
Functional Correctness of C
Implementations of Dijkstra’s, Kruskal’s,

and Prim’s Algorithms

Anshuman Mohan(B), Wei Xiang Leow,
and Aquinas Hobor

School of Computing, National University of Singapore,
Singapore, Republic of Singapore

amohan@cs.cornell.edu

Abstract. We develop machine-checked verifications of the full func-
tional correctness of C implementations of the eponymous graph algo-
rithms of Dijkstra, Kruskal, and Prim. We extend Wang et al.’s Cer-
tiGraph platform to reason about labels on edges, undirected graphs,
and common spatial representations of edge-labeled graphs such as adja-
cency matrices and edge lists. We certify binary heaps, including Floyd’s
bottom-up heap construction, heapsort, and increase/decrease priority.

Our verifications uncover subtle overflows implicit in standard text-
book code, including a nontrivial bound on edge weights necessary to
execute Dijkstra’s algorithm; we show that the intuitive guess fails and
provide a workable refinement. We observe that the common notion that
Prim’s algorithm requires a connected graph is wrong: we verify that
a standard textbook implementation of Prim’s algorithm can compute
minimum spanning forests without finding components first. Our verifi-
cation of Kruskal’s algorithm reasons about two graphs simultaneously:
the undirected graph undergoing MSF construction, and the directed
graph representing the forest inside union-find. Our binary heap verifi-
cation exposes precise bounds for the heap to operate correctly, avoids a
subtle overflow error, and shows how to recycle keys to avoid overflow.

Keywords: Separation logic · Graph algorithms · Coq · VST

1 Introduction

Dijkstra’s eponymous shortest-path algorithm [22] finds the cost-minimal paths
from a distinguished source vertex to all reachable vertices in a directed graph.
Prim’s [61] and Kruskal’s [42] algorithms return minimal spanning trees for undi-
rected graphs. Binary heaps are the first priority queue one typically encoun-
ters. These algorithms/structures are classic and ubiquitous, appearing widely
in textbooks [20,33,36,65,66,68] and in real routing protocol libraries.

In addition to decades of use and textbook analysis, recent efforts have ver-
ified one or more of these algorithms in proof assistants and formally proved
c© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.): CAV 2021, LNCS 12760, pp. 801–826, 2021.
https://doi.org/10.1007/978-3-030-81688-9_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81688-9_37&domain=pdf
https://doi.org/10.1007/978-3-030-81688-9_37

802 A. Mohan et al.

claims about their behavior [12,15,30,45,53]. A reasonable person might think
that all that can be said, has been. However, we have found that textbook code
glosses over a cornucopia of issues that routinely crop up in real-world settings:
under/overflows, integration with performant data structures, manual memory
(de-)allocation, error handling, casts, memory alignment, etc. Further, previous
verification efforts with formal checkers often operate within idealized formal
environments, which likewise leads them to ignore the same kinds of issues.

In our work, we provide C implementations of each of these algorithms/data
structures, and prove in Coq [71] the functional correctness of the same with
respect to the formal semantics of CompCert C [50]. By “functional correctness”
we mean natural algorithmic specifications; we do not prove resource bounds.
Although our C code is developed from standard textbooks, we uncover several
subtleties that are absent from the algorithmic and formal methods literature:

§3.2 an overflow in Dijkstra’s algorithm, avoiding which requires a nontrivial
refinement to the algorithm’s precondition to bound edge weights;

§4.2 that the specification of Prim’s algorithm can be improved to apply to
disconnected graphs without any change to textbook (pseudo-)code;

§4.2 the presence of a wholly unneeded line of (pseduo-)code in Prim’s algo-
rithm, and an associated unneeded function argument;

§5 several potential overflows in binary heaps equipped with Floyd’s linear-
time build-heap function and an edit-priority operation.

We wish to develop general and reusable techniques for verifying graph-
manipulating programs written in real programming languages. This is a sig-
nificant challenge, and so we choose to leverage and/or extend three large exist-
ing proof developments to state and prove the full functional correctness of our
code in Coq: CompCert; the Verified Software Toolchain [4] (VST) separation
logic [59] deductive verifier; and our own previous efforts [73], hereafter dubbed
the CertiGraph project. Our primary extensions are to the third, and include:

§2.1 pure/abstract reasoning for graphs with edge labels, (e.g., a distinguished
edge-label value for “infinity” that indicates invalid/absent edges);

§2.2 spatial representations and associated reasoning for edge-labeled graphs
(several flavors of adjacency matrices as well as edge lists);

§2.3 pure reasoning for undirected graphs (e.g., notions of connectedness).

We prove that our pure machinery and our spatial machinery are well-isolated
from each other by verifying several implementations (of each of Dijkstra and
Prim) that represent graphs differently in memory but reuse the entire pure
portion of the proof. Likewise, we show that our spatial reasoning is generic
by reusing graph representations across Dijkstra and Prim. Our verification of
Kruskal proves that we can reason about two graphs simultaneously: a directed
graph with vertex labels for union-find and an undirected graph with edge labels
for which we are building a spanning forest. In addition to our verification of

Functional Correctness of Dijkstra’s, Kruskal’s, and Prim’s Algorithms 803

Dijkstra, Prim, and Kruskal, we develop increased lemma support for the preex-
isting CertiGraph union-find example [73]. Our extension to “base VST” (e.g.,
verifications without graphs) primarily consists of our verified binary heap.

The remainder of this paper is organized as follows:

§2 We explain our extensions to CertiGraph: edge-labeled graphs, spatial rep-
resentations of such graphs, and undirected graphs.

§3 We explain our verification of Dijkstra’s algorithm in some detail, discuss
a potential overflow, and refine the precondition to avoid it.

§4 We overview our verifications of the Minimum Spanning Tree/Forest algo-
rithms of Prim and Kruskal, focusing on high-level points such as our
improved novel specification of Prim’s.

§5 We overview our verification of binary heaps, including a discussion of
Floyd’s bottom-up heap construction and the edit priority operation.

§6 We briefly discuss engineering, e.g. statistics for our formal development.
§7 We discuss related work, outline future research directions, and conclude.

Our results are completely machine-checked in Coq and publicly available [1].

2 Extensions to CertiGraph

We begin with the briefest of introductions to CertiGraph’s core structure and
then detail the extensions we make to various levels of CertiGraph in service of
our Dijkstra, Prim, and Kruskal verifications. Ignoring modularity and eliding
elements not used in this work, a mathematical graph in CertiGraph is a tuple:
(V, E , vvalid, evalid, src, dst, vlabel, elabel, sound). Here V/E are the car-
rier types of vertices/edges, vvalid/evalid place restrictions specifying whether
a vertex/edge is valid1, and src/dst : E → V map edges to their source/des-
tination. Labels are allowed on vertices and edges, and a soundness condition
allows custom application-specific restrictions [73]. Mathematical graphs connect
to graphs in computer memory via spatial predicates in separation logic.

2.1 Pure Reasoning for Adjacency Matrix-Represented Graphs

Two of our algorithms operate over graphs represented as adjacency matrices.
Not every legal graph can be represented as an adjacency matrix, so we develop a
unified, reusable, and extendable soundness condition SoundAdjMat that a graph
must satisfy in order for it to be represented as an adjacency matrix.

SoundAdjMat is parameterized by the graph’s size and a distinguished
number inf. We restrict most fields in the tuple: (V = Z, E = Z × Z,
vvalid = λv. 0 ≤ v < size, evalid = . . ., src = fst , dst = snd , vlabel,
elabel, sound = . . .). We also restrict the carrier type of vertex labels to unit

1 Validity denotes presence in the graph: e.g., if we are using Z as the carrier type V,
and have only 7 vertices, then vvalid(x) is probably the proposition 0 ≤ x < 7).

804 A. Mohan et al.

and edge labels to Z. We require the parameters size and inf be strictly posi-
tive and representable on the machine. Most critical, however, is the semantics
of evalid: a valid edge must have a machine-representable label and that label
cannot have value inf; an invalid edge must have label inf. Last, the graph
must be finite.

The restriction on edge labels is necessary because we are working with
labeled adjacency matrices on a real system: we need to set aside a distinguished
number inf such that edgeweight inf indicates the absence of an edge. We can-
not prescribe some inf because client needs can vary widely. For instance, our
verifications of Dijkstra’s and Prim’s algorithms require subtly different infs.

SoundAdjMat guarantees spatial representability as an adjacency matrix,
but it can be extended with further algorithm-specific restrictions before being
plugged in for sound. Dijkstra’s algorithm requires nonnegative edge weights,
and—as we will discuss in §3.2—nontrivial restrictions on size and inf.

2.2 New Spatial Representations for Edge-Labeled Graphs

We give predicates for adjacency matrices and edge lists for edge-labeled graphs.

