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Abstract: The relationships between brain electrical and metabolic activity are being uncovered currently in
animal models using invasive methods; however, in the human brain this relationship remains not well
understood. In particular, the relationship between noninvasive measurements of electrical activity and
metabolism remains largely undefined. To understand better these relations, cerebral activity was measured
simultaneously with electroencephalography (EEG) and positron emission tomography using [18f]-fluoro-2-
deoxy-d-glucose (PET-FDG) in 12 normal human subjects during rest. Intracerebral distributions of current
density were estimated, yielding tomographic maps for seven standard EEG frequency bands. The PET and
EEG data were registered to the same space and voxel dimensions, and correlational maps were created on a
voxel-by-voxel basis across all subjects. For each band, significant positive and negative correlations were
found that are generally consistent with extant understanding of EEG band power function. With increasing
EEG frequency, there was an increase in the number of positively correlated voxels, whereas the lower � band
(8.5–10.0 Hz) was associated with the highest number of negative correlations. This work presents a method
for comparing EEG signals with other more traditionally tomographic functional imaging data on a 3-D basis.
This method will be useful in the future when it is applied to functional imaging methods with faster time
resolution, such as short half-life PET blood flow tracers and functional magnetic resonance imaging. Hum.
Brain Mapp. 21:257–270, 2004. © 2004 Wiley-Liss, Inc.
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INTRODUCTION

It is currently understood that scalp surface electroen-
cephalographic (EEG) recordings at any given scalp location

reflect electrical signals conducted throughout the brain
[Speckman et al., 1993]. Because the normal cellular mecha-
nism underlying these signals requires the metabolism of
glucose and an abundant supply of oxygen, the measured
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EEG signal is assumed to be closely related to the underly-
ing spatio-temporal pattern of metabolism in the normal
human brain [Ingvar et al., 1976, 1979; Nagata, 1988]; how-
ever, this relation is poorly understood. Several factors con-
tribute to an ill-defined link. First, it is only recently that
localization methods have been developed that permit a
moderately accurate estimation of the sources within the
brain for the electrical signals giving rise to observed surface
EEG recordings. Second, the different frequency bands that
comprise the signals are associated with different brain
states, so regions of high metabolism are likely to be differ-
entially associated with various EEG band power signals.
Third, an electrical signal operates over a period of millisec-
onds, whereas the processes associated with noninvasive
measurable changes in brain metabolism and hemodynamic
function operate over a period of one to many seconds.
Fourth, it is only recently that experiments have been con-
ducted that reveal the relationship between electrical activ-
ity and metabolism on a cellular level in sufficient detail to
permit hypotheses about the metabolic demands of neuro-
electrical processes relevant to noninvasive imaging tech-
niques [Logothetis et al., 2001; Mathieson et al., 1998].

The development of methods to measure regional cerebral
blood flow (rCBF) and metabolism in vivo enabled research-
ers to combine EEG measurements with other measures of
neuronal activity. These methods include the original ni-
trous oxide method to measure CBF [Kety and Schmidt,
1945] and metabolism via oxygen consumption [Kety and
Schmidt, 1948], glucose consumption using positron emis-
sion tomography (PET) with the tracer [18F]-fluoro-2-deoxy-
d-glucose (FDG) [Phelps et al., 1979], and blood flow using
magnetic resonance imaging (MRI) signal [Ogawa et al.,
1990]. Early dual-modality studies [e.g., Obrist et al., 1963]
did not attempt to localize either the EEG or CBF signal, but
rather considered only the relationship of the overall EEG
activity for a given frequency range to a global measure of
blood flow or metabolism in the entire brain (or at best in
each hemisphere). Improvements in methodology and tech-
nology permitted the testing of increasingly more specific
hypothesis in subsequent work, as the locations of the un-
derlying sources for metabolism/blood flow signals were
improved using PET [Celesia et al., 1982; Danos et al., 2001;
Hofle et al., 1997; Larson et al., 1998; Nagata, 1988; Naka-
mura et al., 1999; Sadato et al., 1998] and functional MRI
(fMRI) [Goldman et al., 2002; Singh et al., 2003]. Parallel
improvements in EEG technology and increased computa-
tional power led to improved localization of surface signals
through more electrodes, more accurate modeling of electri-
cal source location within the brain, and more accurate
modeling of the time profile of single spike events.

The vast amount of data acquired in a standard neuroim-
aging study is reduced typically to a few local, contiguous
regions of activation. An increase or decrease in measured
signal in a local region compared to a baseline state is
frequently interpreted as an increase (activation) or decrease
(deactivation) in metabolism. Raichle et al. [2001] propose a
definition for a baseline or resting state of cerebral metabo-

lism as a state that yields a uniform oxygen extraction frac-
tion (OEF) throughout the brain. In that work and a subse-
quent review article [Gusnard and Raichle, 2001], these
authors point out that the brain is always active, and that
activation or deactivation related to mental tasks or stimuli
are merely changes from this well-defined baseline state. On
a cellular level, Mathieson et al. [1998] suggest that both
inhibitory and excitatory signals can contribute to an in-
crease in rCBF, not only in the region producing the inhib-
itory/excitatory signals but also in the region receiving
them. Efforts to model the relationship of cellular spiking
and synaptic activity to the blood flow signal, typically
measured with PET or fMRI [Almeida et al., 2002], provide
a theoretical basis of support for these observations that
contradict the notion that an excitatory signal must always
be related to an increase in metabolism, and conversely that
inhibitory signals must yield a deactivation. EEG measure-
ments thus can be the result of either an inhibitory or an
excitatory signal, and the related metabolic or rCBF signal
can either increase or decrease. This is not a random process,
however, and the expectation is that the same relationship
will hold between electrical and metabolic signal for re-
peated measurements of the same state.

