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ABSTRACT 

Suppose that we are given a wait-flee protocol for the asynchronous, concurrent 
processes P 1,Pa,...,Pr, Q 1,Q2,...,Qs, with r > 2, s > 0. For any run (or interleaving) p of 
the protocol and any initialization init of all the protocol variables let X [p, init] be the 
value of the variable X at the end of the run p. The variables X 1,X2,...,Xr "belonging" to 
the processors P 1,P a,...,Pr, respectively, are called functionally dependent for the initiali- 
zation init, if for any runs p, o of the protocol, 

(~/i ,j )(Xi [p, init ] = Xi [tJ, init ] ¢:~ Xj  [p, init ] = Xj [~, init ]). 

For any mn p and any initialization init of the protocol define the evaluation mapping 
evalx,,x2....3c,(p, init) = (Xl[p, init],X2[p, init],...,Xr[p, init]). We show that for any pro- 
tocol as above, the variables X1,X2,...,Xr are functionally dependent for the initialization 
init if and only if the quantity evalx#c~,...3cr (p, init) is independent of p. 

1. Introduction 
There has been a lot of  interest in the current literature on Distributed Computing for a more 

thorough examination of the computational possibilities offered by wait-free protocols. In partic- 
ular, this has led to a re-examination of  the necessity of  using control primitives in the design of  
Concurrent Reader, Concurrent Writer protocols. The results obtained so far have been particu- 
larly interesting. Several researchers have been able to implement: (i) atomic, 1-reader, 1-writer 
registers from safe, 1-reader, 1-writer registers ([L], [K], [T]), and (ii) atomic, multireader, multi- 
writer registers from atomic, 1-reader, 1-writer registers, by using only wait-free protocols ([A2], 
[B], [K], [L1], [L2], [N], [P], [V]). Wait-free protocols are of  particular interest not only because 
they are free from the usual control primitives (like, Mutual Exclusion, Test and Set, etc.), but 
also because they make possible a rather quantitative appraisal of  the complexity of  various algo- 
rithms, e.g. determining the wait-free protocol with the best running time ([P], [L2]). 

There are certain instances of  programming methodology which have "inherent" waiting 
requirements (e.g. whenever it is necessary to allocate a critical resource among many users). In 
such instances, the mechanism of waiting has been extensively used ever since its introduction by 
Dijkstra [D]. As it seems natural these considerations have led [H] to implement a hierarchy of 
objects such that objects at a certain level of  the hierarchy are "stronger" (with respect to waiting 
mechanisms) than objects lying below this object in this same hierarchy. The purpose of the 
present paper is twofold: (1) to reappraise the computational aspects and limitations of  wait-free 
programs, and (2) to "draw the line" between what is possible (e.g. solving the Concurrent 
Readers/Writers problem) mad what is impossible (e.g. Mutual Exclusion problem) by using only 
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wait-free programs. Before giving an outline of  the main results it will be necessary to introduce 
some useful concepts. 

1.1. Preliminaries 

In order to motivate our results and facilitate the discussion we will first consider wait-free 
protocols consisting of  processors each executing a sequence of  assignment statements. In section 
5 we will indicate all the modifications necessary to cover the most general wait-free protocols 
(such protocols in addition to assignment statements will include: if ... then ... else ... fi; and for  
i = 1...n do ... od statements). Let Z be a language consisting of  the assignment symbol :=, the 
function symbols F ,  G .... (with subscripts and/or superscripts) each associated with a specified 
arity > 0, (if the arity o f F  is 0 then F is also called a constant) and the variables Vo,Vl ..... vn ..... 

