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Abstract: In the field of medical imaging, one of the most extended research setups consists of the
comparison between two groups of images, a pathological set against a control set, in order to search
for statistically significant differences in brain activity. Functional Data Analysis (FDA), a relatively
new field of statistics dealing with data expressed in the form of functions, uses methodologies
which can be easily extended to the study of imaging data. Examples of this have been proposed in
previous publications where the authors settle the mathematical groundwork and properties of the
proposed estimators. The methodology herein tested allows for the estimation of mean functions
and simultaneous confidence corridors (SCC), also known as simultaneous confidence bands, for
imaging data and for the difference between two groups of images. FDA applied to medical imaging
presents at least two advantages compared to previous methodologies: it avoids loss of information
in complex data structures and avoids the multiple comparison problem arising from traditional
pixel-to-pixel comparisons. Nonetheless, computing times for this technique have only been explored
in reduced and simulated setups. In the present article, we apply this procedure to a practical case
with data extracted from open neuroimaging databases; then, we measure computing times for the
construction of Delaunay triangulations and for the computation of mean function and SCC for
one-group and two-group approaches. The results suggest that the previous researcher has been too
conservative in parameter selection and that computing times for this methodology are reasonable,
confirming that this method should be further studied and applied to the field of medical imaging.

Keywords: brain imaging; computational neuroscience; data science; functional data analysis; image
processing; neuroimaging

1. Introduction
1.1. Functional Data Analysis

The field of statistics involved in the mathematical development of tools for the
analysis of data in the form of functions is known as Functional Data Analysis (FDA). From
an FDA scope, the minimum unit of data to be analyzed is not one data point itself but
rather a function which, usually, corresponds to a single participant in a biomedical study
or, in more complex scenarios, a series of functions assigned to each of the participants.

The area of FDA is still underdeveloped and much research with new applications
appears every year in scientific journals. However, although a strict definition of the field is
not established—nor appears desirable—there are a series of characteristics which appear
to be inherent to functional data and which can be helpful to understand the methods and
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objectives within the scope of this field. First, functional data are continuously defined
and, as such, single instances of functional data are considered mostly irrelevant and just
as realizations of the underlying function with is the main object of analysis. This is a
necessary constraint established in order to work with this data using the computational
tools available. Second, the basic element of the analytical process performed in FDA is the
whole function itself, and not the individual data elements of which it is composed. Finally,
functional data usually appears associated to some sort of temporal variable and it is also
assumed to have some regularity conditions [1].

Taken together, functional data usually consist of a sample of independent functions
with values which are located in a compact and predefined grid or interval (I) and are, in
most of the cases, assumed to exist in a Hilbert space (L2):

X1(t), X2(t), . . . , Xn(t); I = [0, T] ∈ L2 (1)

In the last years, FDA has gained momentum evidenced by a rise in popularity in sev-
eral applied research areas and the publication of multiple works including monographs [1]
and review articles [2]. Now that this knowledge is available to the public and FDA’s
theoretical basis and applications are beginning to be established, researchers are starting
to consider the use of FDA tools for extended setups such as its application in the field of
medical imaging.

1.2. Applicability of FDA to Imaging Data

In the context of biomedicine, there is great interest in medical imaging data such
as the ones obtained from brain scanners: images of tumor tissues, among others [1].
Nevertheless, smoothing methods proposed in the scientific literature to date which are
focused on imaging data (e.g., kernel smoothing, tensor product smoothing . . . ) suffer from
a severe problem of leakage for high-complexity data structures (i.e., poor estimation in
difficult regions as a result of inappropriate smoothing on boundary regions), showing
difficulties which result in inappropriate smoothing.

In addition, there are other problems aside from estimations of the value for a single
point when analyzing medical imaging data with traditional methods. Another problem
arises for the estimation of the associated uncertainty of that estimation (i.e., its confidence
band)—a problem which becomes even more complicated when considered that also the
spatial correlation has to be taken into account. So far, the predominant techniques for
mean imaging data estimation and also for the computation of associated uncertainty have
been the methodologies termed as mass univariate approaches. From this mass univariate
approach, every pixel in an image is considered as independent; then, a pixel-to-pixel
comparison is performed with classical methods such as t-tests. The associated multiple
comparison problem is then solved applying popular approaches such as the Bonferroni
correction or the application of random field theory [3], which are ad hoc corrections very
dependent on the chosen threshold.