Adjacency Matrices. Adjacency matrices enable efficient label access for edge-
labeled graphs. We support three common adjacency matrix representations: a
stack-allocated 2D array int graph[size][size], a stack-allocated 1D array
int graph[size×size], and a heap-allocated 2D array int **graph. To the
casual observer, these are essentially interchangeable, but that is a mistake when
thinking spatially. Apart from the arithmetic that the second flavor uses to access
cells, there is a more subtle point: the first and second enjoy a contiguous block
of memory, but the third does not: it is an allocated “spine” with pointers to
separately-allocated rows. For a taste, the spatial representation of the first is:

arr addr(ptr , i , size) Δ= ptr + (i × size)
array(ptr , list) Δ= ∗

i∈[0,|list|)
(ptr + i) �→ list [i])

arr rep(γ, i , ptr) Δ= let row := graph2mat(γ)[i] in
array(arr addr(ptr , i , |row |), row)

graph rep(γ, g addr ,) Δ= ∗
v∈γ

arr rep(γ, v , g addr)

We use the separation logic ∗ in its iterated form to say that the arrays are
separate in memory. We elide details relating to object sizes, pointer alignment,
and so forth, although our formal proofs handle such matters. Of particular
note are graph2mat, which performs two projections to drag out the graph’s
nested edge labels into a 2D matrix, and arr addr , which in this instance simply
computes the address of any legal row i from the base address of the graph.
Notice that this graph rep predicate ignores its third argument. To represent a
heap-allocated 2D array we can still use graph2mat but can no longer use address
arithmetic; the third parameter is then a list of pointers to the row sub-arrays.

Functional Correctness of Dijkstra’s, Kruskal’s, and Prim’s Algorithms 805

While ironing out these spatial wrinkles, we develop utilities that easily
unfold and refold our adjacency matrices, thus smoothing user experience when
reading and writing arrays and cells. Of course these utilities themselves vary by
flavor of representation, but the net effect is that users of our adjacency matrices
really can be agnostic to the style of representation they are using (see §3.1).

Edge Lists. Edge lists are the representation of choice for sparse graphs. Our C
implementation defines an edge as a struct containing src, dst, and weight,
and defines a graph as a struct containing the graph’s size, edge count, and an
array of edges. Our spatial representation follows this pattern:

graph rep(γ, g addr ,e addr) Δ=
(
g addr �→ (|γ.V |, |γ.E|, e addr)

) ∗ array(e addr , γ.E)

2.3 Undirectedness in a Directed World

The CertiGraph library presented in [73] supports only directed graphs, and, as
we have seen, bakes direction-reliant idioms such as src and dst deep into its
development. Our challenge is to add support for undirected graphs atop of this.

Our approach is to observe that every directed graph can be treated as an
undirected graph by ignoring edge direction. We develop a lightweight layer of
“undirected flavored” definitions atop of the existing “directed flavored” defini-
tions, state and prove connections between these, and then build the undirected
infrastructure we need. The result is that we retain full access to CertiGraph’s
graph theory formalizations modulo some mathematical bridging.

Our basic “undirected flavored” definitions are standard [20]. Vertices u and v
are adjacent if there is an edge between them in either direction; vertices are
self-adjacent. A valid upath (undirected path) is list of valid vertices that form a
pairwise-adjacent chain. Two vertices are connected when a valid upath features
them as head and foot (essentially the transitive closure of adjacenct).

The definitions above sync up with preexisting “directed flavored” definitions.
Intuitively, undirectedness is more lax than directedness, and so it is unsurprising
that these connections are straightforward weakenings of directed properties. We
next give standard definitions [20] that culminate in minimum spanning forest,
which is exactly our postcondition of both Prim’s and Kruskal’s algorithms.2

An undirected cycle (ucycle) is a valid non-empty upath whose first and last
vertices are equal. A connected graph means that any two valid vertices are
connected. is partial graph f g means everything in f is in g. We proceed:

1 Definition uforest g :=

2 (∀ e, evalid g e → strong_evalid g e) ∧
3 (∀ p l, ¬ucycle g p l).

4 Definition spanning g g’ :=

5 ∀ u v, connected g u v ↔ connected g’ u v.

2 That Prim’s postcondition has a forest may raise an eyebrow. See §4.2.

806 A. Mohan et al.

6 Definition spanning_uforest f g :=

7 is_partial_graph f g ∧ uforest f ∧ spanning f g.

The strong evalid predicate means that the src and dst of the edge are also
valid, so e.g., a valid edge cannot point to a deleted/absent vertex. The second
conjunct of uforest is critical: a forest has no undirected cycles. The other
definitions are straightforward from there, and minimum spanning forest f g
means that no other spanning forest has lower total edge cost than f.

Our undirected work is also compatible with our new developments in §2.1
and §2.2. An adjacency matrix-representable undirected graph has all the pure
properties discussed in SoundAdjMat, and also has symmetry across the left
diagonal. We extend SoundAdjMat into SoundUAdjMat by requiring that all valid
edges have src ≤ dst. This effectively “turns off” the matrix on one half of the
diagonal and avoids double-counting. Prim’s algorithm uses SoundUAdjMat and
places no further restrictions. Further, spatial representations and fold/unfold
utilities are shared across directed and undirected adjacency matrices.

3 Shortest Path

We verify a standard C implementation of Dijkstra’s algorithm. We first sketch
our proof in some detail with an emphasis on our loop invariants, then uncover
and remedy a subtle overflow bug, and finish with a discussion of related work.

3.1 Verified Dijkstra’s Algorithm in C

Figure 1 shows the code and proof sketch of Dijkstra’s algorithm. Red text is
used in the figure to highlight changes compared to the annotation immediately
prior. Our code is implemented exactly as suggested by CLRS [20], so we refer
readers there for a general discussion of the algorithm. The adjacency-matrix-
represented graph γ of size vertices is passed as the parameter g along with the
source vertex src and two allocated arrays dist and prev. The spatial predicate
array(x,v), which connects an array pointer x with its contents v, is standard and
unexciting. PQ(pq, heap) is the spatial representation of our priority queue (PQ)
and Item(i, (key , pri , data)) lays out a struct that we use to interact with the PQ;
we leave the management of the PQ to the operations described in§ 5. Of greater
interest is AdjMat(g, γ), which as explained in §2.2, links the concrete memory
values of g to an abstract mathematical graph γ, which in turn exposes an
interface in the language of graph theory (e.g., vertices, edges, labels). Graph γ
contains the general adjacency matrix restrictions given in §2.1 along with some
further Dijkstra-specific restrictions to be explained in §3.2. We verify Dijkstra
three times using different adjacency-matrix representations as explained in §2.2.
Thanks to some careful engineering, the C code and the Coq verification are both
almost completely agnostic to the form of representation. The only variation
between implementations is when reading a cell (line 15), so we refactor this out
into a straightforward helper method and verify it separately; accordingly, the
proof bases for the three variants differ by less than 1%.

Functional Correctness of Dijkstra’s, Kruskal’s, and Prim’s Algorithms 807

1 void dijkstra (int **g, int src , int *dist ,

2 int *prev , int size , int inf {

3 //
{
AdjMat(g, γ) ∗ array(dist,) ∗ array(prev,) ∧ src ∈ γ ∧ connected(γ, src)

}
4 Item* temp = (Item*) mallocN(sizeof(Item));

5 int* keys = mallocN (size * sizeof (int));

6 PQ* pq = pq_make(size); int i, u, cost;

7 for (i = 0; i < size; i++)

8 { dist[i] = inf; prev[i] = inf; keys[i] = pq_push(pq,inf ,i); }

9 dist[src]= 0; prev[src]= src; pq_edit_priority(pq,keys[src],0);

10 while (pq_size(pq) > 0) {

11 //

⎧⎪⎪⎨
⎪⎪⎩

∃dist , prev , popped , heap. AdjMat(g, γ) ∗ PQ(pq, heap) ∗ Item(temp,) ∗
array(dist, dist) ∗ array(prev, prev) ∗ array(keys, keys) ∧
linked correctly(γ, heap, keys, dist , popped) ∧
dijk correct(γ, src, popped , prev , dist)

⎫⎪⎪⎬
⎪⎪⎭

12 pq_pop(pq, temp); u = temp ->data;

13 for (i = 0; i < size; i++) {

14 //

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∃dist ′, prev ′, heap′. AdjMat(g, γ) ∗ PQ(pq, heap′) ∗
array(dist, dist ′) ∗ array(prev, prev ′) ∗ array(keys, keys) ∗
Item(temp, (keys[u], dist[u], u)) ∧ min(dist[u], heap′) ∧
linked correctly(γ, heap′, keys, dist ′, popped � {u}) ∧
dijk correct weak(γ, src, popped � {u}, prev ′, dist ′, i, u)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

15 cost = getCell(g, u, i);

16 if (cost < inf) {

17 if (dist[i] > dist[u] + cost) {

18 dist[i] = dist[u] + cost; prev[i] = u;

19 pq_edit_priority(pq, keys[i], dist[i]);

20 }}}} //

⎧⎨
⎩

∃dist ′′, prev ′′. AdjMat(g, γ) ∗ PQ(pq, ∅) ∗ Item(temp,) ∗
array(dist, dist ′′) ∗ array(prev, prev ′′) ∗ array(keys, keys) ∧
∀dst . dst ∈ γ → inv popped(γ, src, γ.V , prev ′′, dist ′′, dst)

⎫⎬
⎭

21 freeN (temp); pq_free (pq); freeN (keys); return; }

Fig. 1. C code and proof sketch for Dijkstra’s algorithm.