An assignment statement of X is a formula of  the form x := F (xb...~Xn), where x ,x b...,xn 
are variables and F e Z is an n-ary function symbol. Suppose that P and Q are asYnchronous, 
concurrent processors each executing a finite sequence p l,...~om and q l ..... qn, respectively, of  
assignment statements. These assignment statements form a program or protocol P II Q.  Call 
the variables occurring in all these assignment statements of  P II Q,  protocol variables. I f  
x := F(xb . . . , x r ) ,  is an assignment statement of  P (respectively, Q ) then the variable x is said to 
belong to P (respectively, Q), The protocol variables are supposed to satisfy certain atomicity 
conditions (see section 3, for formal definitions). The program P II Q can have numerous possi- 
ble executions. We illustrate this in the example below. 

Suppose that processor P (respectively Q ) intends to execute the assignment statement p : 
"x := F (x')" (respectively q : "y := G (y' ,  y"  )"). In general, a possible execution might be given 
by the following sequence of  statements: Q reads y" ;  P reads x ' ;  Q reads y ' ;  P writes 
x = F ( x ' ) ;  Q writes y = G ( y ' , y ' ) .  However, for the purposes of  the investigations of  the 
present paper such "lower level" interleavings will never be considered. In other words, although 
intefleavings among the p 1,...~o m , q 1,...,qn are possible, the actions Pi and qj will be considered 
atomic, i.e. either all subactions o f p i  precede all subactions of  qj or else all subactions of  qJ pre- 
cede all subactions o f p i .  For this reason we will also call such assignment statements atomic. 

Let xl,...,x k be a list of  all the protocol variables. An interpretation or model of  the protocol 

P 11Q is a structure m = ( M ,  F m , G m ,...) together with a k-tuple i n i t ~ M  k, where 

• i f F ~ Z i s a n n - a r y f u n c t i o n s y m b o l t h e n F  m : M  n - - - )M,and  

• init = (c I ..... ck) are the initial interpretations of  the protocol variables x 1,...,xk, respectively, 
where c 1 ..... c~ ~ M;  the k-tuple init is also called initialization of  the protocol variables. 

For any sequence o = (r ~ ..... rm) of atomic assignment statements r 1 ..... rm of  the protocol P I1 Q,  
and any protocol variable X define the value X [a, init] of  the variable X in the model 

m = ( M ,  F m ,  G m ,...) with respect to the sequence ~ by induction on the length of  ~.( t)  Sup- 
pose that X is the variable xj in the list x b..-,x, of  all the protocol variables. I f  ~ = O,  i.e. cr is 
the empty sequence, then X[t~, init] = c j .  Let c be the sequence (rl  ..... rs+1) and let p be the 
sequence (rl ..... rs). Suppose that rs+l is the assignment statement y := F (Yl ..... Yn). Then define 

X [ o ,  init] = F m ( y l [ p ,  init],...,yn[p, init]) i fX = y ,  and X [p, i n i t ]=X[p ,  init] i fX # y .  

We are interested in program executions (interleavings or runs) p--((X, <p ), of  the 

(l') The value of the variable X in a model m for the protocol e II Q at the end of the execution of the run p 
depends on P II Q, m ,  init, p, where init is a given initialization in m .  Therefore a more correct notation is 
xm [p II Q, P, init  ]. Instead we use X [p, init I by abuse of notation, because the model m and protocol e II Q 
will always be easily understood. Moreover, we will normally be referring to an initialization init of the pro- 
tocol variables without explicitly mentioning the model m .  
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assignment statements p 1 ..... Pro, q 1 ..... qn , with ~ = { r 1 . . . . .  rm +n } = {P 1-..,Pro } u { q 1,...,qn }. Th e  
order of  actions in a run p is determined by the relation <p,  i.e. p <p p '  if  and only i f p  immedi- 

ately precedes p" in the run p, where p ,  p" ~ ~ .  We assume that the transitive closure --->p of <p 

is a partial ordering on the set O~ such that the natural ordering of  the execution of  the program 
P II Q is preserved, i.e. for any run p of  the program P II Q the following order among the atomic 
assignment statements in ~ must be preserved: 

P l  -->p P2 ---->p " ' "  --'~pPm, q l  "-'>p q2 -->p " ' '  "-~pqn. 