Recently, exciting advances have been made in under-
standing the relationship between electrical activity in the
brain and the underlying metabolism that permits this ac-
tivity. Ensembles of individual neurons act in synchrony to
produce an electric field detectable via EEG measurements;
specifically, it is the postsynaptic neuronal activity (as op-
posed to axonal spiking) that produces an EEG signal
[Speckman et al., 1993]. In their work on the rat cerebellar
cortex, Mathieson et al. [1998] found “a strong correlation
between the product of field potential amplitude and stim-
ulus frequency and CBF.” Recent findings by Logothetis et
al. [2001] “suggest that [blood oxygenation level-dependent]
BOLD activation may actually reflect more the neural activ-
ity related to the input and the local processing in any given
area, rather than the spiking activity commonly thought of
as the output of the area.” The EEG signal and metabolism/
rCBF measurements (i.e., PET, fMRI) thus seem based on the
same neurophysiologic phenomenon, namely local postsyn-
aptic neuronal activity, and it is reasonable to expect that
measures of brain electric and metabolic activity will be
related in some fashion.

Although EEG signals typically have multiple compo-
nents spread over a range of frequencies, and occur over a
small fraction of the time required to obtain a single image
using PET or functional MRI, it is clear from human studies
that different EEG frequencies can be associated with spe-
cific spatial patterns in the brain that depend on mental state
and activity of the subject, and that the EEG signal from
various frequency bands can be correlated to underlying
metabolism [Nagata et al., 1988].

Several recent studies have demonstrated a link between
EEG signal and metabolism or blood flow. For example,
Hofle et al. [1997] examined the relationship between rCBF
and absolute EEG activity for the � band during various
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stages of sleep by carrying out an analysis of covariance with
PET-rCBF data on a voxel-wise basis, using EEG � activity
obtained during the PET study as a covariate. Negative
correlations were found between � activity and rCBF in the
thalamus and, to a lesser extent, in several other brain re-
gions, whereas positive correlations were found in the visual
and auditory cortex.

Several recent studies have examined the relationship be-
tween metabolism/rCBF and the � rhythm. Typically, EEG
frequencies in the � band (8–12 Hz) are greatest in ampli-
tude when subjects are in an awake, relaxed state with eyes
closed. The � rhythm is thus a relatively easy phenomenon
to induce and modulate in an experimental setting. Using a
similar approach to that of Hofle et al. [1997], PET-rCBF was
compared to EEG � [Sadato et al., 1998] and � [Nakamura et
al., 1999] rhythms by averaging the EEG signal from the
posterior scalp region and calculating the mean amplitude
in each frequency band over the duration of the PET scan (90
sec). After spatially averaging the amplitude over all elec-
trodes of interest, the resulting temporally and spatially
averaged amplitude was used as a covariate to create a
statistical parametric map using the SPM software package
(Wellcome Department of Cognitive Neurology, London,
UK). For normal subjects in a passive state [Sadato et al.,
1998], a negative correlation was found between rCBF and �
power in the occipital cortex, whereas positive correlations
with � power were found in the pons, midbrain, hypothal-
amus, amygdala, basal prefrontal cortex, insula, and the
right dorsal premotor cortex. For normal subjects listening to
music [Nakamura et al., 1999], a positive correlation of pos-
terior � power with rCBF was found in the premotor cortex
and adjacent prefrontal cortices bilaterally, the anterior por-
tion of the precuneus, and the anterior cingulate cortex in
both rest and music conditions. In another study, Danos et
al. [2001] correlated � power from EEG signal in electrodes
over the occipital cortex with glucose metabolic rate (mea-
sured with PET-FDG) obtained from regions-of-interest
(ROIs) in the occipital cortex and thalamus. In normal con-
trols, positive correlations between � power and FDG me-
tabolism were found in the right and left lateral thalamus,
and a negative correlation was found in the left occipital
cortex. In schizophrenic patients, however, no significant
correlations between PET-FDG and EEG-� were found in
these regions.

Goldman et al. [2002] simultaneously measured fMRI and
EEG signals, focusing on the � rhythm, and found that in 11
normal subjects in a resting, eyes-closed state, “increased
alpha power was correlated with decreased MRI signal in
multiple regions of occipital, superior, inferior frontal, and
cingulate cortex, and with increased signal in the thalamus
and insula.” Singh et al. [2003] studied the effect of stimulus
frequency on the human visual system using EEG and fMRI
with a flashing checkerboard experiment. In serial experi-
ments, they found a strong correlation between EEG signal
in two occipital electrodes and the fMRI (BOLD) signal in a
large area that included the occipital cortex. In particular,
there was a strong correlation between the two modalities

for response magnitude related to variations in flashing
frequency. Work in our laboratory has examined relations
between EEG � power averaged over the entire head and
glucose metabolism in the thalamus measured with PET-
FDG [Larson et al., 1998], and found an inverse correlation
between these measures in control subjects but not in a
matched group of depressed subjects [Lindgren et al., 1999].
The studies summarized above represent a range of speci-
ficity with regard to spatial localization of various modali-
ties; however, none of them examine correlations between
flow or metabolism and electrophysiologic data at a specific
tomographic location (i.e., on a voxel-wise basis).

In general, there are several major goals related to com-
bining EEG and metabolism measures: (1) to investigate
basic relationships between brain metabolism and electrical
activity; (2) to deduce the generator or source location
within the brain of various EEG frequencies; (3) to use
metabolic activation locations as “seeds” for modeling the
locations of EEG dipole sources; and (4) to combine the high
temporal resolution of EEG with the spatial information
obtained from a more traditional tomographic imaging mo-
dality to infer causal relationships of spatially distant acti-
vations.

The goal of the present work is to develop methodology
for comparison of PET-FDG data and EEG data on a voxel-
by-voxel basis. This requires tomographic source localiza-
tion of the surface-based EEG data. There are multiple ap-
proaches to this problem [Baillet et al., 2001; Bosch-Bayard et
al., 2001; Gorodnitsky et al., 1995]; based on previous work
in our laboratory [e.g., Pizzagalli et al., 2001, 2002a], we
selected the low-resolution electromagnetic tomography
(LORETA) algorithm [Pascual-Marqui, 1999; Pascual-Mar-
qui et al., 1994, 2002]. From the scalp-recorded electrical
potential distribution, LORETA computes the 3-D intracere-
bral distributions of current density for specified EEG fre-
quency bands. LORETA makes three major assumptions in
estimating the source location of electrical activity: (1) that
adjacent neurons act in synchrony, so that the activation
distribution can be modeled as a smoothly varying field; (2)
that the smoothest activity distribution is the most plausible;
and (3) that the signal measured at the brain surface does not
emanate from white matter or from certain subcortical struc-
tures deep in the brain. The latter assumption constrains the
solution space of electrical activity to a standard brain tem-
plate containing only cortical gray matter and the hippocam-
pus; this template can then be used as a common space for
comparing EEG data with data from another modality such
as PET.