These problems associated with classical methods for mean estimation are avoided
by the FDA technique proposed by Wang et al. [4]. In this article, the authors propose a
way to avoid the problem of leakage on complex data structures using bivariate splines
over Delaunay triangulations (see Section 2.2). In the same article, the authors prove that
spline functions defined over a basis of Delaunay triangulations offer more flexibility and
a varying amount of smoothness, which would allow for a better approximation of the
underlying mean function. They study the asymptotic properties of the spline estimators
using bivariate penalized splines and derive SCCs by means of the extreme value theory
of Gaussian processes. The result is the approximation of mean functions with bivariate
splines using, in this case, the BPST package for R [5]. The result is the preservation of the
most complex and important details of imaging data structures.

The proposed methodology considers imaging data as an instance of functional data
which is continuously defined (as explained in Section 1.1) but observed on a regularly
defined grid. Given that the imaging data are treated as functional data, attention naturally
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moves from the pixel as the minimal analytic unit to the analysis of images as a whole. This
allows not only for the calculation of the mean function of a group of images but also for
the estimation of simultaneous confidence corridors (SCC; also known as simultaneous
confidence bands), an approach which has been proven superior to conventional multiple
comparison approaches [6]. Furthermore, Wang et al. [4] also describe the proposed
bivariate spline estimators, test their asymptotic properties, describe the attributes of SCC
based on these estimators, and extract coverage probability for the obtained mean function.
The conclusion of the article is that the proposed SCC methodology accounts for the correct
probability coverage both in one-group and two-group comparison setups.

However, although the proposed methodology accounts for the correct probability
coverage, the computational resources necessary for its application are not addressed by
the authors, and thus, its utility for a practical case is yet to be fully understood. Previous
research [7] has tested this methodology in limited setups, concluding not only that the
parameters proposed by the authors were too conservative but also that the amount of
time to obtain results was in the tolerable range for modern computational capabilities.
This suggests that moving toward a FDA setup in studies comparing groups of medical
images might be a sensible thing to do; however, this study tested the herein studied FDA
methodology with simulated data which was not very complex in its structure and was also
estimated with predefined parameters. For these reasons, there is a necessity for testing
the computing times of this method in a practical case with real imaging data and a higher
number of patients.

1.3. Objectives

Given that the computational costs for this methodology are not fully explored and that
the only available results—although promising—were only applied to simulated data [7],
this article’s objective consists on testing the practical utility of this novel FDA methodology
by studying the computational efforts necessary to implement it for a practical case with
data obtained from open brain imaging databases transformed and normalized in order to
assign bi-dimensional surfaces—slices of brain imaging data—to an FDA setup in which
each slice corresponds to one function. This analysis is performed by evaluating computing
times for the calculation of the polygonal domain of the Delaunay triangulations necessary
to carry out this method and also evaluating computing times for the calculation of mean
functions of a group of images (one-group setup) and for the comparison between two
groups in order to highlight areas with differences in brain activity (two-group setup).

2. Materials and Methods
2.1. Imaging Data

There are different approaches to brain imaging, resulting in data with differential
peculiarities. For this case, 18F-FDG Positron Emission Tomography (PET) data was chosen
given its reliability [8] and extended use in clinical neuroscience. In this imaging technique,
Fluorodeoxyglucose (18F-FDG), a radioisotope analogue of glucose, is used as a tracer to
monitor brain metabolic rates. Positron emission rates by molecules of 18F-FDG trapped
in brain tissues are used as an indirect measure of glucose consumption, which is then
reconstructed producing 3D images for the position of this tracer in the brain.

Data were drawn from the Alzheimer’s Disease Neuroimaging Initiative [9], selecting
18F-FDG PET data for a control group (75 patients; 44 male; age: 75.56± 4.96 years) and a
Alzheimer’s Disease (AD) group (51 patients; 30 male; age: 74.03± 7.25 years) summing
126 participants. A critical step in any neuroimaging study is the existence of a precise
point-to-point correspondence when comparing scans from brains that present unique
shape and size. For this reason, the entire dataset was pre-processed following a standard
workflow for Statistical Parametric Mapping (SPM) software [10] in order to guarantee
pixel-to-pixel correspondence before the application of the examined technique.

This process consisted of the realignment of brain images according to a fixed and pre-
defined axis, unwrapping in order to correct deformations derived from subjects’ changes in
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position, co-registration with MRI data which provides the anatomical substratum for PET
activity data, normalization in order to fit brain images into an idealized brain shape, mean
proportional escalation in order to compensate mean brain activity levels between patients,
and finally, a masking process in order to remove data which is assumed to fall outside
brain boundaries. As a result, the data used for this study are treated following standard
procedures for brain imaging research and have guaranteed pixel-to-pixel comparability
between patients from different groups and also among the same group.