In general, actions Pi, qj may be concurrent in a run p; in our framework this can be expressed by 
simply stating that Pi, qj are -o  o -incomparable. However, as explained before, here we are only 
interested in a specific type of  runs (or "higher level" interleavings) for which --->p is a linear 
order. Let  R U N ( P  1t Q) ,  or simply R U N ,  be the set of  all these runs, where P II Q is a certain 
program as above. 

Let m be a given model of  the protocol and suppose that X,  Y are variables belonging to 
P ,  Q,  respectively. The evaluation mapping of the protocol P II Q (with respect to the model 
m) is a function evalx,r  : R U N ( P  II Q ) xMk -'~ M2, defined by the formula 

evalx,r  (P, init ) = (X [p, init ], Y [p, init ]).(* ) 

1.2. Results of the Paper 
In [A1 ], Anderson and Gouda proved that it is impossible to construct protocols of  the form 

P 11 Q defined above, which also satisfy the following conditions for any initialization init: 

the variables X,  Y can only assume the values 0, 1, 

evalx,r (p, init )E { (0,1), (1,0) }, for all runs p, 

evalx,r (p l,...~Om, q l ..... qn, init ) = (0,1), 

evalx ,r(q  1 ..... qm , P 1 ..... Pro, init ) = (1,0) 

(they call such protocols, binary disagreement protocols). 

The present paper investigates even further the limitations of  wait-free protocols, by analyz- 
ing and studying one of  their main structural deficiencies, namely "their inability to make a pro- 
cessor walt". As a first step it was observed that the result mentioned above could be generalized 
to show that there exist no protocol P l[ Q such that the following conditions are met  for any ini- 
tialization init : 

the variables X,  Y can only assume the values 0, 1, 

evalx,r(p,  ini t)~ {(0,1), (1,0)}, for all runs p, 

(3 p,a~ R U N )  [evalx,y (p, init ) ~ evalx,r  (c ,  init )]. 

Motivated from this, we define a new notion of  functional dependency among protocol variables. 
Namely, we call the variables X, Y "belonging" to processors P ,  Q,  respectively, functionally 
dependent for the initialization init,  if for any runs p, a of the protocol P II Q,  

X[p,  init ] = X[t~, init ] ¢:~ Y[p, init ] = Y[t~, init ]). 

Using this notion it is possible to provide characterizations of  those programs for which the vari- 
ables X,  Y are functionally dependent in terms of  the evaluation function evalx,r  of  the program 

(see section 3). In fact we show that for any model m of the given protocol and any possible 

(*) The same remark as in the previous footnote applies to the notation used for the evaluation function evat. 
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initialization init of  the protocol variables the following statements are equivalent: 

• the variables X,  Y are functionally dependent for the initialization ini t ,  

• the quantity evalx ,y  (p, init ) is independent of  the run p e R U N .  

Intuitively, if both the binary relation {(X[p, init],  Y[p, init]) : p ~ R U N }  and its inverse are 
functions then the relation must be a singleton. This makes it possible to give very natural and 
elegant generalizations of  the result of  [A1] not only to multivalued variables (as opposed to 
boolean valued variables considered before), but also to multiprocessor protocols (see section 4). 
As in [Al l  this implies the impossibility of  constructing wait-free protocols for Mutual Exclu- 
sion. The main combinatorial lemma needed for our analysis is presented in section 2. Exten- 
sions to more general protocols are given in section 5. 