Although brain metabolism and electrical signal are re-
lated closely, the technical details of measuring one or the
other of these aspects of brain function can differ greatly, as
can the subsequent results. When EEG data are acquired
during the first 30 min of the FDG uptake into the brain, the
two modalities reflect the same brain state, even though the
actual PET scan occurs after the EEG measurement. A rest-
ing PET-FDG study measures the basal metabolism of the
brain during the uptake period of the FDG tracer, with the
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bulk of the tracer uptake occurring in the first 30 min. Such
PET data thus integrate brain metabolism over a relatively
long time period, with poor temporal resolution but excel-
lent chemical sensitivity and a reasonable spatial resolution.
Different regions of the brain seem to contain neurons that
fire or oscillate at different frequencies, and intriguingly,
there seems to be electrophysiologic differences between
some of these groups [Steriade et al., 1990] that may be
manifested in differences in metabolic rate. EEG measure-
ments reflect a range of frequency bands that are associated
with various functional brain states [Basar et al., 1997; Da-
vidson et al., 2000a; Klimesch, 1999; Schacter, 1977], and
although EEG has relatively poor spatial resolution, it may
be used to examine brain electrical activity on a time-scale of
milliseconds. PET-FDG data are a composite or integral of
the activity from all of the EEG bands, but it is unclear how
the signal of each EEG band relates to the overall metabo-
lism at a particular location.

There were two major purposes for the present study.
First, abundant evidence from our laboratory has estab-
lished that there are reliable individual differences in resting
baseline parameters of brain electrical activity from prefron-
tal scalp regions that predict affective style [for review, see
Davidson, 2000; Davidson et al., 2000b]. The fact that such
associations have been established and replicated by other
groups [e.g., Harmon-Jones and Allen, 1997; Wiedemann et
al., 1999] underscores the need to identify better the intra-
cerebral sources that give rise to these surface brain electrical
events. The method featured in this study is suited ideally to
this purpose because the previous studies have all been
based on baseline resting measurements that are presumed
to be replicable. Second, the analytic strategy developed for
this study provides a methodology for comparing locations
of metabolic activations and electrical activity sources using
current noninvasive measurement techniques suitable for
use with normal human subjects.

SUBJECTS AND METHODS

Subjects

Twelve right-handed normal subjects were recruited and
tested in accord with procedures approved by the UW-
Madison Human Subjects Committee. Each subject signed a
consent form approved by this committee. Subjects ranged
in age from 21–57 years (mean age, 35 � 11.6 years), with six
males and six females.

Experimental Procedures

The data analyzed in this work were acquired as part of a
larger study investigating major depression, where the pri-
mary data of interest were the basal metabolisms obtained
via the FDG-PET measurement [Abercrombie et al., 1998;
Lindgren et al., 1999]. The acquisition protocol reflects this
interest, and hence was not optimized for the EEG/PET
comparison, which is the subject of the present study. PET
data were recorded between 11:00 am and 1:30 pm. After

electrode application, preparations for the PET procedure
were made, including the insertion of intravenous lines in
the left hand (for blood sampling) and right arm (for radio-
tracer injection). Blood samples were withdrawn to obtain a
radioactivity time-activity curve. EEG data collection began
at the time of the FDG injection. The EEG data were acquired
in a standard manner as detailed in Davidson et al. [2000a],
with 10 contiguous 3-min trials to cover the first 30 min of
radiotracer uptake. Verbal instructions to open or close eyes
were given before the start of each trial, with an alternating
order counterbalanced across participants. Alternating eyes-
open and eyes-closed trials were chosen to conform to pre-
vious studies of baseline EEG asymmetry, where it was
found that aggregating across eyes-open and eyes-closed
trials gave the most reliable estimates of activation asymme-
try [Tomarken et al., 1992], which was one of the main
interests in acquiring these data. Upon completion of the 10
trials, electrodes and intravenous lines were removed.

EEG data acquisition

A modified Lycra electrode cap (Electro-Cap Interna-
tional, Inc.) with tin electrodes was used to record EEG from
28 scalp sites of the 10/10 system (FP1/2, F3/4, F7/8, FC3/4,
FC7/8, C3/4, CP3/4, CP5/6, T3/4, T5/6, P3/4, PO3/4, FPz,
Fz, Cz, Pz) referenced to the left ear (A1). Horizontal elec-
trooculogram (EOG) was recorded from the external canthi
of each eye and vertical EOG from the supra- to suborbit of
one eye. Electrode impedances were under 5 K� for EEG
(homologous sites within 2 K��) and under 20 K� for EOG.
Physiological signals were amplified with a Grass Model 12
Neurodata system using Model 12C preamplifiers (1–300 Hz
bandpass with 60-Hz notch filter) and low pass filtered at
100 Hz. Analog signals were digitized on-line at 250 Hz.

PET-FDG scan

Subjects fasted for at least 5 hours before injection. Blood
was sampled from an arterialized venous site [McGuire et
al., 1976; Phelps et al., 1979] on the left hand for 30 min after
injection. A population-averaged FDG blood curve was
scaled to each subject’s measured blood curve for the time
period from 30 min after injection to the end of the PET scan.
After voiding the bladder, the subjects were positioned on
the scanner bed. PET data were acquired using a General
Electric/Advance PET scanner [DeGrado et al., 1994]. This
scanner has an intrinsic resolution of 5–6 mm full-width at
half-maximum (FWHM), and a reconstructed resolution of
8–10 mm FWHM for a brain positioned near the center of
the field of view. The scan started approximately 50 min
after injection, and consisted of a 30-min 2D scan, a 10-min
3-D scan, and a 10-min transmission scan. The 2D PET data
were reconstructed using the scanner manufacturer’s soft-
ware with calculated attenuation correction to 1.75 � 1.75
� 4.25 mm voxels, and converted to parametric images of an
influx constant (Ki, 1/sec) according to a variation [Phelps et
al., 1979] of the Sokoloff method [Sokoloff et al., 1977] for
measuring the local cerebral metabolic rate of glucose con-
sumption.
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Data Analysis