2.2. Delaunay Triangulations

Delaunay triangulations consist of multiple triangles created by the union of vertices in
which no vertices falls inside the circumcircle of a given triangle. The FDA approach herein
examined uses bivariate splines over a pre-existing grid of these triangulations specifically
designed for the shape of the objective image to analyze. This approach reduces the loss of
information in boundary regions and thus enhances the obtained results’ accuracy. In order
to calculate these triangulations, the Triangulation R package [11] was applied on a slice
of brain imaging data to test its computing costs for growing values of the triangulation
fineness degree.

The imaging data used in order to obtain this triangulation basis are the PET data
from previous sections, which was already pre-processed as per Section 2.1. As a result, a
realistic triangulation grid was obtained, and as such, estimations were performed with
specific parameters for this study and the particular structure of the available data. An
example of these triangulations for a practical case can be seen in Figure 1, and computing
times for growing values of fineness are analyzed in Section 3.1.

(a) (b) (c)

Figure 1. Delaunay triangulations produced for this practical case with real brain imaging data.
Increasing triangulation’s degree of fineness is measured by parameter N. (a) N = 10. (b) N = 25.
(c) N = 50.

2.3. Mean Function and SCC for One-Group Setup

The proposed FDA methodology allows for two different calculations: the estimation
of a group of images’ mean function and its associated SCC in the form of images, and
the comparison between two groups of images in order to obtain the mean function
for the difference between groups. These processes are possible only after a process of
normalization which ensures pixel-to-pixel comparability between groups of images as
described in Section 2.1. In this subsection, one-group mean functions are computed
for a group of images together with its associated SCC for a given alpha (threshold for
statistical significance) value with the help of functions implemented in ImageSCC R
package [12]. Examples of the results obtained using this methodology can be found in
Figure 2. Computing times for different triangulation fineness degrees are analyzed in
Section 3.2.
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(a) (b) (c) (d)

Figure 2. (a) Scale; (b) Lower SCC; (c) Mean Function; and (d) Upper SCC for brain imaging data.
SCCs calculated for α = 0.05 using Delaunay triangulations (fineness degree N = 10).

2.4. Mean Function and SCC for Two-Group Setup

This technique can be extended to a two-sample setup in which the mean function for
the difference between groups of images is obtained together with their SCC. Again, these
groups of images are only comparable after a pre-processing workflow has been carried out,
including a series of transformations, changes in scale, and normalization of brain activity
data. In this example, two sets of images (control and pathological) are compared in the
search for significant differences in brain activity. Using these sources of brain imaging
data, it is possible to calculate which regions of the image present activity patterns falling
outside expected values, suggesting a significant difference in activity for that region in
one group compared to another. Results can be found in Figure 3 and computing times are
analyzed in Section 3.3.

(a) (b) (c)

Figure 3. Example of results for a two-sample approach comparing two sets of images: one conformed
by control patients and another by pathological (AD) patients. Blue indicates detected hypo-activity
while orange indicates hyper-activity. Delaunay triangulations’ fineness degree N = 10. (a) α = 0.1.
(b) α = 0.05. (c) α = 0.01.

3. Results

In this section, the obtained results are summarized for the methodologies described
in Sections 2.2–2.4 when applied to real neuroimaging data (see Section 2.1) using Delaunay
triangulations with a growing degree of fineness (i.e., a growing number of points used for
the triangulation), which seems to be the main tuning parameter for these approaches, as
they indicate the degree of complexity for the grid upon which the data are analyzed.
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3.1. Delaunay Triangulations

In Figure 4, computing times are examined for the generation of a grid of Delaunay
triangulations for highly-complex data structures such as the ones used in this case; these
triangulations are the basis for imaging mean function and SCC estimation and will be
used in the following sections to evaluate computing times for the two possible applica-
tions of this methodology. These results, together with previous findings using simulated
data [7], suggest that the degree of triangulation fineness proposed in the scientific litera-
ture (N = 8) [4] is too conservative and that modern computers available to data science
researchers can easily handle the computation of triangulation grids for N values of up to
N = 25 and higher. However, as described in the following sections, the growing complex-
ity of these grids causes an accumulative effect reflected in the computing times of mean
functions for groups of images, which has to be taken into account.

Figure 4. Computing times for Delaunay triangulations for complex neuroimaging data structures
with growing fineness degree values. Curve fitted with local (LOESS) regression.