2. A Combinatorial Principle 
At the heart o f  the proof of  the result on functional dependencies in walt-flee programs lies 

a rather simple combinatorial principle. Before stating and proving this principle some 
definitions will be necessary. Let A = {a], a2 ..... am }, B = {bl, b2 ..... bn } be two disjoint sets 
such that I A I = m > 1, I B I = n > 1. Let [A ,B ] be the set of  sequences x = (x 1 . . . . .  Xm+n) of ele- 
ments o fA u B  such that 

{xl  . . . . .  Xm+n } = A u B ,  

and if ai =xk(i), bj =xz~j), then both sequences <k( i )  : i = 1 ..... m > ,  < l ( j )  : j  = 1 ..... n >  are 
monotone increasing. For each i ,  j let a i = ai+l . . . . .  a m be the "final" segment o f  the sequence 
(al  ..... am) starting from ai+b and similarly bJ =bj+l . . . . .  bn. For i , j  _>1, call a sequence 
x ~ [A ,B ], {ai, bj }-separated if x is of  one of  the following four forms 

(s ,  ai,  b j ,  a i , bJ) ,  (s ,  ai ,  bj ,  b J, a i ) ,  (s ,  b j ,  a i , a i , b J), (s ,  b j ,  ai,  b j ,  a i ) ,  

where s is an arbitrary finite sequence of  elements o fA  u B  of  the appropriate length ( = i + j -2 ) .  
For any {a i , b j  }-separated sequence x let x ( a i ,  b j )  (respectively, x ( a  i, b J)) be  the sequence 
obtained from x by interchanging the position of  a i , b) (respectively, a i , b J) in x.  An elementary 
interchange of  the type x ---> x (ai, b j )  is called one-step interchange. Let F : [A ,B ] ---) S be a 
function defined on all the sequences in [A ,B ] and with range the nonempty set S. Then we can 
prove the following theorem. 

Theorem 1. (Combinatorial Theorem) 
Assume that for some i ,  j > 1 there is a n  {ai, bj }-separated sequence x e  [A, B ] such that 
F ( x )  # F ( x ( a i ,  bj)) .  I f x ~  [A ,B] is an {ai, bj  }-separated sequence such that i + j  is maxi- 
mal with F (x ) ~ F (x (ai,  bj )) then we have that F (x (a i, bJ )) ~ F (x (a i, b j ) (a i ,  bj  )). 

Proof.  Let x ~ [ A , B ]  be an {a i ,b j } - separa ted  sequence such that i + j  is maximal with 
F ( x )  ~ F ( x ( a i ,  bj)) .  Clearly, in order to prove the theorem it is enough to show that both equa- 
tions below 

F (x ) = F (x (a  i, b J)), (1) 

and 

F (x(ai ,  b j ) )  = F (x (a  i, bJ)(a i ,  b j ) )  (2) 

are true. We prove only (1). The proof of  (2) is similar. Without loss of  generality assume that 
x = ( s ,  ai ,  b j ,  a i , b J). The  idea of  the proof is to transform the given sequence x into the 
sequence x (a i b J) in stages via sufficiently many one-step interchanges. 

Stage 1. Interchange the position of  am and each bs (s = j +1 ..... n)  one at a time and let 
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Xm ,j = X,  X m ,j+l = X (drn, bj+l), Xm ,i+2 = Xm ,j+l(am, bj+2),...,Xm.n = Xm ,n-l(am, bn ), 

be the resulting sequences. 

Stage 2. Start from the sequence Xm,,,, interchange the position of  am-1 and each bs 
(s = j + l  ..... n ) one at a time, and let 

Xm-l,j+l = Xm,n (am-l ,  bj+l), Xm-lj+2 = Xm-lj+l(am-1,  bj+2),-..,Xm-l.n = xrn-l ,n-l(am-l ,  bn ), 

be the resulting sequences. Continue in this manner. 

Final Stage. Start from the sequence xi+2,n, interchange the position of  aj+l and each bs 
(s = j + l  ..... n)  one at a time, and let 

Xi+l,j+l = Xi+2,n (ai+l, bj+l), xi+lj+2 = Xi+lj+l(ai+l, bj+2),...~ci+l,n = xi+1,n-l(ai+l, bn),  

be the resulting sequences. Clearly, x = xm,j ,  x i÷l~ = x ( a  i ,  b J). It follows from the maximality 
of  i + j that the function F assumes the same value on all the above sequences, i.e. 