EEG data

After off-line artifact rejection, non-overlapping 2,048-
msec EEG epochs were extracted. After re-referencing to an
average reference, all eyes-closed and eyes-open EEG ep-
ochs were analyzed with LORETA, which used a three-shell
spherical head model [Ary et al., 1981] registered to the
MNI-305 brain atlas [Collins et al., 1994; Evans et al., 1993]
from the Brain Imaging Centre of the Montreal Neurologic
Institute (referred to here as MNI coordinate space). EEG
electrode coordinates were derived using cross-registrations
between spherical and realistic head geometry [Towle et al.,
1993]. The LORETA developer (Dr. Pascual-Marqui) pro-
vided a version of the software that is able to utilize up to
256 electrodes (28 electrodes were used in this study). Com-
putations were restricted to cortical gray matter and hip-
pocampi using the digitized probability atlases of the Mon-
treal Neurologic Institute. If the probability of a voxel being
gray matter was higher than 33% and higher than the prob-
ability of being white matter or cerebrospinal fluid, that
voxel was labeled as gray matter. The solution space con-
tained 2,394 voxels, each with a 7 � 7 � 7 mm size. The
spatial resolution of LORETA is estimated to be 1–2 voxels
[Pascual-Marqui et al., 2002; and personal communication],
or approximately 10 mm isotropically. Pascual-Marqui et al.
[2002] use spatial dispersion as a metric for spatial resolu-
tion; although this is somewhat different from the FWHM
metric commonly used in PET, we treat it as a FWHM value
for the purpose of inter-modality comparison. The LORETA
analyses consisted of two steps. First, for every subject, all
available artifact-free 2,048-msec EEG epochs were subjected
to cross-spectrum analysis via discrete Fourier transform
(boxcar windowing) for the following EEG bands: 	 (6.5–8.0
Hz), �1 (8.5–10.0 Hz), �2 (10.5–12.0 Hz), �1 (12.5–18.0 Hz),
�2 (18.5–21.0 Hz), �3 (21.5–30.0 Hz), and � (36.5–44.0 Hz).
Second, LORETA computed current density as the linear
weighted sum of the scalp electrical potentials and then
squared this value for each voxel to yield power of current
density.

PET data

The FDG-PET data were resampled to match the tomo-
graphic EEG data. First, the PET images were spatially nor-
malized with SPM99 [Friston et al., 1994] to the same coor-
dinate space as that used by LORETA (MNI-305), and the
validity of coregistration and smoothing was visually veri-
fied for each subject. FDG data were converted to 2 � 2 � 2
mm voxels upon reslicing, and smoothed with a 6 � 6 � 6
mm Gaussian kernel to approximate the estimated spatial
resolution of LORETA (
10 mm). Using in-house software,
the PET data were resampled to yield voxels with the same
size and center location as the LORETA voxels. For this step,
weighting factors for each PET voxel were used, derived by
the fractional volume of a PET voxel that was completely or
partially within a given LORETA voxel. To match the

LORETA solution space, voxels not considered by LORETA
were excluded from the resampled PET data. For all opera-
tions after the initial conversion to parametric influx-rate
images, the PET units were maintained as �g/min/100 cc.

Statistical Analysis

Global correlations

Spearman’s rank correlation coefficients (�) were calcu-
lated between the PET average metabolic activity (restricted
to the voxels considered by LORETA) and the average cur-
rent density estimate across all voxels for each EEG fre-
quency band. To establish the validity of the Spearman’s test
with regard to this data set, a Shapiro-Wilk test was carried
out across subjects for the global activity in each band of the
LORETA data. Furthermore, the Shapiro-Wilk test was com-
puted for 60 randomly selected voxels across all EEG bands
to test whether values were distributed normally across
subjects.

Voxel-wise correlations

A Spearman’s rank correlation coefficient between PET
and LORETA data was calculated for every valid LORETA
voxel across all 12 subjects. We selected the Spearman’s rank
test because the distribution of values was not distributed
normally, and in fact was different between the two modal-
ities as well as among EEG frequency bands. The correlation
coefficients were converted to a 3-D parametric map for
visual inspection. For each band, the number of correlations
associated with P � 0.05 (uncorrected for multiple compar-
isons) and P � 0.01 (uncorrected) were tabulated to assess
how changes in frequency affected the number of positively
and negatively correlated voxels. We considered voxels with
P � 0.01 (uncorrected) to be significant, based on previous
work with LORETA data [Pizzagalli et al., 2002a] using a
randomization technique to estimate the false-positive rate
under the null hypothesis, which demonstrated that a
threshold of P � 0.01 provided adequate protection against
Type I errors. A color-coded map of the Spearman’s corre-
lation coefficients is shown in Figure 1 for P � 0.05. Al-
though we only considered results that survived the P
� 0.01 threshold to be significant, we used a more liberal
threshold in Figure 1 to demonstrate the utility of this
method for identifying potentially interesting areas that may
warrant further analysis.

The brain region and MNI coordinates closest to specific
significant results were determined based on the Structure-
Probability Maps atlas [Lancaster et al., 1997]. Brodmann’s
area (BA) and region labels are provided by the LORETA
software. For a specific MNI coordinate, LORETA first de-
termines the nearest gray matter voxel using a lookup table
created via the Talairach Daemon [Lancaster et al., 2000],
and then estimates a conversion from MNI space to Ta-
lairach space [Talairach and Tournoux, 1988] using the
transform method suggested by Brett [2002]. Because the
Talairach voxels are large relative to the 1-mm accuracy of
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the Talairach Daemon, there is occasionally some discrep-
ancy between MNI coordinates and labels. The MNI coor-
dinates given throughout this the present work are consid-

ered to be the true reference, whereas the labels are
approximate.