3.2. One-Group Mean Function and SCC Estimation

In Figure 5, a graphical summary of computing times to obtain a one-group mean
function and associated SCC in the form of images (as shown in Figure 2) is provided.
Aside from the triangulation degree of fineness, which grows in order to test to what extent
the polygonal domain affects the costs of computation, estimated mean function and SCC
were calculated using parameters recommended by Wang et al. [4], including: degree of
bivariate spline for mean estimation d.est = 5, degree of bivariate spline for construction
of SCC d.band = 2, smoothness parameter r = 1, and a vector of candidates for penalty
parameter with values ranging from 10−6 to 103.

It appears as evident that computing times for this process remain fairly stable in the
range between one and five hours of processing for triangulations with a fineness degree
below N = 15. Above that value, computing times start to rise linearly, resulting in 22 h
of processing for a triangulation’s fineness degrees of N = 25. This is very relevant, as in
previous sections (see Section 3.1), N = 25 was considered as sensible for the computation of
Delauney triangulation parameters; however, the cumulative effect of increasing the grid’s
complexity makes the application of this technique much more difficult and expensive in
terms of time and computational power.

3.3. Two-Group Mean Function and SCC Estimation

In Figure 6, a visual examination of computing costs for performing a two-group
comparison using this FDA technique is presented. This technique implies the calculation
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of mean function for the difference between both groups of images and also the associated
SCC (as shown in Figure 3). We carry out this time calculation for a growing value of
triangulation’s fineness degree using the same parameters recommended by Wang et al. [4]
and described in the previous subsection.

These results show a similar pattern to the ones presented in Figure 5. Computing
times remain stable and sensible until a triangulation’s fineness degree threshold placed
approximately around N = 15. Above that value, computing times for this methodology
grow and can even go above 50 h of time. It is important to note that computing times for
the two-sample case, which is the most significant for clinical practice, are much higher
than for the one-sample case. In line with the results of the previous subsection, it does
not seem sensible to choose a triangulation fineness parameter only on the basis of the
triangulation’s computing times. The whole process needs to be taken into consideration,
and that forces us to choose lower values (e.g., N = 15) as appropriate for computations
inside a sensible time frame.

Figure 5. Computing times for one-group mean function and SCC estimation for neuroimaging data
with growing value of triangulation fineness degree. Curve fitted using local (LOESS) regression.

Figure 6. Computing times for two-group mean function and SCC estimation for the differences
between groups with growing value of triangulation fineness degree. Curve fitted using local
(LOESS) regression.
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4. Discussion

The main goal for this article was to first implement the FDA methodology of Wang
et al. [4] for the estimation of mean functions and SCC for data in the form of images to
a practical case using neuroimaging data. This objective was approached by gathering
PET data from open neuroimaging databases focused, in this case, on AD and other
dementias. After a complex pre-processing stage performed in order to guarantee pixel-to-
pixel comparability, the Delaunay triangulation polygonal space was calculated in order
to serve as a fundamental grid for estimations from an FDA approach. Likewise, we
then proceeded to estimate the mean function and SCC for a single group of images (see
Section 3.2) and for the difference between two groups of images (see Section 3.3), detecting
this way areas with patterns of hypo- or hyper-activity in one group compared to another.

After carrying out these processes of triangulation (Figure 1), one-group mean and
SCC estimation (Figure 2), and two-group mean difference and SCC estimation (Figure 3),
there was still a necessity to evaluate whether the computational costs associated to this
methodology are worthy of the results obtained. Although there are previous publications
covering computing times and parameter selection for this methodology [7], these were
performed with low-complexity simulated data. For this reason, this article aimed to
perform the different stages of this FDA methodology using diverse triangulation param-
eters in order to assess computation times and also to provide future researchers with
indications on the preference of choice when replicating or expanding these results with
real applications.

The results obtained in this study suggest that, in line with previous publications [7]
and against the default parameters suggested by Wang et al. [4], a sensible degree of fineness
for the Delaunay triangle polygonal domain can be higher than N = 8. According to the
visualizations presented for triangulation computing times in Figure 4, together with results
displayed in Figures 5 and 6, this parameter of triangulation fineness can be increased to at
least N = 15 and still obtain results inside sensible time limits when using computers with
relatively high computation power (see Section 5). Computing times—both for one-sample
and two-sample cases—grow as the triangulation grid’s complexity increases, reaching
critical points in which computing times start to be measured in days rather than hours.
This goes in line with expected outcomes for functional data methodologies, which are
meant to be applied to a high number of cases, whereas increases in the intricacy of the
triangulation meshes tend to produce cumulative effects deriving in increased computing
times due to the higher complexity of the calculations involved.