Dijkstra’s algorithm uses a PQ to greedily choose the cheapest unoptimized
vertex on line 12. The best-known distances to vertices are expected to improve
as various edges are relaxed, and such improvements need to be logged in the
PQ: Dijkstra’s algorithm implicitly assumes that its PQ supports the additional
operation decrease priority. Our “advanced” PQ (§5.3) supports this opera-
tion in logarithmic time with the pq edit priority function3.

The first nine lines are standard setup. The keys array, assigned on line 8,
is thereafter a mathematical constant. The pure predicate linked correctly con-
tains the plumbing connecting the various mathematical arrays. The verifica-
tion turns on the loop invariants on lines 11 and 14. The pure while invariant

3 Because decrease priority is relatively complex to implement, several popular
workarounds (e.g. [12]) use simpler PQs at the cost of decreased performance.

808 A. Mohan et al.

dijk correct(γ, src, popped , prev , dist) essentially unfolds into:

∀dst . dst ∈ γ → inv popped(γ, src, popped , prev , dist , dst) ∧
inv unpopped(γ, src, popped , prev , dist , dst) ∧
inv unseen(γ, src, popped , prev , dist , dst)

That is, a destination vertex dst falls into one of three categories:

1. inv popped : if dst ∈ popped , then dst has been fully processed, i.e., dst is
reachable from src via a globally-optimal path p whose vertices are all in
popped . Path p has been logged in prev and p’s cost is given in dist .

2. inv unpopped : if dst 	∈ popped , but its known distance is less than inf, then
dst is reachable in one step from a popped vertex mom. This route is locally
optimal: we cannot improve the cost via an alternate popped vertex. More-
over, prev logs mom as the best-known way to reach dst , and dist logs the
path cost via mom as the best-known cost.

3. inv unseen: if dst 	∈ popped and its known distance is inf, then there is no
edge from any popped vertex to dst ; in other words, dst is located deeper in
the graph than has yet been explored.

After line 12, the above invariant is no longer true: a minimum-cost item u has
been popped from the PQ, and so the dist and prev arrays need to be updated to
account for this pop. The for loop does exactly this repair work. Its pure invari-
ant dijk correct weak(γ, src, popped , prev , dist , u, i) essentially unfolds into:
(∀dst . dst ∈ γ → inv popped(γ, src, popped , prev , dist , dst)

) ∧(∀dst . 0 ≤ dst < i → inv unpopped(γ, src, popped , prev , dist , dst) ∧
inv unseen(γ, src, popped , prev , dist , dst)

) ∧(∀dst . i ≤ dst < size → inv unpopped weak(γ, src, popped , prev , dist , dst , u) ∧
inv unseen weak(γ, src, popped , prev , dist , dst , u)

)

We now have five cases, many of which are familiar from dijk correct :

1. inv popped : as before; if dst ∈ popped , then it has been fully processed.
For all “previously-popped vertices” (i.e., except for u), this is trivial from
dijk correct . For u itself, we reach the heart of Dijkstra’s correctness: the
locally-optimal path to the cheapest unpopped vertex is globally optimal.

2. inv unpopped (less than i): as before; if dst is reachable in one hop from a
popped vertex mom, where now mom could be u. Initially this is trivial since
i = 0, and we restore it as i increments by updating costs when they can be
improved, as on lines 18 and 19.

3. inv unseen (less than i): as before; some previously unseen neighbors of u
may be transferred to unpopped status. This is also restored as i increments.

4. inv unpopped weak (between i and size): if dst is reachable in one hop from
a previously-popped vertex mom, with potentially further improvements pos-
sible via u. As i increments, we strengthen it into inv unpopped after consid-
ering whether routing via u improves the best-known cost to dst .

Functional Correctness of Dijkstra’s, Kruskal’s, and Prim’s Algorithms 809

5. inv unseen weak (between i and size): no edge exists from any previously-
popped vertex to dst , but there may be one from u. As i increments, we
consider whether routing via u reveals a path to dst . This is strengthened
into inv unpopped if so, and into inv unseen if not.

At the end of the for loop the fourth and fifth cases fall away (i = size), and
the PQ and the dist and prev arrays finish “catching up” to the pop on line 12.
This allows us to infer the while invariant dijk correct , and thus continue the
while loop. The while loop itself breaks when all vertices have been popped and
processed. The second and third clauses of the while loop invariant dijk correct
then fall away, as seen on line 20: all vertices satisfy inv popped , and are either
optimally reachable or altogether unreachable. We are done.

3.2 Overflow in Dijkstra’s Algorithm

Dijkstra’s algorithm clearly cannot work when a path cost is more than INT MAX.
A reasonable-looking restriction is to bound edge costs by

⌊
INT MAX
size−1

⌋
, since the

longest optimal path has size−1 links and so the most expensive possible path
costs no more than INT MAX. However, this has two flaws.

First, since we are writing real code in C, rather than pseudocode in an
idealized setting, we must reserve some concrete int value inf for “infinity”.
Suppose we set inf = INT MAX, and that size − 1 divides INT MAX. Now the
longest path can have cost (size − 1) ·

⌊
INT MAX
size−1

⌋
= INT MAX = inf. This creates

an unpleasant ambiguity: we cannot tell if the farthest vertex is unreachable, or
if it is reachable with legitimate cost INT MAX. We need to adjust our maximum
edge weights to leave room for inf; using

⌊
INT MAX−1
size−1

⌋
solves this first issue.

Second, even though the best-known distances start at inf (see line 8) and
only ever decrease from there, the code can overflow on lines 17 and 18. Consider
applying Dijkstra’s algorithm on a 32-bit unsigned machine to the graph in
Fig. 2. The size of the graph is 3 nodes, and the proposed edge-weight upper
bound is

⌊
INT MAX−1
size−1

⌋
=

⌊
(232−1)−1

3−1

⌋
= 231 − 1, for example as in the graph

pictured in Fig. 2. A glance at the figure shows that the true distance from the
source A to vertices B and C are 231−1 and 232−2 respectively. Both values are
representable with 32 bits, and neither distance is inf = 232 − 1, so näıvely all
seems well. Unfortunately, Dijkstra’s algorithm does not exactly work like that.

After processing vertices A and B, 231 − 1 and 232 − 2 are the costs reflected
in the dist array for B and C respectively—but unfortunately vertex C is still in
the priority queue. After vertex C is popped on line 12, we fetch its neighbors in
the for loop; the cost from C to B (231 − 1) is fetched on line 15. On line 17 the
currently optimal cost to B (231 − 1) is compared with the sum of the optimal
cost to C (232 − 2) plus the just-retrieved cost of the edge from C to B (231 − 1).
Näıvely, (232 − 2) + (231 − 1) is greater than the currently optimal cost 231 − 1,
so the algorithm should stick with the latter. However, (232 − 2) + (231 − 1)
overflows, with

(
(232 − 2) + (231 − 1)

)
mod 232 = 231 − 3, which is less than

810 A. Mohan et al.

A B C231 − 1 231 − 1

231 − 1

Fig. 2. A graph that will result in overflow on a 32-bit machine.

231 − 1! Thus the code decides that a new cheaper path from A to B exists (in
particular, A�B�C�B) and then trashes the dist and prev arrays on line 18.

Our code uses signed int rather than unsigned int so we have undefined
behavior rather than defined-but-wrong behavior, but the essence of the overflow
is identical. We ensure that the “probing edge” does not overflow by restricting
the maximum edge cost further, from

⌊
INT MAX−1
size−1

⌋
to

⌊
INT MAX
size

⌋
. In Fig. 2, edge

weights should be bounded by
⌊
232−1

3

⌋
= 1,431,655,765; call this value w. Sup-

pose we change the edge weights in Fig. 2 from 231 − 1 to w. Now vertex B has
distance w and C has distance 2 ·w. When we remove C from the priority queue,
the comparison on line 17 is between the known best cost to B (i.e., w) and the
candidate best cost to B via C (i.e., 3 · w = 232 − 1 = INT MAX). There is no
overflow, so the candidate is rejected and the code behaves as advertised.

We fold these new restrictions into the mathematical graph γ. In addition
to the bounds discussed above, we require a few other more straightforward
bounds: edge costs be non-negative, as is typical for Dijkstra; 4·size ≤ INT MAX,
to ensure that the multiplication in the malloc on line 5 does not overflow;
and that

⌊
INT MAX
size

⌋ · (size − 1) < inf, so no valid path has cost inf. These
bounds are optimal: if the input is any less restricted, the postcondition will fail.
The last restriction on inf is not sufficient when size = 1, so in that special
case we further require that any (self-loop) edges cost less than inf. Whenever
0 < 4·size ≤ INT MAX, the restrictions on inf are satisfiable with inf

Δ=INT MAX.

