Finally, the fusiform gyrus has been impli-

cated in autism spectrum disorder (ASD) (Trontel et al. 2013), which

has a 4:1 propensity towards males. Applying the approaches described

this article in children and individuals with ASD will help determine if

these gender differences are present early in life, prior to puberty, and

whether the FC differences, especially in inferior temporal and DMN

regions, also extend to those with ASD.

While the DMN demonstrated a prominent role in gender predic-

tion, there were also other networks that reported higher contribu-

tions. It is hard to distinguish the brain regions with more important FC

features for gender prediction based on the distribution of feature

weight plot (Figure 3) as the significant FC features were scattered

across the brain. These widespread distribution of FC features were

also found in our previous study for those with highly significant gen-

der differences (Zhang et al. 2016). However, the bar plots for the

average feature weight on the network level (Figure 3) identified two

other sets of intra-network FC features: frontal-parietal and sensorimo-

tor. These two networks demonstrated higher feature weights for gen-

der classification. In our previous work Zhang et al. (2016), most FCs

within the frontal and parietal lobes were significantly different

between males and females. Presence of higher average feature

weights in the frontal-parietal network may demonstrate a gender dif-

ference related to aspects of attention such as error adaptation (Dos-

enbach et al. 2007), working memory (Hill et al. 2014) and attentional

control (Scolari et al. 2015). As for the sensorimotor network which is

responsible for integrating sensory and motor information, reliable gen-

der difference with increased FC has been previously reported (FC in

male> female) (Weis et al. 2017). Well established gender differences

in spatial processing and sensorimotor speed (Ingalhalikar et al. 2014;

Linn & Petersen 1985) may be associated with the FC differences in

the sensorimotor network. Moreover, lower performance in spatial

processing in patients with ASD have also been linked to the sensori-

motor regions (Silk et al. 2006) and thus gender differences within the

sensorimotor network may be associated with gender differences in

the prevalence of ASD.

5 | L IMITATIONS

In this work, FC between ROIs was computed using Pearson’s correla-

tion between the average time series of all voxels that fall within the

ROI. Data indicates that time series within an ROI can be heterogene-

ous and taking the average time series can cancel out important infor-

mation. Further, the Pearson’s correlation is a second-order statistic

and can miss higher-order interactions. In this work, we have not

addressed the issues of heterogeneity and higher-order interactions

and we intend to address this limitation in future work. In this work we

show that FC, as defined by Pearson’s correlation, a reliable second

order statistic, between the average time series of the ROIs can predict

gender at a high accuracy.

6 | CONCLUSIONS

Utilizing partial least squares regression techniques, gender classifica-

tion based on rfMRI FC data was implemented with a high classification

accuracy around 80% for individual runs. By combining multiple runs of

rfMRI the classification accuracy increased to 85%. Further, we report

that intra-network connectivity in the DMN exhibited the greatest

importance for gender discrimination. In particular, FC pairs within the

DMN containing the right fusiform gyrus and right VMPFC exhibited

large FC feature weights. Permutation tests, consistent findings across

different implementation schemes, and correspondence between FC

feature weights and previous reports of gender differences, demon-

strate the reliability of gender prediction using rfMRI FC. These find-

ings hold important implications for future studies. A complete

characterization of gender differences is essential to accurately charac-

terize cognitive and behavioral phenotypes and their neural substrates.

This study provides further support for the existence of gender differ-

ences in brain connectivity and thus points to the need for studies

examining brain structure and function to carefully account for gender.
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