F (Xmj ) = F (xm,j+l) . . . . .  F (xm,n) = 

F (Xm-lj+l)  = F (Xm-Lj+2) . . . . .  F (xm-l ,n)  = 

F (Xi+l,j+l) = F (X i+ l , j+2)  . . . . .  F (Xi+l,n). 

This shows that F ( x ) =  F ( x ( a  i ,  bJ))  and completes the proof of  part (1) of  the theorem. The 
proof of  part (2) is similar. • 

The combinatorial theorem, as well as its proof will be used frequently in the sequel. 

3. Two Processor Programs 

In this section we prove the main result on functional dependencies for 2-processor proto- 
cols. Suppose that we are given two processes P ,  Q which are executing concurrently and asyn- 
chronously the atomic assignment statements p 1,P2,...,Pm and q 1,q2 ..... qn. We assume that each 
of  the Pi,  qj  is an atomic assignment statement of the type xi := Fi (wi ) ,  y j  := Gy(zj ) ,  respec- 
tively, where the variables satisfy the following atomicity conditions ([A1]): 

Variable Atomicity Conditions: 

• The sets {xl, x2 . . . . .  X m } , { y l , y  2 . . . . .  ym } of  program variables are mutually disjoint. 

• The atomic statements Pi sat isfy the following conditions: 

either xi is a local variable of  P ,  and F i e  X is a function symbol and the variables 
wi = wi,1 ..... wi,k, are either local or read variables of  the process P ,  

or xi is a write variable of  P ,  and F i e  X is a function symbol and the variables 
wi = wi,1 ..... wi,k, are local variables of the process P .  

• The atomic statements qj satisfy the following conditions: 

either Yi is a local variable of Q ,  and Gj c X is a function symbol and the variables 
zj = zj,i,...,zj.l~ are either local or read variables of  the process Q,  

or y j  is a write variable of  Q,  and G j c Z  is a function symbol and the variables 
zj = zj,1 ..... zy,lj are local variables of  the process Q.  

Such a program will be denoted by P It Q.  The next theorem ties the notion of  functional depen- 
dencies of  variables with the evaluation mapping evalx , r  of the program P II Q.  This generalizes 
the main result of  [A1] to the case of  multivalued variables. 
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Theorem 2. (Two Processor Functional Dependencies) 

Let P It Q be any wait-free program with X,  Y variables of  P ,  Q respectively. Let  RUN be 
the set of  all possible runs of  P II Q.  Then for any initialization init of  the protocol vari- 
ables (in a given model m )  the following statements are equivalent: 

(1) The variables X,  Y are functionally dependent for the initialization init. 

(2) The quantity evalx,r (p, init) is independent of  the run p e RUN.  

Proof. The implication (2) ~ (1) is trivial. So we will only concentrate on the proof of  
(1) ~ (2). As in theorem t we use the notation: pi =Pi+l,...,Pm, qJ = qj+l ..... qn. Fix any initiali- 
zation init of all the protocol variables. First o f  all we prove the following claim. 

Claim 1. For all i,  j and all {Pi, qj }-separated sequences p, 

evalx,r (P, init ) = evalx,r (P(Pi, qj ), init ). 

Proof of Claim 1. Assume on the contrary that there exist i,  j and a {Pi, qj }-separated 
sequence p such that evalx,r (P, init ) ~ evalx,r (P(Pi, qj ), init ). For the given initialization init 
let the function F be defined on the set R U N  of  runs of  the protocol by F(p)  = evalx,r(p,  init). 
Clearly, for any initialization of  the variables the set RUN can be identified with the set 
[ {Pl ..... Pm }, {ql ...... qn }] considered in the previous section. Let p be {Pi, qj }-separated, with 
i + j maximal such that F (p) ~ F (P(Pi, q j)). Without loss of generality assume that 

P . . . .  Pi qj qj+l "'" qn Pi+l "'" Pm, 

P(Pi,qj)  = "'" qj Pi qj+l " '" qnPi+l " '" Prn, 

p(pi,  q j )  . . . .  Pi qj Pi+l " ' "  Pm qj+l " '" qn, 

P(Pi ,q j ) (p i ,q  j )  . . . .  qj Pi Pi+l " "  Prn qj+l ' ' "  qn. 