3.3 Related Work on Dijkstra in Algorithms and Formal Methods

We were not able to find a reference that gives a robust, precise, and full descrip-
tion of the overflow issue we describe above. Dijkstra’s original paper [22] ignores
the issue, as do the standard textbooks Introduction to Algorithms (a.k.a. CLRS)
by Cormen et al. [20] and Algorithm Design by Kleinberg and Tardos [38].
Sedgewick’s book on graph algorithms in C [66] sidesteps the overflow in line 17
by requiring weights be in double, which does have a well-defined positive infin-
ity value and cannot overflow in the traditional sense; Sedgewick and Wayne’s
Algorithms textbook in Java does the same [67]. However, Sedgewick’s sidestep
entails enduring the inevitable round-off intrinsic to floating-point arithmetic,
and so his algorithm computes approximate optimal costs rather than exact ones.
Sedgewick does not specify any bounds on input edge weights, and accordingly
does not (and cannot) provide any bound on this accumulated error. Sedgewick
is silent on how to handle an int-weighted input graph. Skiena’s Algorithm

Functional Correctness of Dijkstra’s, Kruskal’s, and Prim’s Algorithms 811

Design Manual [68] contains code with exactly the bug we identify: he uses inte-
ger weights and does not specify any bounds. To its credit, Heineman et al.’s
Algorithms in a Nutshell [33] takes int edge weights as inputs and mentions
overflow as a possibility. Heineman et al. hustle their way around this overflow
by performing the arithmetic in line 17 in long. However, this cast does not
really handle the problem in a fundamental way: if edge weights are given in
long rather than int, then it would be necessary to cast to long long; if edge
weights are given in long long, then Heineman’s hustle breaks as there is no big-
ger type to which to cast. Moreover, Heineman et al. do not bound edge weights,
so when the cumulative edge weights are too high their code fails silently.

Chen verified Dijkstra in Mizar [15], Gordon et al. formalized the reachability
property in HOL [29], Moore and Zhang verified it in ACL2 [53], Mange and
Kuhn verified it in Jahob [52], Filliâtre in Why3 [25], and Klasen verified it in
KeY [37]. Liu et al. took an alternative SMT-based approach to verify a Java
implementation of Dijkstra [51]. The most recent effort (2019) is by Lammich et
al., working within Isabelle/HOL, although they only return the weight of the
shortest path rather than the path itself [45]. In general the previous mechanized
proofs on Dijkstra verify code defined within idealized formal environments, e.g.
with unbounded integers rather than machine ints and a distinguished non-
integer value for infinity. No previous work mentions the overflow we uncover.

4 Minimum Spanning Trees

Here we discuss our verifications of the classic MST algorithms Prim and
Kruskal. Although our machine-checked proofs are about real C code, in this
section we take a higher-level approach than we did in §3, focusing on our
key algorithmic findings and overall experience. Accordingly, we only provide
pseudocode for Prim’s algorithm rather than a decorated program and do not
show any code for Kruskal’s. Our development contains our C code and formal
proofs [1].

4.1 Prim’s Algorithm

We put the pseudocode for Prim’s algorithm in Fig. 3; the code on the left-hand
side is directly from CLRS, whereas the code on the right omits line 5 and will
be discussed in §4.2. Note that line 12 contains an implicit call to the PQ’s
edit priority. Since the pseudocode only compares keys (i.e., edge weights)
rather than doing arithmetic on them à la Dijkstra, there are no potential over-
flows and it is reasonable to set INF to INT MAX in C.

Indeed, our initial verifications of C code were largely “turning the crank”
once we had the definitions and associated lemma support for pure/abstract
undirected graphs, forests, etc. discussed in §2.3. Accordingly, our initial con-
tribution was a demonstration that this new graph machinery was sufficient
to verify real code. We also proved that our extensions to CertiGraph from §2
were generic rather than verification-specific by reusing much pure and spatial
reasoning that had been originally developed for our verification of Dijkstra.

812 A. Mohan et al.

Fig. 3. Left: Prim’s algorithm from CLRS [20]. Right: the same omitting line 5.

4.2 Prim’s Algorithm Handles Multiple Components Out
of the Box

Textbook discussions of Prim’s algorithm are usually limited to single-component
input graphs (a.k.a. connected graphs), producing a minimum spanning tree. It
is widely believed that Prim’s is not directly applicable to graphs with multiple
components, which should produce a minimum spanning forest. For example,
both Rozen [65] and Sedgewick et al. [66,67] leave the extension to multiple
components as a formal exercise for the reader, whereas Kepner and Gilbert
suggest that multiple-component graphs should be handled by first finding the
components and then running Prim on each component [36].

After we completed our initial verification, a close examination of our formal
invariants showed us that the algorithm exactly as given by standard textbooks
will properly handle multi-component graphs in a single run. The confusion
starts because, in a fully connected graph, any vertex u removed from the PQ
on line 8 must have u.key < INF; i.e., u must be immediately reachable from
the spanning tree that is in the process of being built. However, nothing in the
code relies upon this connectedness fact! All we need is that u is the “closest
vertex” to the “current component.” If u.key = INF and u is a minimum of the
PQ, then it simply means that the “previous component” is done, and we have
started spanning tree construction on a new unconnected component “rooted”
at u, yielding a forest. The node u’s parent will remain NIL, at it was after the
setup loop on line 4, indicating that it is the root of a spanning tree. Its key will
be INF rather than 0, but the keys are internal to Prim’s algorithm: clients only
get back the spanning forest as encoded in the parent pointers4.

Having made this discovery, we updated our proofs to support the new weaker
precondition, which is what we currently formally verify in Coq [71]. A little fur-
ther thought led to the realization that since Prim can handle arbitrary numbers

4 The keys simply record the edge-weight connecting a vertex to its candidate parent;
recall that line 12 is really a call to the PQ’s edit priority. If a client wishes to
know this edge weight, it can simply look up the edge in the graph.

Functional Correctness of Dijkstra’s, Kruskal’s, and Prim’s Algorithms 813

of components, the initialization of the root’s key in line 5 is in fact unneces-
sary. Accordingly, if we remove this line and the associated function argument
r from MST-PRIM (i.e., the code on the right half of Fig. 3), the algorithm still
works correctly. Moreover, the program invariants become simpler because we
no longer need to treat a specified vertex (r) in a distinguished manner. Our
formal development verifies this version of the algorithm as well [1].

4.3 Related Work on Prim in Algorithms and Formal Methods

Prim’s algorithm was in fact first developed by the Czech mathematician Vojtěch
Jarńık in 1930 [35] before being rediscovered by Robert Prim in 1957 [61] and a
third time by Edsger W. Dijkstra in 1959 [22]. Both Prim’s and Dijkstra’s treat-
ment explicitly assumes a connected graph; although we cannot read Czech, some
time with Google translate suggests that Jarńık’s treatment probably does the
same. The textbooks we surveyed [20,36,38,65–68] seem to derive from Prim’s
and/or Dijkstra’s treatment. More casual references such as Wikipedia [3] and
innumerable lecture slides are presumably derived from the textbooks cited. We
have not found any references that state that Prim’s algorithm without modi-
fication applies to multi-component graphs, even when executable code is pro-
vided: e.g., Heineman et al. provide C++ code that aligns closely with our
C code [33], but do not mention that their code works equally well on multi-
component graphs. Sadly, many sources promulgate the false proposition that
modifications to the algorithm are needed to handle multi-component graphs
(e.g., [3,36,65–67]). Likewise, we have found no reference that removes the ini-
tialization step (line 5 in Fig. 3) from the standard algorithm.

Prim’s algorithm has been the focus of a few previous formalization efforts.
Guttman formalised and proved the correctness of Prim’s algorithm using Stone-
Kleene relation algebras in Isabelle/HOL [30]. He works in an idealized formal
environment that does not require the development of explicit data structures;
his code does not appear to be executable. Lammich et al. provided a verification
of Prim’s algorithm [45]. Lammich et al. also work within the idealized formal
environment of Isabelle/HOL, but, in contrast to Guttman, develop efficient
purely functional data structures and extract them to executable code. Both
Guttman and Lammich explicitly require that the input graph be connected.

4.4 Kruskal’s Algorithm

Although Kruskal’s algorithm is sometimes presented as taking connected graphs
and producing spanning trees, the literature also discusses the more general
case of multi-component input graphs and spanning forests. However, Kruskal
has only recently been the focus of formal verification efforts, partly because it
relies on the notoriously difficult-to-verify union-find algorithm; fortunately, the
CertiGraph project has an existing fully-verified union-find implementation that
we can leverage [73]. Kruskal also requires a sorting function; we implemented
heapsort as explained in §5.2. Kruskal is optimized for compact representations
of sparse graphs, so the O(1) space cost of heapsort is a reasonable fit.

814 A. Mohan et al.

The primary interest of our verification of Kruskal is in our proof engineering.
Kruskal inputs graphs as edge lists rather than adjacency matrices. In addition
to requiring an addition to our spatial graph predicate menu, this means that
Kruskal’s input graphs can have multiple edges between a given pair of vertices
(i.e., a “multigraph”). Pleasingly, we can reuse most of the undirected graph
definitions (§2.3), demonstrating that they are generic and reusable.

Another challenge is integrating the pre-existing CertiGraph verification of
union-find. We are pleased to say that no change was required for CertiGraph’s
existing union-find definitions, lemmas, specifications and verification. Kruskal
actually manipulates two graphs simultaneously: a directed graph with vertex
labels (to store parent pointers and ranks) within union-find, and an undirected
multigraph with edge labels (for which the algorithm is constructing a spanning
forest). Beyond showing that CertiGraph was capable of this kind of systems-
integration challenge, we had to develop additional lemma support to bridge the
directed notion of “reachability,” used within the directed union-find graph to
the undirected notion of “connectedness,” used in the MSF graph (§2.3).