Region-of-Interest Analysis

To examine the relationship between the intermodal
Spearman’s rank correlation and the relative signal intensity
in a particular area, a region-of-interest (ROI) analysis was
carried out. Two distinct locations with previously pub-
lished findings linking metabolism and the � band were
selected. For each ROI, the average value for all voxels
within the region was calculated for each subject for both
PET and LORETA data. The first region was the large cluster
of negatively correlated voxels in the �1 band along the
central axis (see Fig. 1, columns 11–12), comprised of 13
voxels (4.46 cm3). The other region is in the occipital cortex
(MNI coordinates x 
 �46 to �45, y 
 �81 to �95, z 
 �13),
comprised of 28 voxels (9.60 cm3). A global average was also
calculated for all voxels within the LORETA solution space,
and the ratio of ROI to global activity was calculated.

Figure 2.
Histograms of voxel-wise correlations between PET and each EEG
frequency band.

Figure 1.
Spearman’s correlation maps between FDG-PET and EEG-LORETA (n 
 12). The axial brain images go from inferior (left) to superior
(right). Seven different EEG frequency bands are shown (one band per row): 	 (6.5–8.0 Hz), �1 (8.5–10.0 Hz), �2 (10.5–12.0 Hz), �1
(12.5–18.0 Hz), �2 (18.5–21.0 Hz), �3 (21.5–30.0 Hz), and � (36.5–44.0 Hz). The Spearman’s correlation values are indicated by the
color scale (bottom); all images use the same color scale, so all of the maps are directly comparable. The regions of the brain considered
in the LORETA solution space but with greater uncertainty than the threshold (P 
 0.05 uncorrected) are shown in light pink; the MRI
image shows regions outside of the LORETA solution space.
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RESULTS

Global Correlations

The correlations between global metabolic activity and
average current density were uniformly low and nonsignif-
icant for all EEG frequency bands (Table I), ranging from
�0.378 to 0.483, (P � 0.112 in each of the seven bands). The
low correlations between global FDG metabolism and aver-
age current density imply that subsequent voxel-wise corre-
lations are due to regional effects rather than to an overall
global effect. The results of the Shapiro-Wilk test for global
activity show that the LORETA data are not distributed
normally, and that a Spearman’s test is appropriate. Further-

more, for the 60 randomly selected voxels, the Shapiro-Wilk
test found that 51 of 60 voxels were significant, which im-
plies that the voxel-wise LORETA activity for the seven
classic bands is also not distributed normally across subjects.

Voxel-wise Correlations

The voxel-wise correlations between glucose metabolism
and current density are summarized in Figure 1 for seven
classic EEG bands. There were large positive and negative
correlations within each band, which were not spread ran-
domly throughout the brain, but rather tended to appear in
spatially related clusters. Furthermore, there were pro-
nounced regional variations of correlation coefficients
among the various bands, with each band having a distinct
pattern of clusters and isolated significant voxels. The lower-
frequency bands (	 and �1) showed a low or negative cor-
relation with respect to the PET data. As frequency in-
creased, there was an increase in positive correlation
between the modalities.

The correlation coefficients in Figure 1 range from �0.923
to �0.888 (P � 0.001). The locations of the minimum (neg-
ative correlation) and maximum (positive correlation) Spear-
man’s correlation coefficients are shown in Table II, together
with the location (MNI coordinates) of that voxel, the mean
correlation value of all voxels in that band, and a description
of the corresponding Brodmann’s area and structure. The
distribution of the coefficients in each band is shown in
Figure 2. In general, correlations within each band are not
distributed normally around zero, and the peak of each of
the histograms varies from band to band.

TABLE I. Correlations between global metabolic
activity and average current density for seven EEG

frequency bands

Band Correlation (�) P

	 �0.252 0.430
�1 �0.378 0.226
�2 0.077 0.812
�1 �0.056 0.863
�2 0.189 0.557
�3 0.343 0.276
� 0.483 0.112

Correlations (�) between global (averaged across voxels) metabolic
activity and average current density for seven EEG frequency
bands. The threshold for statistical significance is P � 0.05, P�P �
0.591.

TABLE II. Correlations across all LORETA voxels, and maximum and
negative correlations for each EEG frequency band

Band Hertz Mean (SD) Values � x y z BA Region

	 6.5–8.0 �0.070 (0.237) Min �0.713a 18 �88 36 19 Cuneus
Max 0.674a 46 �74 �6 37 Inferior temporal gyrus
Max 0.674a �38 �4 15 13 Insula

�1 8.5–10.0 �0.223 (0.227) Min �0.846b �3 �18 29 23 Cingulate gyrus
Max 0.660a 39 �18 22 13 Insula

�2 10.5–12.0 0.092 (0.222) Min �0.731a �3 �95 22 19 Cuneus
Max 0.755a 46 �74 �6 37 Inferior temporal gyrus

�1 12.5–18.0 �0.040 (0.273) Min �0.825b �3 �95 22 19 Cuneus

Max 0.825b �52 10 �13 38
Superior temporal
gyrus

�2 18.5–21.0 0.106 (0.267) Min �0.923b �3 �95 22 19 Cuneus

Max 0.829b �52 10 �13 38
Superior temporal
gyrus

�3 21.5–30.0 0.210 (0.257) Min �0.804b �3 �95 22 19 Cuneus
Max 0.888b �59 �4 �6 21 Middle temporal gyrus

� 36.5–44.5 0.306 (0.227) Min �0.469 �24 �4 50 6 Middle frontal gyrus
Max 0.888b �24 38 �13 11 Middle frontal gyrus

x, y, z are MNI coordinates of minimum and maximum values. Negative x values, left side of the brain; positive x values, right side of the
brain. Brodmann’s area (BA) and anatomic region (Region) derived from the Talairach Daemon [Lancaster et al., 2000] after converting MNI
to Talairach coordinates. BA and region denote the closest gray matter voxel to that location.
a P � 0.05 (uncorrected; � � 0.591); b P � 0.01 (P�P � 0.727).
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The number of voxels in each EEG frequency band where
the correlations had a significance higher than P � 0.05
(uncorrected, ��� � 0.591) and P � 0.01 (uncorrected, ��� �
0.727) are summarized in Figure 3. There was a systematic
increase in the number of significant positive correlations
with increasing frequency, whereas the largest number of
significant negative correlations was found in the �1 band.