In summary, the proposal of applying FDA techniques to imaging data as bi-dimensional
extensions of functional data is feasible and promising. The different steps necessary for
a practical case application with brain imaging data were performed, obtaining plausible
results which go in line with previous literature in a sensible amount of time. It is sensible
to suggest that given the current computational power usually available at biomedical
data science research groups, parameters for mean function and SCC estimation can be
stricter than the ones suggested in previous articles. It is also important to consider
that an appropriate choice of triangulation parameters is the most relevant decision for
this methodology, as the cumulative effect of their complexity appears to be the most
influential factor affecting computing times. In short, these results confirm the utility
of FDA techniques for real practical cases of imaging analysis as they display desirable
properties such as stability and reasonable computing times.

However, there is still a gap of knowledge to bridge with regard to this new method-
ology. Traditionally, SPM has been the golden standard for brain imaging studies. This
software suite relies on simple statistical tests such as T-tests repeated following what is
known as the mass univariate approach and then correcting false positives derived from
multiple comparisons with methods such as Bonferroni’s correction. Thus, SPM considers
pixels as independent units inside the image, which are compared against its correspondent
pixel in another set of images in order to conclude whether the value of brain activity in
that coordinate is equal to, higher, or lower than its counterpart. This approach can elude
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this problematic as FDA considers the whole image as the basic data unit and, besides, it
can potentially obtain better results for complex data structures such as brain images. For
these reasons, it is reasonable to argue that FDA should detect changes in brain activity
more accurately than SPM and thus be more useful for clinical practice and research in
fields such as neurodegenerative diseases diagnosis and other fields of medical imaging
which are of great relevance in this century. For these reasons, future research should
strive to mathematically address the predictive value of this methodology compared to
SPM in order to have a clearer image of what the advancement of the implementation
of this methodology could mean for researchers and clinical professionals in the field of
neuroimaging and medical imaging more generally.

There are computational considerations to be taken in account which could further
improve the performance of this methodology in terms of computing time. One line of
research should strive for testing this method with GPU together with CPU, as some
sections of the applied code are computationally intensive and could be accelerated but
have only been tested with CPU, as stated in Section 5. Finally, it is also worth considering
that the statistical programming language “R” was used in this study given that the
necessary packages are only available for this language [5,11]. Further research should also
consider adapting these functions in order to use them in other programming languages
which are known to be more efficient with highly-demanding computations such as the
ones herein performed.

5. Computer Specifications

This study was carried out using the Biostatistics and Biomedical Data Science’s
server available at University of Santiago de Compostela, a computer with the following
specifications and R version. Model: ProLiant DL160 Gen9; OS: Ubuntu 18.04.6 LTS x86;
CPU: Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10 GHz; RAM memory: 118 Gb; R version: 4.0.3
(10 October 2020).
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The following abbreviations are used in this manuscript:

FDA Functional Data Analysis
SCC Simultaneous Confidence Corridor
PET Positron Emissionn Tomography
18F-FDG 18-Fluorodeoxyglucose
AD Alzheimer’s Disease
SPM Statistical Parametric Mapping

References
1. Ramsay, J.O. Functional data analysis. In Encyclopedia of Statistical Sciences; John Wiley & Sons: Hoboken, NJ, USA, 2004; Volume 4.

[CrossRef]
2. Wang, J.-L.; Chiou, J.-M.; Müller, H.-G. Functional data analysis. Annu. Rev. Stat. Appl. 2016, 3, 257–295. [CrossRef]
3. Worsley, K.J.; Taylor, J.E.; Tomaiuolo, F.; Lerch, J. Unified univariate and multivariate random field theory. NeuroImage 2004, 23,

S189–S195. [CrossRef] [PubMed]
4. Wang, Y.; Wang, G.; Wang, L.; Ogden, R.T. Simultaneous confidence corridors for mean functions in functional data analysis of

imaging data. Biometrics 2020, 76, 427–437. [CrossRef] [PubMed]
5. Lai, M.J.; Wang, L. Bivariate Spline over Triangulation; R Package Version 0.1.0; R Core Team: Vienna, Austria, 2019.
6. Degras, D.A. Simultaneous confidence bands for nonparametric regression with functional data. Stat. Sin. 2011, 21, 1735–1765.

[CrossRef]
7. Arias-López, J.A.; Cadarso-Suárez, C.; Aguiar-Fernández, P. Computational Issues in the Application of Functional Data Analysis

to Imaging Data. In Computational Science and Its Applications—ICCSA 2021, Proceedings of the 21st International Conference, Cagliari,
Italy, 13–16 September 2021; Gervasi, O., Murgante, B., Misra, S., Garau, C., Blečić, I., Taniar, D., Apduhan, B.O., Rocha, A.M.A.C.,
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