4.5 Related Work on Kruskal in Algorithms and Formal Methods

Joseph Kruskal published his algorithm in 1956 [42] and it has appeared in
numerous textbooks since (e.g., [20,38,66,68]). Kruskal’s algorithm is usually
preferred over Prim’s for sparse graphs, and is sometimes presented as “the
right choice” when confronted with multi-component graphs under the mistaken
assumption that Prim’s first requires a component-finding initial step.

Guttman generalized minimum spanning tree algorithms using Stone relation
algebras [31], and provided a proof of Kruskal’s algorithm formatted in said alge-
bras. Like in his work on Prim’s [30], Guttmann works within Isabelle/HOL and
does not include concrete data structures such as priority-queues and union-find,
instead capturing their action as equivalence relations in the underlying algebras.
In Guttmann’s Kruskal paper, he mentions that his Prim paper axiomatizes the
fact that “every finite graph has a minimum spanning forest,” which he is then
able to prove using his Kruskal algorithm. Interestingly, our Prim verification
needs the same fact, but we prove it directly.

In a similar vein, Haslbeck et al. verified Kruskal’s algorithm [32] by building
on Lammich et al.’s earlier work on Prim [45]. Like Lammich et al., Haslbeck et
al. work within Isabelle/HOL with a focus on purely functional data structures.

One of the stumbling blocks in verifying Kruskal’s algorithm is the need
to verify union-find. In addition to CertiGraph [73], two recent efforts to certify
union-find are by Charguéraud and Pottier, who also prove time complexity [14];
and by Filliâtre [26], whose proof benefits from a high degree of automation.

5 Verified Binary Heaps in C

A binary heap embeds a heap-ordered tree in an array and uses arithmetic on
indices to navigate between a parent and its left and right children [20]. In addi-
tion to providing the standard insert and remove-min/remove-max operations

Functional Correctness of Dijkstra’s, Kruskal’s, and Prim’s Algorithms 815

(depending on whether it is a min- or max-ordered heap) in logarithmic time,
binary heaps can by upgraded to support two nontrivial operations. First, Floyd’s
heapify function builds a binary heap from an unordered array in linear time,
and as a related upgrade, heapsort performs a worst-case linearithmic-time sort
using only constant additional space. Second, binary heaps can be upgraded to
support logarithmic-time decrease- and increase-priority operations, which
we generalize straightforwardly into edit priority.

Binary heaps are a good fit for our graph algorithms because Dijkstra’s
and Prim’s algorithms need to edit priorities, and a constant-space heapsort
is appropriate for the sparse edge-list-represented graphs typically targeted by
Kruskal’s. The C language has poor support for polymorphic higher-order func-
tions, and a binary heap that supports edit priority is half as fast as a binary
heap that does not. Accordingly, we implement binary heaps in C three times:

Name Heap order edit priority heapify Payload
basic min no yes void*
advanced min yes no int
Kruskal max no yes int, int (i.e., unboxed)

Priorities are of type int. The Kruskal-specific implementation is stripped down
to the bare minimum required to implement heapsort (e.g., it does not support
insert). We next overview these verifications in three parts: basic heap opera-
tions, heapify and heapsort operations, and the edit priority operation.

5.1 The Basic Heap Operations of Insertion and Min/Max-Removal

Because we are juggling three implementations, we take some care to factor
our verification to maximize reuse. First, each C implementation has its own
exchange and comparison functions that handle the nitty-gritty of the payload
and choose between a min or max heap. The following lines are from the “basic”
implementation, in which the “payload” (data field) is of type void*:

5 void exch(unsigned int j, unsigned int k, Item arr []) {

6 int priority = arr[j]. priority; void* data = arr[j].data;

7 arr[j]. priority = arr[k]. priority; arr[j]. data = arr[k].data;

8 arr[k]. priority = priority; arr[k]. data = data; }

9 int less(unsigned int j, unsigned int k, Item arr []) {

10 return (arr[j]. priority <= arr[k]. priority); }

These C functions are specified as refinements of Gallina functions that exchange
polymorphic data in lists and compare objects in an abstract preordered set; we
verify them in VST after a little irksome engineering. The payoff is that the key
heap operations, which, following Sedgewick [66], we call swim and sink, can
use identical C code (up to alpha renaming) in all three implementations:

11 void swim(unsigned int k, Item arr []) {

12 while (k > ROOT_IDX && less (k, PARENT(k), arr)) {

13 exch(k, PARENT(k), arr); k = PARENT(k); } }

14 void sink (unsigned int k, Item arr[], unsigned int available) {

816 A. Mohan et al.

15 while (LEFT_CHILD(k) < available) {

16 unsigned j = LEFT_CHILD(k);

17 if (j+1 < available && less(j+1, j, arr)) j++;

18 if (less(k, j, arr)) break; exch(k, j, arr); k = j; } }

These functions involve a number of complexities, both at the algorithms level
and at the semantics-of-C level. At the C level, there is the potential for a rather
subtle bug in the macros ROOT IDX, PARENT, etc. Abstractly, these are simple: the
root is in index 0; the children of x at roughly 2x and the parent at roughly x

2 ,
with ±1 as necessary. The danger is thinking that because the variables are
unsigned int, all arithmetic will occur in this domain; in fact we must force
the associated constants into unsigned int as well:

1 #define ROOT_IDX 0u

2 #define PARENT(x) (x-1u)/2u

3 #define LEFT_CHILD(x) (2u*x)+1u

4 #define RIGHT_CHILD(x) 2u*(x+1u)

A second C-semantics issue is the potential for overflow within LEFT CHILD and
RIGHT CHILD (as well as the increments on line 17), and underflow within the
PARENT macro (if x should ever be 0). To avoid this overflow, the precondi-
tion of sink requires that when k is in bounds (i.e., k < available), then
2 · (available−1) ≤ max unsigned. An edge case occurs when deleting the last
element from a heap (k = available); we then require 2 · k ≤ max unsigned.

At the algorithmic level, both the swim and sink functions involve nontrivial
loop invariants; sink is complicated by the further need to support Floyd’s
heapify, during which a large portion of the array is unordered. Accordingly,
we build Gallina models of both functions and show that they restore heap order
given a mostly-ordered input heap. There are two different versions of “mostly-
ordered”. Specifically, swim uses a “bottom-up” version:

5 Definition weak_heapOrdered2 (L : list A) (j : nat) : Prop :=

6 (∀ i b, i �= j → nth_error L i = Some b →
7 ∀ a, nth_error L (parent i) = Some a → a � b) ∧
8 (grandsOk L j root_idx).

whereas sink uses a “top-down” version:

9 Definition weak_heapOrdered_bounded (L:list A) (k:nat) (j:nat) :=

10 (∀ i a, i ≥ k → i �= j → nth_error L i = Some a →
11 (∀ b, nth_error L (left_child i) = Some b → a � b) ∧
12 (∀ c, nth_error L (right_child i) = Some c → a � c)) ∧
13 (grandsOk L j k).

The parameter j indicates a “hole”, at which the heap may not be heap-ordered;
grandsOk bridges this hole by ordering the parent and the children of j:

1 Definition grandsOk (L : list A) (j : nat) (k : nat) : Prop :=

2 j �= root_idx → parent j ≥ k →
3 ∀ gs bb , parent gs = j → nth_error L gs = Some bb →
4 ∀ a, nth_error L (parent j) = Some a → a � bb.

The parameter k is used to support Floyd’s heapify: it bounds the portion of
the list in which elements are heap-ordered (with the exception of j). The proofs

Functional Correctness of Dijkstra’s, Kruskal’s, and Prim’s Algorithms 817

that the Gallina swim and sink can restore (bounded) heap-orderedness involve a
number of edge cases, but given the above definitions go through. The invariants
of the C versions of swim and sink are stated via the associated Gallina versions,
thereby delegating all heap-ordering proofs to the Gallina versions.

The insertion and remove functions we verify are in fact “non-checking”
versions (insert nc and remove nc): their preconditions assume there is room
in the heap to add or an item in the heap to remove. In the context of Dijkstra
and Prim, these preconditions can be proven to hold. The associated verifications
involve a little separation logic hackery (specifically, to Frame away the “junk”
part of the heap-array from the “live” part), but are straightforward using VST.
We avoid the overflow issue in sink by bounding the maximum capacity of the
heap: 4 ≤ 12 · capacity ≤ max unsigned; the magic number 12 comes from the
size of the underlying data structure in C. We require users to prove this bound
on heap creation, and thereafter handle it under the hood.