An important limitation of the current method (and any
similar group-wise correlation) is that it does not indicate
positive or negative correlations between the activations of
two modalities. Rather, it indicates correlations between the
voxel-wise ranks of individuals within each modality. For
example, EEG may yield a uniformly low �-band activity in
a particular voxel, and FDG-PET may show a fairly large

metabolism in the same voxel, but a high correlation will
result if the rank for each modality is similar. An example of
this is demonstrated by the ratios and variances shown in
Table III. The midline region showed an inverse correlation
between PET and EEG measurements. An examination of
the data values showed that the average LORETA value for
all subjects in this ROI was less than half (0.471) the average
value for the entire LORETA brain solution space, whereas
the corresponding average PET ROI value was nearly three
times (2.764) the average of the same whole-brain solution
space. The difference between these two groups of ROIs was
significant (P � 10�9 for a paired t-means test), demonstrat-
ing that in this region the LORETA data were lower than
average, whereas the PET data were higher than average.
This is consistent with the assumption that � is inversely
related to activation. In this example, the correlational data
showed an inverse relation between modalities, but the ROI
analysis was required to determine the modality that shows
a higher signal relative to other brain regions.

A different situation emerged for the occipital cortex ROI:
both the PET and the LORETA data in this region were two
to three times higher than the brain solution space average,
whereas the correlations between PET/FDG and EEG ranks
were negative (although for most of the occipital ROIs this
was not significant). This was an example of a region that
had an increased signal compared to the global brain aver-
age in both modalities, yet yielded an inverse correlation
between modalities. The finding of a higher than average
signal for both metabolism and EEG/�1 seems inconsistent
with the assumption that � is inversely related to activation.
This example underscores the limitations of the eyes-open/
eyes-closed paradigm of this particular data set, however,
because � activity was associated with an eyes-closed rest-
ing state in this region, whereas the higher metabolism in the
visual system in this area was most likely related to the
eyes-open state. Because both states were present during the
30-min measurement period, both modalities showed signal
increases in this area.

Figure 3.
Number of voxels from each EEG frequency band with a signifi-
cance level (uncorrected) higher than P 
 0.05 (top) and higher
than P 
 0.01 (bottom) for both negative and positive correla-
tions.

TABLE III. Mean and variance for LORETA and PET
data across subjects for ratio of cluster/global activity in

two regions of interest from the �1 band

Region Modality Mean Variance
Variance/

mean

Midlinea LORETA 0.471 0.016 0.0343
PET 2.764 0.127 0.0459

Occipital LORETA 2.307 0.043 0.0187
cortexb PET 3.025 0.040 0.0133

a Midline region refers to a significant cluster along the midline,
superior to the thalami (green cluster in Fig. 1, row 2, column 11).
b Occipital cortex region refers to the entire occipital cortex includ-
ing nonsignificant voxels in MNI axial plane z 
 �13 (see Fig. 1, row
2, column 5).
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DISCUSSION

The present study showcases a novel approach that per-
mits comparison of concurrently measured EEG and PET
data across a group of subjects. This method establishes that,
depending on the EEG frequency band, there are distinct
and localized regions within the brain where the modalities
correlate. In general, higher EEG frequency bands contain
more positively correlated regions, whereas lower EEG fre-
quency bands contain more inversely correlated regions.
Specifically, the �1 band (8.5–10.0 Hz) contains the largest
number of inverse correlations, and the � band (30.5–44.5
Hz) contains the largest number of positive intermodal cor-
relations.

Because it is the correlation of the ranks of the values
and not the values themselves that is examined in this
method, further analysis is required to determine if the
correlated voxels correspond to regions of high or low
activity from either modality. More importantly, the neu-
rophysiologic mechanisms underlying relations between
activity in different EEG bands and metabolic activity
need to be elucidated. In addition, it is important to point
out that neither a high intermodal correlation nor a high
metabolism signal necessarily means the area is activated.
The region could, for example, simply have a higher basal
metabolism. A comparison with a true baseline condition
[Raichle et al., 2001] is required to determine if the region
is in fact activated.

The approach adopted in this report depends on the ac-
curacy of the EEG source estimation. There are two aspects
that potentially limit this accuracy: the number of EEG elec-
trodes, and the source estimation method. Recently, EEG
systems comprised of 128 or more electrodes have become
commonplace. Because the current work only utilized 28
electrodes, future studies that take advantage of denser elec-
trode arrays can expect to realize greater localization accu-
racy, regardless of the source estimation method. The pri-
mary criticism of the LORETA source estimation algorithm
used in this work is that, like other minimum-norm ap-
proaches, it over-smooths the extent of the activation [Fuchs
et al., 1999; Koles, 1998], and the minimum-norm class of
solutions to which LORETA belongs can yield erroneous
solutions for sparsely sampled data sets [Baillet et al., 2001].
Simulations [Pascual-Marqui, 1999] have shown that if the
underlying source distribution is “neurophysiologically
smooth” then LORETA can localize it precisely; if not, the
algorithm yields a blurred (low resolution) solution.
Whereas some independent simulations [Fuchs et al., 1999]
have suggested that the LORETA algorithm performs better
than other linear algorithms (e.g., minimum norm least
squares), others have raised considerable criticisms against
it, particularly in cases of different sources with similar
intensity but different eccentricities [Grave de Peralta Me-
nendez and Gonzales Andino, 2000]. From an empirical
perspective, several studies utilizing LORETA [Frei et al.,
2001; Pascual-Marqui et al., 1999; Pizzagalli et al., 2000, 2001;
Seeck et al., 1998; Worrell et al., 2000] have yielded results in
agreement with known brain function. Furthermore, various

independent studies have reported cross-modal validation
between LORETA estimates and functional MRI [Seeck et
al., 1998], structural MRI [Worrell et al., 2000], electrocorti-
cography from subdural electrodes [Seeck et al., 1998], and
PET [Pizzagalli et al., 2002b].