The variable dependencies that will be proved below are summarized in table 1. Recall that due 
to the assumption of  the functional dependence of  the variables X, Y, if p and o are runs such 
that either X[p,  i n i t ] = X [ o ,  init] or else Y[p, ini t]=Y[cJ,  init] then it is true that 
evalx.r (p, init) = evalx.y (~, init ). This simple observation will be used frequently in the sequel. 

xi yj 
local local 

write write 

local write 

write local 

Variable Equalities 

X [p] = X [p(pi, qj)], Y [p] = Y [p(pi, q j)] 

X [p] = X [p(p~, q/)l, Y [Pl = Y [P(Pi, q j)] 

Y [P] = Y [P(Pi, q j)] 
X [p(pi, q J)] = X [p(pi, q J)(pi, q j)] 

Table 1: Variable Equalities in P II Q.  

If  xi were a local variable of P and yj were a write variable of  Q then xi := Fi (wi), where the wi 
are local or read variables of P and yj := Gj (zj), where the zj are local variables of  Q.  But then 
in the runs p, P(Pi, qj),  the actions qj+l ..... qn do not see the value assigned to xi by Pi. More- 
over, since yj is a write variable of  Q its value does not depend on Pt. Hence, 
Y [p] = Y [p(pi, qj)]. 

If  either both xi,  yj  are local variables of  P ,  Q respectively or else both xi,  yj  are write variables 
o f  P ,  Q respectively then X [p] = X [p(pi, q j)], Y [p] = Y [p(pi, q j)]. 

Hence, the only case left is if y/ is a local variable of  Q and xi is a write variable of  P .  In view 
of  theorem 1, F (p(pi, q j ) )  ~ F (p(p i, q j  )(pi, qj)). However, since yj is local to Q,  we must have 
X [p(pi,  q J)] = X  [p(pi, q/)(Pi,  qj)]. 

This gives contradictions in all four cases considered and completes the proof of  claim 1. 
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Therefore for all i,  j and all {pi, qj }-separated sequences p, 

evalx v(p,  init ) = evalx .r(p(Pi ,  q j ) ,  init ). (3) 

But then it is not hard to show that (3) implies the conclusion of  the theorem, i.e. there is a con- 
stant c such that for all runs p evalx,r(p,  i n i t )=  c. More formally, the following claim is 
needed. 

Claim 2. If  the run p is {Pi, qj }-separated with i + j > 2 then there exists a {Pi', q ;  }- 
separated run p'  such that i" + f < i + j ,  evalx.r  (P, init ) = evalx,r  (P', init ). 

Proof of claim 2. Suppose that p = ( s , p i , q j , p i , q J ) ,  where s is a sequence of  length 
i + j - 2. By repeatedly applying (3) it can be shown that 

evalx ,r(p,  init ) = evalx .r(p(pi ,  qj ), init ) = evalx ,r (p(p  i , q J), init ). 

On the one hand, if the last element of  s is Pi-1 then put p' = P(Pi, qj) ,  which is a {Pi-1, qj }- 
separated sequence. On the other hand, if the last element of  s is qj-1 then put p" = p(pi,  qj) ,  
which is a {Pi, q j-1 }-separated sequence. This completes the proof of  claim 2. 