5.2 Bottom-Up Heapify and Heapsort

Floyd’s bottom-up procedure for constructing a binary heap in linear time, and
using a binary heap to sort, are classics of the literature [20,66]. Happily, while
the asymptotic bound on heap construction is nontrivial, the implementations
of both are basically repeated calls to sink (and exchanges to remove the root):

19 void build_heap(Item arr[], unsigned int size) {

20 unsigned int start = PARENT(size);

21 while (1) { sink(start , arr , size);

22 if (start == 0) break; start --; } }

23 void heapsort_rev(Item* arr , unsigned int size) {

24 build_heap(arr ,size);

25 while (size > 1) { size --;

26 exch(ROOT_IDX , size , arr); sink(ROOT_IDX , arr , size); } }

Given that in §5.1 we already generalized the specification for sink to han-
dle a portion of the array being unordered, the verification of these functions
is straightforward. There is, however, the possibility of a subtle underflow on
line 20, in the case when building an empty heap (i.e., size = 0). In turn,
this means that heapsort rev as given above cannot sort empty lists; in our
“basic” implementation we strengthen the precondition accordingly, whereas
in our “Kruskal” implementation we add a line before 24 that returns when
size = 0. We use a max-heap for Kruskal because heapsort yields a reverse
sorted list.

5.3 Modifying an Element’s Priority

To support edit-priority, each live item is associated not only with its usual int
priority but also given a unique unsigned int “key”, generated during insert
and returned to the client. The binary heap internally maintains a secondary
array key table that maps each key to the current location of the associated

818 A. Mohan et al.

item within the primary heap array. The client calls edit priority by supplying
the key for the item that it wishes to modify, which the binary heap looks up in
the key table to locate the item in the heap array before calling sink or swim.
To keep everything linked together, the key table is modified during exchange.

To generate the keys on insert, we store a key field within each heap-item in
the main array. These keys are initialized to 0..(capacity − 1), and thereafter
are never modified other than when two cells are swapped during exchange. An
invariant can then be maintained that the keys from the “live” and “junk” parts
have no duplicates. On insertion, we “recycle” the key of the first “junk” item,
which is by the invariant known to be appropriately fresh.

5.4 Related Work on Binary Heaps in Algorithms and Formal
Methods

J. W. J. Williams published the binary heap data structure, along with heap-
sort, in June 1964 [28]. Floyd proposed his linear-time bottom-up method to
construct such heaps that December [27]. Since then, binary heaps, including
Floyd’s construction and heapsort, have become a staple of the introductory
data structure diet [20]. On the other hand, standard textbooks are surprisingly
vague on the implementation of edit priority [20,38,66], and completely silent
on the generation of fresh keys during insertion. Our method above of “recycling
keys” avoids a subtle overflow in a näıve approach, and does not appear in the
literature we examined. The näıve idea is to have a global counter starting at
0, which is then increased on each insert. Unfortunately, this is unsound: during
(very) long runs involving both insert and remove-min, this key counter will
overflow. Although overflow is defined in C for unsigned int, this overflow is
fatal algorithmically: multiple live items could be assigned the same key.

Binary heaps have been verified several times in the literature. They were
problem 2 of the VACID-0 benchmark [49], and solved in this regard as well
by the Why3 team [69]. These solutions did not implement bottom-up heap
construction or edit priority. Summers verified heapsort in Viper, again without
bottom-up heap construction [56]. Lammich verified Introsort, which includes a
heapsort subroutine [44]. Previous formal work ignores nitty-gritty C issues such
as the difference between signed and unsigned arithmetic. We believe we are the
first formally verified binary heap to support edit-priority.

6 Engineering Considerations

Verifying real code is meaningfully harder than verifying toy implementations.
On top of such challenges, verifying graph algorithms requires a significant
amount of mathematical machinery: there are many plausible ways to define
basic notions such as reachability, but not all of them can handle the challenges
of verifying real code [72]. Moreover, we would like our mathematical, spatial,
and verification machinery to be generic and reusable.

Functional Correctness of Dijkstra’s, Kruskal’s, and Prim’s Algorithms 819

All of the above suggests that it is important to work within existing for-
mal proof developments due a strong desire to not reinvent very large wheels
(the existing proof bases we work with contain hundreds of thousands of lines
of formal proof). We chose to work with the CompCert certified compiler [50];
the Verified Software Toolchain [4], which provides significant tactic support
for separation logic-based deductive verification of CompCert C programs; and
the CertiGraph framework [73], which provides much pure and spatial reason-
ing support for verifying graph-manipulating programs within VST. We did so
because these frameworks can handle the challenges of real code and because the
CertiGraph included several fully verified implementations of union-find that we
wished to reuse in our verification of Kruskal’s algorithm.

Modular formal proof development involves major software engineering chal-
lenges [64]. Accordingly, we took care factoring our extensions to CertiGraph into
generic and reusable pieces. This factoring allows us to reuse machinery between
verifications, including in the mathematical, spatial, and verification levels. So,
e.g., we share significant pure and spatial machinery between Dijkstra, Prim,
and Kruskal. Moreover, we maintain good separation between pure and spatial
reasoning. So, e.g., both our Dijkstra and Prim verifications can handle multiple
spatial variants of adjacency matrices without significant change.

On the other hand, working within existing developments involves some chal-
lenges, primarily in that some design decisions have been already made and are
hard to change. Moreover, our verifications tickled numerous bugs within VST,
including: overly-aggressive automatic entailment simplifying, poor error mes-
sages, improper handling of C structs, and performance issues. We have been
fortunate that the VST team has been willing to work with us to fix such bugs,
although some work still remains. Performance remains one area of focus: for
example, checking our verification of Kruskal with a 3.7 GHz processor and 32 gb
of memory takes more than 22 min even after all of the generic pure and spatial
reasoning has been checked, i.e. approximately 7 s per line of C code (includ-
ing whitespace and comments). This performance is unviable for verifying an
industrial-sized application of equivalent difficulty: e.g., it would take 13 years
for Coq to check the proof for 1,000,000 lines of C. Before some optimizations
to our proof structure, the time was significantly longer still.

Our contributions to CertiGraph include pieces that are reused repeatedly
and pieces that are more bespoke. Below, we give a sense of both the size of our
development (lines of formal Coq proof) and the mileage we get out of our own
work via reuse. Items “added with +” are very similar (within 1%) of each other;
Prim #4 is the version that does not set the root, i.e. on the right in Fig. 3.

820 A. Mohan et al.

Name Used LoC
MathAdjMat 7x 165
Undirected 5x 2,139
MathUAdjMat 4x 1,024
SpaceAdjMat1+2+3 7x 499
EdgeListGraph 1x 911
MathDijkGraph 3x 165
DijkPureProof 3x 2,124
UndirectedUF 1x 183
BinaryHeapModel 1x 1,870
Total (pure/spatial) 9,080

Name LoC
DijkSpec1+2+3 301
VerifDijk1+2+3 3,554
PrimSpec1+2+3+4 508
VerifPrim1+2+3+4 7,455
KruskalSpec 302
VerifKruskal 1,606
VerifHeapSort 568
VerifBasicBinaryHeap 777
VerifAdvBinaryHeap 2,253
Total (verifications) 17,234

In total we have 26,314 novel lines of Coq proof to verify 1,155 lines of C code
divided among 12 files, including 3 variants of Dijkstra, 4 variants of Prim, 1 of
Kruskal (which includes its heapsort), and 2 binary heaps.

7 Concluding Thoughts: Related and Future Work

We have already discussed work directly related to Dijkstra’s (§3.3), Prim’s
(§4.3), and Kruskal’s (§4.5) algorithms, as well as binary heaps (§5.4). Summa-
rizing briefly to the point of unreasonableness, our observations about Dijkstra’s
overflow and Prim’s specification are novel, and existing formal proofs focus on
code working within idealized environments rather than handling the real-world
considerations that we do. We have also discussed the three formal developments
we build upon and extend: CompCert, VST, and CertiGraph (Sect. 6). Our goal
now is to discuss mechanized graph reasoning and verification more broadly.

Reasoning About Mathematical Graphs. There is a 30+ year history of mech-
anizing graph theory, beginning at least with Wong [74] and Chou [19] and
continuing to the present day; Wang discusses many such efforts [72, §3.3]. The
two abstract frameworks that seem closest to ours are those by Noschinski [58];
and by Lammich and Nipkow [45]. The latter is particularly related to our work,
because they too start with a directed graph library and must extend it to handle
undirected graphs so that they can verify Prim’s algorithm.

More-Automated Verification. Broadly speaking, mechanized verification of soft-
ware falls in a spectrum between more-automated-but-less-precise verifications
and less-automated-but-more-precise verifications. Although VST contains some
automation, we fall within the latter camp. In the former camp, landmark ini-
tial separation logic [63] tools such as Smallfoot [7] have grown into Facebook’s
industrial-strength Infer [11]. Other notable relatively-automated separation
logic-based tools include HIP/SLEEK [17], Bedrock [18], KIV [24], VerCors [9],

Functional Correctness of Dijkstra’s, Kruskal’s, and Prim’s Algorithms 821

and Viper [57]. More-automated solutions that use techniques other than sepa-
ration logic include Boogie [6], Blast [8], Dafny [48], and KeY [2]. In Sect. 3.3
we discuss how some of these more-automated approaches have been applied to
verify Dijkstra’s algorithm. Petrank and Hawblitzel’s Boogie-based verification
of a garbage collector [60], Bubel’s KeY-based verification of the Schorr-Waite
algorithm, and Chen et al.’s Tarjan’s strongly connected components algorithm
in (among others) Why3 [16] are three examples of more-automated verifica-
tion of graph algorithms. Müller verified binomial (not binary) heaps in Viper,
although his implementation did not support an edit-priority function [55]. The
VOCAL project has verified a number of data structures, including binary and
other heaps (all without edit-priority) and union-find [13].