Unfortunately, we could not directly compare results be-
tween this study and two previous studies that examined
the same data set [Larson et al., 1998; Lindgren et al., 1999],
because the previous works reported correlations between
PET and � activity in the thalamus, but the LORETA solu-
tion space does not include the thalamus. Larson et al. [1998]
reported a robust inverse correlation between global �
power and FDG metabolism in a region that included the
thalamus for a group containing 19 depressed and 8 nonde-
pressed (control) subjects. Lindgren et al. [1999] placed ROIs
over each thalamus for a larger group of depressed and
nondepressed subjects, and found a significant inverse cor-
relation between global � power and FDG metabolic rate in
the control but not the depressed group. The subjects of the
current LORETA/FDG comparison include 12 of 13 control
subjects used by Lindgren et al. [1999] (one subject was
excluded due to technical difficulties with converting the
data into the LORETA tomographic format). Not surpris-
ingly, the results for the �1 band (see Fig. 1, columns 11–12)
found a strong inverse correlation between EEG and FDG
activity at a location near the thalamus, similar to the results
of the voxel-wise correlation found by Larson et al. [1998]
(Fig. 1) between FDG activity and � power: on the midline
and superior to the thalami. This is actually the closest
location within the LORETA search space to the average
location of the thalami, and could represent a source of
electrical activity that originated in the two thalami but
which LORETA misplaced due to limited solution space. It
is unfortunate that locations of deep gray-matter structures
such as the thalamus, caudate, and putamen are not consid-
ered by LORETA; however, any electrical activity with a
source location in these regions may still be measured by the
EEG apparatus, and such a signal would have to be ac-
counted for by LORETA. In this case, a misplaced thalamus
signal is a possible result.

As seen in Table III for the midline region, this cluster has
an average value in PET gray-matter that is nearly three
times larger than the average value of the global solution
space, whereas in the LORETA data the cluster is approxi-
mately half of the average �1 global electrical activity; thus,
not only are the intermodal subject ranks in this region
significantly inversely correlated, the relative signal inten-
sity in the region is also inversely related: it has a relatively
low LORETA �1 activity and a relatively high metabolism.
This implies that this region is not a strong generator of �1
signal, although the experimental protocol with alternating
blocks of eyes-open/eyes-closed limits this interpretation. A
limited analysis (data not presented) for a single voxel from
a randomly selected subject examining the time-course of
the LORETA signal in the midline region (as defined in
Table III) was unable to distinguish between eyes-open and
eyes-closed, providing further evidence that the electrical
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signal represented by this region is not associated with
generation of �. Conversely, the occipital cortex region in
Table III highlights a group of voxels whose ranks show a
generally inverse correlation between the EEG and PET
modalities, but whose relative signal intensities levels are
similar: for both modalities this region is well above the
average solution-space value. This underscores an impor-
tant caveat in interpreting the results of any correlational
analytic approach: regions with a high correlation across
subjects need not have a correspondingly high activation in
either of the two modalities.

In another study comparing EEG � power to FDG metab-
olism, Danos et al. [2001] found a significant negative cor-
relation in the left occipital cortex. Although the spatial
extent may be smaller in the current LORETA/FDG com-
parison, several voxels in the left and right occipital cortex
yielded significant correlations in the same direction as
found by Danos et al. [2001], who also found a significant
positive correlation in the left and right lateral thalamus.
Their study, however, examined correlations between PET/
FDG in the thalamus and EEG/� using normalized and
absolute power from four EEG leads located over the occip-
ital cortex, with no attempt made to localize further the EEG
signal to a particular region of the brain. On the other hand,
the current work utilizes information from all electrodes to
estimate the source location(s) of EEG signal, and performs
a voxel-wise correlation between modalities. Danos et al.
[2001] correlated metabolism in the thalamus with � power
that was related most clearly to the occipital cortex, whereas
the current study, with its voxel-wise correlation, attempts
to relate metabolism and EEG activity at corresponding
locations throughout the brain.

Sadato et al. [1998] simultaneously recorded EEG signals
from the posterior one-third of the scalp while measuring
rCBF using PET with [15O]-H2O as a tracer. They found a
large region of negative correlation between � power and
rCBF in the occipital cortex, and found several other regions
with a positive correlation between EEG and rCBF. Unfor-
tunately for the purposes of comparison with the present
study, several of these regions, such as the midbrain and
hypothalamus, are not in the LORETA solution space. Al-
though the insula is implicated as the structure containing
the maximal positive correlation in the present work for the
�1 band and was a structure also found by Sadato et al.
[1998] to be positively correlated, the comparison between
the previous findings and the current work must be viewed
with caution, as the insula coordinates provided by Sadato
et al. [1998] are relatively far from the insula finding in the
current work. Furthermore, the insula finding in the current
work is limited to a single voxel in the � 1 band, and this
voxel is located at the interior edge of the LORETA solution
space, introducing the possibility of a mismatched LORETA
location similar to that discussed above for the thalamus. A
direct comparison between the work of Sadato et al. [1998]
and the current work, however, is clouded further for the
same reason as the comparison with the work of Danos et al.
[2001] mentioned above; namely, Sadato et al. [1998] corre-

lated voxel-wise metabolism with average � power from a
group of posteriorly positioned electrodes, and did not at-
tempt to localize the EEG activity to a particular location as
in the current study. Furthermore, the tasks were quite
different between these studies, and Sadato et al. [1998] took
EEG measurements over a brief period of time 15 min after
FDG injection, whereas the present study examined the EEG
signal for the full 30 min after injection.

In recent work, Goldman et al. [2002] presented results
obtained from simultaneous fMRI and EEG measurements,
focusing on the � rhythm. They found that “increased �
power was correlated with decreased MRI signal in multiple
regions of occipital, superior temporal, inferior frontal, and
cingulate cortex, and with increased signal in the thalamus
and insula.” Despite the limitations of LORETA to localize a
signal in certain structures such as the thalamus, the current
LORETA/FDG comparison found significant positive and
negative correlations in most of these regions.

Goldman et al. [2002] point out a difference between their
finding of a positive correlation between � power and fMRI
signal in the thalamus, and a previous finding by Larson et
al. [1998] and Lindgren et al. [1999] of an inverse correlation
between � power and FDG metabolism in the same region.
An explanation suggested by Goldman et al. [2002] is that,
due to the extended data collection period during the FDG
uptake period and the resulting poor temporal resolution,
Larson et al. [1998] and Lindgren et al. [1999] were unable to
examine phasic changes on an individual level. Goldman et
al. [2002] then reasonably suggests that the extended time
period may result in more trait-like properties of � genera-
tion, whereas the fMRI findings in their work may “ …reflect
� modulation on an individual subject level, and thus may
highlight the role of the thalamus in moment-to-moment
wave generation.” The major differences between these two
findings is related most likely to the duration of time of data
collection: the short duration of acquisition in Goldman et al.
[2002] reflects individual state features, whereas the rela-
tively long acquisition duration of the current work likely
reflects trait features.