To finish the proof of  the theorem start with an arbitrary run p and interchange the position 
of  its atomic assignment statements one by one, by performing one-step interchanges, just like in 
the proof of  theorem 1, until p is transformed into the run (p 1 ..... Prn, q 1 .. . . .  qn). That this can be 
done is guaranteed from the result of  claim 2. Hence, 

evalx ,r (P, init ) = evalx,r  (191 ..... Pro, q 1 ..... qn , init ). • 

4. Mult iprocessor  P rograms  

As a byproduct of  our analysis on functional dependencies we can now generalize the previ- 
ous results to multiprocessor, wait-free programs consisting only of assignment statements. 
Indeed, let 

PIlIP211 " '"  [ IPrI IQI l IQ211 ' "  IlQs, 

be a wait-free program of r+s processors: P 1 , P 2  ..... Pr are the active processors, and 
Q1, Q2 ..... Qs are the dummy processors, with r >2 ,  s >0 .  The definitions and assumptions 
outlined in the previous sections are still assumed true for the case of  multiprocessor protocols. 
In the sequel, we stress the most important of  these aspects. We assume that each processor Pi 
(respectively, Q j )  executes a sequence of  "atomic" assignment statements p i ,  p ~ ..... p / ,  (respec- 

tively, q~, q~ ..... q~ ), where i = 1,..,r (respectively, j = 1,..,s). The p/~, q/~ are atomic assign- 

ment statements of the form x := F ( w ) ,  where x ,  w = w l  ..... wt are variables of  the correspond- 
ing process, and F is a function symbol in the language E. Let W ( P i )  be the set of  variables x 
which are assigned a value by the process Pi ,  i.e. the set of  variables x such that some assign- 
ment statement p~ of  the process Pi is of  the form x := F (w). 

Variable Atomicity Conditions: 

• the sets W ( P i )  are pairwise mutually disjoint, for i = 1,...,r, i.e. W ( P i ) n W ( P i )  = 0 ,  for 
i ~ j .  

Suppose that x := F (w) is any assignment statement of  processor Pi.  Then the variables 
X ,  W = W 1 . . . . .  W t are supposed to satisfy the following conditions: 

either x is a local variable of  Pi, and F is a function symbol and the variables w are 
either local or read variables of  the process Pi,  or 

x is a write variable of  Pi,  and F is a function symbol and the variables w are local 
variables of  the process Pi.  
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As before, we are interested in program executions (or runs) p = ( ~ ,  <p ) of  the above pro- 

gram, where Ct is the set of  atomic assignment statements of  the program. The order of  actions in 
a run p is determined by the relation <p,  i.e. p <pp '  if and only i f p  immediately precedes p" in 

the run p, where p ,  p'  ~ ~ .  We assume that the transitive closure --->p of  <p is a partial ordering 
on the set A such that the "natural ordering" of  execution among the ac t ions--  {pi} for pi, and 
{q~} for Q j - - o f  the program is preserved, 

P i -->p " " " --->p P~,,  i = 1 ..... r ,  

q~ -->p . . .  --->p q~ ,  j = 1 ..... s. 

For any run p of  the protocol and any initialization init of  the variables let X [P, init ] be the 
value of  the variable X at the end of  the run p, when all the variables are initialized by init (the 
formal definition of  this which is given in introduction can be generalized easily). For each 
i = 1 ..... r l e t X i e W ( P i )  (in this case we say that the variable Xi belongs to the processor Pi). As 
before, for any run p and any initialization init of  the program variables, define the evaluation 
mapping of  the program by 

evalx,  x2, ._.x,(P, init ) = (X lip, init ], X2[p, init ] ..... Xr [p, init ]). 

Call X l, X2 ..... Xr functionally dependent if the following holds for any initialization init, where 
p, t~ range overruns of  the protocol P1 II P2 II " ' "  II P~ II Q1 II Q2 II " ' "  II Qs: 

Vp,  t~Vi ,j (xi [p, init ] = x i  [t~, init ] ¢=~ X) [p, init ] = xy [t~, init ]). 