We are not confident that more-automated tools would be able to repli-
cate our work easily. We prove full functional correctness, whereas many more-
automated tools prove only more limited properties. Moreover, our full functional
correctness results rely upon a meaningful amount of domain-specific knowledge
about graphs, which automated tools usually lack. Even if we restrict ourselves
to more limited domains such as overflows, several more automated efforts did
not uncover the overflow that we described in Sect. 3.3. The proof that certain
bounds on edge weights and inf suffice depends on an intimate understanding of
Dijkstra’s algorithm (in particular, that it explores one edge beyond the optimum
paths); overall the problem seems challenging in highly-automated settings. The
more powerful specification we discover for Prim’s algorithm in Sect. 4.2 is like-
wise not something a tool is likely to discover: human insight appears necessary,
at least given the current state of machine learning techniques.

In contrast, several of the potential overflows in our binary heap might
be uncovered by more-automated approaches, especially those related to the
PARENT and LEFT CHILD macros from Sect. 5.1. Although the arithmetic involves
both addition/subtraction and multiplication/division, we suspect a tool such
as Z3 [54] could handle it. Moreover, a sufficiently-precise tool would probably
spot the necessity of forcing the internal constants into unsigned int. The issue
of sound key generation described in Sect. 5.3 might be a bit trickier. On the
one hand, unsigned int overflow is defined in C, so real code sometimes relies
upon it. Accordingly, merely observing that the counter could overflow does not
guarantee that the code is necessarily buggy. On the other hand, some tools
might flag it anyway out of caution (i.e. right answer, wrong reason).

Less-Automated Verification. Although as discussed above some more-
automated tools have been applied to verify graph algorithms, the problem
domain is sufficiently complex that many of the verifications discussed in Sect.
3.3, Sect. 4.3, and Sect. 4.5 use less-automated techniques. Two basic approaches
are popular. The “shallow embedding” approach is to write the algorithm in the
native language of a proof assistant. The “deep embedding” approach is to write
the algorithm in another language whose semantics has been precisely defined in
the proof assistant. VST uses a deep embedding, and so we do too; one of VST’s
more popular competitors in the deep embedding style is “Iris Proof Mode” [39].
In contrast, Lammich et al. have produced a series of results verifying a vari-

822 A. Mohan et al.

ety of graph algorithms using a shallow embedding (e.g., [32,43,45–47]). From
a bird’s-eye view Lammich et al.’s work is the most related to our results in
this paper: they verify all three algorithms we do and are able to extract fully-
executable code, even if sometimes their focus is a bit different, e.g. on novel
purely-functional data structures such as a priority queue with edit priority.

Pen-and-Paper Verification of Graph Algorithms. We use separation logic [63]
as our base framework. Initial work on graph algorithms in separation logic was
minimal; Bornat et al. is an early example [10]. Hobor and Villard developed
the technique of ramification to verify graph algorithms [34], using a particular
“star/wand” pattern to express heap update. Wang et al. later integrated rami-
fication into VST as the CertiGraph project we use [73]. Krishna et al. [40] have
developed a flow algebraic framework to reason about local and global proper-
ties of flow graphs in the program heap; their flow algebra is mainly used to
tackle local reasoning of global graphs in program heaps. Flow algebras should
be compatible with existing separation logics; implementation and integration
with the Iris project appears to be work in progress [41].

Krishna et al. are interested in concurrency [40]; Raad et al. provide another
example of pen-and-paper reasoning about concurrent graph algorithms [62].

Future Work. We see several opportunities for decreasing the effort and/or
increasing the automation in our approach. At the level of Hoare tuples, we see
opportunities for improved VST tactics to handle common cases we encounter in
graph algorithms. At the level of spatial predicates, we can continue to expand
our library of graph constructions, for example for adjacency lists. We also
believe there are opportunities to increase modularity and automation at the
interface between the spatial and the mathematical levels, e.g. we sometimes
compare C pointers to heap-represented graph nodes for equality, and due to the
nature of our representations this equality check will be well-defined in C when
the associated nodes are present in the mathematical graph, so this check should
pass automatically.

We believe that more automation is possible at the level of mathematical
graphs: for example reachability techniques based on regular expressions over
matrices and related semirings [5,23,70]. We are also intrigued by the recent
development of various specialized graph logics such as by Costa et al. [21] and
hope that these kinds of techniques will allow us to simplify our reasoning. The
key advantage of having end-to-end machine-checked examples such as the ones
we presented above is that they guide the automation efforts by providing precise
goals that are known to be strong enough to verify real code.

Conclusion. We extend the CertiGraph library to handle undirected graphs
and several flavours of graphs with edge labels, both at the pure and at the
spatial levels. We verify the full functional correctness of the three classic graph
algorithms of Dijkstra, Prim, and Kruskal. We find nontrivial bounds on edge
costs and infinity for Dijkstra and provide a novel specification for Prim. We

Functional Correctness of Dijkstra’s, Kruskal’s, and Prim’s Algorithms 823

verify a binary heap with Floyd’s heapify and edit priority. All of our code
is in CompCert C and all of our proofs are machine-checked in Coq.

Acknowledgements. We thank Shengyi Wang for his help and support.

References

1. Functional Correctness of C implementations of Dijkstra’s, Kruskal’s, and Prim’s
Algorithms (2021). https://doi.org/10.5281/zenodo.4744664

2. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M. (eds.):
Deductive Software Verification-The KeY Book-From Theory to Practice (2016)

3. Anonymous: Prim’s algorithm. https://en.wikipedia.org/wiki/Prim%27s
algorithm

4. Appel, A.W., et al.: Program Logics for Certified Compilers. Cambridge University
Press, Cambridge (2014)

5. Backhouse, R., Carré, B.: Regular algebra applied to path-finding problems. J.
Inst. Math. Appl. 15, 161–186 (1975)

6. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: a
modular reusable verifier for object-oriented programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp.
364–387. Springer, Heidelberg (2006). https://doi.org/10.1007/11804192 17

7. Berdine, J., Calcagno, C., O’Hearn, P.W.: Smallfoot: modular automatic asser-
tion checking with separation logic. In: de Boer, F.S., Bonsangue, M.M., Graf,
S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 115–137. Springer,
Heidelberg (2006). https://doi.org/10.1007/11804192 6

8. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker
Blast. Int. J. Softw. Tools Technol. Transf. 9, 505–525 (2007)

9. Blom, S., Huisman, M.: The VerCors tool for verification of concurrent programs.
In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 127–
131. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06410-9 9

10. Bornat, R., Calcagno, C., O’Hearn, P.: Local reasoning, separation and aliasing.
In: SPACE (2004)

11. Calcagno, C., et al.: Moving fast with software verification. In: NASA Formal
Methods Symposium (2015)

12. Charguéraud, A.: Characteristic formulae for the verification of imperative pro-
grams. In: ICFP (2011)

13. Charguéraud, A., Filliâtre, J.C., Pereira, M., Pottier, F.: VOCAL - a verified
OCaml library. ML Family Workshop (2017)

14. Charguéraud, A., Pottier, F.: Verifying the correctness and amortized complexity
of a union-find implementation in separation logic with time credits. J. Autom.
Reason. 62, 331–365 (2019)

15. Chen, J.C.: Dijkstra’s shortest path algorithm. JFM 15, 237–247 (2003)
16. Chen, R., Cohen, C., Lévy, J., Merz, S., Théry, L.: Formal proofs of Tarjan’s

strongly connected components algorithm in Why3, Coq and Isabelle. In: ITP
(2019)

17. Chin, W.N., David, C., Nguyen, H.H., Qin, S.: Automated verification of shape,
size and bag properties via user-defined predicates in separation logic. Sci. Comput.
Program. 77, 1006–1036 (2010)

https://doi.org/10.5281/zenodo.4744664
https://en.wikipedia.org/wiki/Prim%27s_algorithm
https://en.wikipedia.org/wiki/Prim%27s_algorithm
https://doi.org/10.1007/11804192_17
https://doi.org/10.1007/11804192_6
https://doi.org/10.1007/978-3-319-06410-9_9

824 A. Mohan et al.

18. Chlipala, A.: Mostly-automated verification of low-level programs in computational
separation logic. In: PLDI (2011)

19. Chou, C.T.: A formal theory of undirected graphs in HOL. In: HOL (1994)
20. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.S.: Introduction to Algo-

rithms, 3rd edn. (2009)
21. Costa, D., Brotherston, J., Pym, D.: Graph decomposition and local reasoning

(2020). Under submission
22. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math.

1, 269–271 (1959)
23. Dolan, S.: Fun with semirings: a functional pearl on the abuse of linear algebra.