Differences between the results of the current study and
Goldman et al. [2002] may also be related to the difference in
experimental design. The previous study examined subjects
in a resting state with eyes closed, but the data set examined
by the current work [and by Larson et al., 1998; Lindgren et
al., 1999] alternated eyes-open with eyes-closed periods for
the 30-min duration of the initial FDG uptake. Because the
eyes-open and eyes-closed periods were pooled for PET and
EEG measures, the strength of the � signal, which is stron-
gest when a subject is awake with eyes closed, might not be
expected to reach the full signal strength had the eyes been
closed for the entire measurement period. Furthermore,
there are likely to be confounding signals due to the combi-
nation of the two states, making it difficult to compare
directly with data from a single state. The difference in
subject state could also explain the discrepancy between
findings of a positive correlation of � signal and FDG me-
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tabolism in the thalamus by Danos et al. [2001], and the
inverse result found in the current data set.

A limitation of the FDG tracer is that over the span of 30
min it is difficult to ensure that the subject remains in the
same functional state, so that a variety of EEG signals and
metabolic states may become temporally averaged. This av-
eraging process occurs in the analysis process via a com-
puter algorithm, and it is unlikely that the selected averag-
ing scheme will match the average neuronal activity over the
same 30 min. The sensitivity of an inter-modality correlation
is thus diminished, and interpretation of results becomes
less clear. An example of this may be seen in the results
presented in Table III for a region in the occipital cortex.
Typically, while the eyes are closed and the subject is awake,
a larger than average signal is expected in this region in the
� band compared to other states (e.g., eyes open). Because �
activity is typically inversely correlated with brain activity,
one might expect a lower than average PET signal in this
area. The LORETA and PET data, however, show a 2.3- and
3-fold larger signal, respectively, in this area compared to
the rest of the brain. This can be explained by several mech-
anisms. One explanation is that this could provide evidence
for a region where � EEG activity is positively correlated
with metabolism, although this does not fit with current
understanding of the � signal. A more likely (and compet-
ing) explanation is related to the experimental protocol,
which required the subjects to open and close their eyes for
alternating 3-min blocks. The eyes-closed state would be
expected to yield a strong �1 signal, whereas the eyes-open
state would be expected to lead to increased metabolic ac-
tivity in this region. This particular acquisition protocol thus
seems poorly suited for the current cross-modality compar-
ison, and was only used because this initial methodological
development was undertaken using a previously existing
data set.

A shorter-lived radiotracer such as [15O]-H2O, which mea-
sures blood flow, or simultaneous fMRI [Bonmassar et al.,
2001; Goldman et al., 2000, 2002; Lazeyras et al., 2000; Le-
mieux et al., 2001; Schomer et al., 2000], would provide a
better temporal match to the EEG data, permitting investi-
gation of state parameters. Simultaneous fMRI or [15O]-
H2O-PET would also permit a design with multiple condi-
tions that could support a within-subject analysis approach,
which would complement and extend the method used
here. Because this study examined relations across rather
than within subjects, it necessarily highlights the role of
individual trait differences in baseline patterns of regional
activation and their reflection in both EEG and PET. The
goal of the original study from which the current data set
was drawn was to examine individual trait differences. For
this purpose, the relatively poor timing resolution of the
current study can be a virtue, because a more stable estimate
of trait parameters emerges from the extended data acqui-
sition period.

The results presented in this methodologically oriented
work are uncorrected for multiple comparisons. Although
results surviving a Bonferroni correction for all voxels tested

within the brain would be statistically irreproachable, this
approach is considered too conservative for most neuroim-
aging data, which tend to have a fair amount of correlation
between adjacent voxels. This is especially true for PET data,
which are reconstructed from counts between detector pairs
that view many voxels along the line connecting each pair,
and also for LORETA data, where the smoothest solution is
assumed to be the most likely. Less conservative alternatives
to a strict Bonferroni correction include using a Monte Carlo
simulation of the data to estimate the probability of a false-
positive result [e.g., as implemented in AFNI; see Cox, 1996;
Ward, 2000], using a nonparametric permutation approach
[Nichols and Holmes, 2001], or using a parametric general
linear model approach with corrections for multiple com-
parisons derived from random field theory [Friston et al.,
1995; Worsley et al., 1992]. To apply the results of this
inter-modality comparison method to a data set of physio-
logic interest, one of these or another appropriate correction
for multiple comparisons would buttress the statistical va-
lidity of the results.

Despite the limitations noted above, the present results
revealed robust associations between the PET and EEG data
that are generally consistent with extant understanding of
EEG phenomena. With increasing EEG frequency there was
an increase in the number of positively correlated voxels,
suggesting that for higher EEG frequencies more regions
were coupled with higher regional glucose metabolism. In
addition, the lower � band (8.5–10.0 Hz) was associated with
the highest number of negative correlations, in agreement
with the traditional view that this rhythm may be inversely
related to brain activation [Davidson et al., 2000a; Shagass,
1972]. These findings may have important implications for
studies that use EEG to derive a metric of activation and
suggest that either �1 or � band power be elected as inverse
or direct measures of activation.

CONCLUSIONS

We present an approach for comparing brain electrical
activity and cerebral glucose consumption within the same
tomographic reference frame. A 3-D correlational map was
created for each EEG frequency band with FDG-PET data
across multiple subjects. Our findings revealed striking dif-
ferences in the correlations between � or �1 and glucose
metabolism with the former showing positive and the latter
showing inverse associations. Future studies with this mul-
timodal integration approach that utilize hemodynamic
measures with better time resolution than FDG-PET (e.g.,
fMRI or [15O]-H2O-PET) will be able to examine associations
between task-elicited brain electrical and hemodynamic sig-
nals in a within-subject design.
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