In: ICFP (2013)
24. Ernst, G., Pfähler, J., Schellhorn, G., Haneberg, D., Reif, W.: KIV - overview and

VerifyThis competition. STTT 17, 677–694 (2015)
25. Filliâtre, J.C.: Dijkstra’s shortest path algorithm in Why3 (2011). http://toccata.

lri.fr/gallery/dijkstra.en.html
26. Fillître, J.C.: Simpler proofs with decentralized invariants. J. Log. Algebraic Meth-

ods Program. 121, 100645 (2021)
27. Floyd, R.W.: Algorithm 245: treesort. Commun. ACM 7(12), 701 (1964)
28. Forsythe, G.E.: Algorithms. Commun. ACM 7(6), 347–349 (1964)
29. Gordon, M., Hurd, J., Slind, K.: Executing the formal semantics of the accellera

property specification language by mechanised theorem proving. In: Geist, D.,
Tronci, E. (eds.) CHARME 2003. LNCS, vol. 2860, pp. 200–215. Springer, Hei-
delberg (2003). https://doi.org/10.1007/978-3-540-39724-3 19

30. Guttmann, W.: Relation-algebraic verification of prim’s minimum spanning tree
algorithm. In: Sampaio, A., Wang, F. (eds.) ICTAC 2016. LNCS, vol. 9965, pp.
51–68. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46750-4 4

31. Guttmann, W.: Verifying minimum spanning tree algorithms with stone relation
algebras. J. Log. Algebraic Methods Program. 101, 132–150 (2018)

32. Haslbeck, M.P.L., Lammich, P.: Refinement with time - refining the run-time of
algorithms in Isabelle/HOL. In: ITP (2019)

33. Heineman, G., Pollice, G., Selkow, S.: Algorithms in a Nutshell. O’Reilly (2008)
34. Hobor, A., Villard, J.: Ramifications of sharing in data structures. In: POPL (2013)
35. Jarńık, V.: O jistém problému minimálńım. (z dopisu panu o. Bor̊uvkovi) (1930)
36. Kepner, Jeremy; Gilbert, J.: Graph algorithms in the language of linear algebra.

Soc. Ind. Appl. Math. (2011)
37. Klasen, V.: Verifying Dijkstra’s algorithm with KeY. Diploma thesis (2010)
38. Kleinberg, J.M., Tardos, É.: Algorithm Design. Addison-Wesley (2006)
39. Krebbers, R., Timany, A., Birkedal, L.: Interactive proofs in higher-order concur-

rent separation logic. In: POPL (2017)
40. Krishna, S., Shasha, D., Wies, T.: Go with the flow: compositional abstractions

for concurrent data structures. In: POPL (2017)
41. Krishna, S., Summers, A.J., Wies, T.: Local reasoning for global graph properties.

In: ESOP (2020)
42. Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling sales-

man problem. Proc. Am. Math. Soc. 7, 48–50 (1956)
43. Lammich, P.: Verified efficient implementation of Gabow’s strongly connected com-

ponent algorithm. In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558, pp.
325–340. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08970-6 21

44. Lammich, P.: Efficient verified implementation of Introsort and Pdqsort. In: Peltier,
N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS (LNAI), vol. 12167, pp.
307–323. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51054-1 18

http://toccata.lri.fr/gallery/dijkstra.en.html
http://toccata.lri.fr/gallery/dijkstra.en.html
https://doi.org/10.1007/978-3-540-39724-3_19
https://doi.org/10.1007/978-3-319-46750-4_4
https://doi.org/10.1007/978-3-319-08970-6_21
https://doi.org/10.1007/978-3-030-51054-1_18

Functional Correctness of Dijkstra’s, Kruskal’s, and Prim’s Algorithms 825

45. Lammich, P., Nipkow, T.: Proof pearl: Purely functional, simple and efficient pri-
ority search trees and applications to Prim and Dijkstra. In: ITP (2019)

46. Lammich, P., Sefidgar, S.R.: Formalizing the Edmonds-Karp algorithm. In:
Blanchette, J.C., Merz, S. (eds.) ITP 2016. LNCS, vol. 9807, pp. 219–234. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-43144-4 14

47. Lammich, P., Sefidgar, S.R.: Formalizing network flow algorithms: a refinement
approach in Isabelle/HOL. J. Autom. Reason. 62(2), 261–280 (2019)

48. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-
4 20

49. Leino, K.R.M., Moskal, M.: VACID-0: verification of ample correctness of invariants
of data-structures. Edition 0 (2010)

50. Leroy, X.: Formal certification of a compiler back-end or: programming a compiler
with a proof assistant. In: POPL (2006)

51. Liu, T., Nagel, M., Taghdiri, M.: Bounded program verification using an SMT
solver: a case study. In: ICST (2012)

52. Mange, R., Kuhn, J.: Verifying Dijkstra’s algorithm in Jahob (2007)
53. Moore, J.S., Zhang, Q.: Proof Pearl: Dijkstra’s shortest path algorithm verified

with ACL2. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp.
373–384. Springer, Heidelberg (2005). https://doi.org/10.1007/11541868 24

54. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

55. Müller, P.: The binomial heap verification challenge in Viper. In: Müller, P.,
Schaefer, I. (eds.) Principled Software Development. Springer, Heidelberg (2018).
https://doi.org/10.1007/978-3-319-98047-8 13

56. Müller, P.: Private correspondence (2021)
57. Müller, P., Schwerhoff, M., Summers, A.J.: Viper: a verification infrastructure for

permission-based reasoning. In: Jobstmann, B., Leino, K.R.M. (eds.) VMCAI 2016.
LNCS, vol. 9583, pp. 41–62. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-49122-5 2

58. Noschinski, L.: A graph library for Isabelle. Math. Comput. Sci. 9, 23–39 (2015)
59. O’Hearn, P., Reynolds, J., Yang, H.: Local reasoning about programs that alter

data structures. In: Fribourg, L. (ed.) CSL 2001. LNCS, vol. 2142, pp. 1–19.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44802-0 1

60. Petrank, E., Hawblitzel, C.: Automated verification of practical garbage collectors.
Log. Methods Comput. Sci. 6 (2010)

61. Prim, R.C.: Shortest connection networks and some generalizations. Bell Syst.
Tech. J. 36(6), 1389–1401 (1957)

62. Raad, A., Hobor, A., Villard, J., Gardner, P.: Verifying concurrent graph algo-
rithms. In: Igarashi, A. (ed.) APLAS 2016. LNCS, vol. 10017, pp. 314–334.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47958-3 17

63. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
LICS (2002)

64. Ringer, T., Palmskog, K., Sergey, I., Gligoric, M., Tatlock, Z.: QED at large: a
survey of engineering of formally verified software. CoRR (2020)

65. Rosen, K.H.: Discrete Mathematics and Its Applications. 7th edn. (2012)
66. Sedgewick, R.: Algorithms in C, Part 5: Graph Algorithms (2002)
67. Sedgewick, R., Wayne, K.: Algorithms. 4th edn. Addison-Wesley (2011)

https://doi.org/10.1007/978-3-319-43144-4_14
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/11541868_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-98047-8_13
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.1007/978-3-319-47958-3_17

826 A. Mohan et al.

68. Skiena, S.: The Algorithm Design Manual, 2nd edn. Springer, Heidelberg (2008)
69. Tafat, A., Marché, C.: Binary heaps formally verified in Why3 (2011)
70. Tarjan, R.E.: A unified approach to path problems. J. ACM 28(3), 577–593 (1981)
71. Coq development team: The Coq Proof Assistant. https://coq.inria.fr/
72. Wang, S.: Mechanized verification of graph-manipulating programs. Ph.D. thesis,

National University of Singapore (2019)
73. Wang, S., Cao, Q., Mohan, A., Hobor, A.: Certifying graph-manipulating C pro-

grams via localizations within data structures. In: OOPSLA (2019)
74. Wong, W.: A simple graph theory and its application in railway signaling. In: HOL

Theorem Proving System and Its Applications (1991)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://coq.inria.fr/
http://creativecommons.org/licenses/by/4.0/

	Functional Correctness of C Implementations of Dijkstra's, Kruskal's, and Prim's Algorithms
	1 Introduction
	2 Extensions to CertiGraph
	2.1 Pure Reasoning for Adjacency Matrix-Represented Graphs
	2.2 New Spatial Representations for Edge-Labeled Graphs
	2.3 Undirectedness in a Directed World

	3 Shortest Path
	3.1 Verified Dijkstra's Algorithm in C
	3.2 Overflow in Dijkstra's Algorithm
	3.3 Related Work on Dijkstra in Algorithms and Formal Methods

	4 Minimum Spanning Trees
	4.1 Prim's Algorithm
	4.2 Prim's Algorithm Handles Multiple Components Out of the Box
	4.3 Related Work on Prim in Algorithms and Formal Methods
	4.4 Kruskal's Algorithm
	4.5 Related Work on Kruskal in Algorithms and Formal Methods

	5 Verified Binary Heaps in C
	5.1 The Basic Heap Operations of Insertion and Min/Max-Removal
	5.2 Bottom-Up Heapify and Heapsort
	5.3 Modifying an Element's Priority
	5.4 Related Work on Binary Heaps in Algorithms and Formal Methods

	6 Engineering Considerations
	7 Concluding Thoughts: Related and Future Work
	References