In general, the values obtained by the evaluation function evalxl, x2 ..... x,(P, init) depend on the 
initialization init of  the protocol variables as well as on the protocol run p. However, as before 
we can prove a necessary and sufficient condition for the evaluation mapping to be independent 
of  the given run P. This is done in the following theorem. 

Theorem 3. (Multiprocessor Functional Dependencies) 

Let X1 ,X2  ..... Xr be variables belonging to the active processors P1, P2 ..... P r ,  respec- 
tively, of  the wait-free, muttiprocessor program P t  II P2 I1 " ' "  I1Pr I1 Q1 II Q2 II " ' "  II Qs, 
with r > 2, s > 0. Let RUN be the set of  all its possible runs. Then for any possible initiali- 

zation init of  the protocol variables (in a given model m )  the following statements are 
equivalent: 

(1) The variables X l, X 2 ..... Xr are functionally dependent for the initialization init. 

(2) The quantity evalxl, x2...., x, (P, init) is independent of  the run p ~ RUN.  

Proof.  Clearly, theorem 2 proved in the previous section corresponds to the case 
r = 2, s = 0. The implication (2) =~ (1) is trivial. Hence it only remains to prove the reverse 
implication. Assume that (1) is true. We want to show that (2) is true, as well. The proof o f  the 
present theorem is via two reductions. First we show that the special case r = 2 of  the theorem 
implies the more general case r > 2. Next we show that theorem 2 implies the present theorem in 
the case r = 2, s > 0. Obviously, this is enough in order to give a complete proof of  the theorem. 

Claim. Without loss of  generality we can assume r = 2. 

Proof of  the claim. Indeed, assume that the theorem is true for r = 2. It will be shown that 
the theorem is true for any arbitrary r > 2. Let i < j < r be arbitrary, but fixed. Consider the pro- 
gram 

e t l l e j l l ( e l l l P i - a l l e ~ + l l l  "'" IIPj-111ej+lll " ' "  I ler  IIQltlQ211 " ' "  IIQ~) (4) 

with selected variables Xi,  Xj and evaluation mapping evalx,,xj(p, init). By the assumption that 



156 

the theorem is true for r = 2, if the variables Xi ,  Xj  are functionally dependent in the program (4) 
then the quantity determined by its evaluation function evalx,, xj(P, init)  is independent of  the run 

p. But by assumption (1) of  the theorem the variables X1,X2, . . . ,Xr  are functionally dependent. 
Hence, for all i , j  the quantity determined by the evaluation function evalx,,x~(p, init)  is 

independent of  the run p. But then it follows immediately that the quantity evalx~.x2,..,x,(p, init)  

is also independent of  the run p. This completes the proof of  the claim. 

In view of the claim just proved we can assume without loss of  generality that we have the 
program e tl Q 11 Q1 II Q2 II " ' "  11Qs, with Q111 Q2 II " ' "  II Qs the dummy processors, and two 
variables X,  Y belonging to the active processors P ,  Q,  respectively, which are functionally 
dependent, i.e. for any runs p, o of the protocol P II Q II Q l II Q 2 II • ' • II a s ,  

x [p, init ] = x [a, init ] ¢=~ Y [p, init ] = Y [c, init ]). (5) 

Let R be the set of  all possible runs of  the program P II Q 1 tl Q 2 II " " " It a s .  Any run pe  R gives 
rise to a program Pp II Q ,  where the processor Pp is executing the sequence of  assignment state- 
ments determined by the run p, while Q is executing the sequence of  assignment statements it 
was executing before in the program P I1Q It Q1 II Q2 II " ' "  11 a s .  For each run p e R  let 
evalp~ ,r  be the evaluation mapping of  the program P p II Q.  It is clear that for all runs p~ R,  

R U N ( P p  II Q)  c R U N ( P  II Q II Q1 II " ' "  II a s ) .  

In view of theorem 2, and equivalence (5) the quantity evalp~,r (~ ,  init)  is independent of  the run 
a e R U N ( P p  II Q ). Put co(ini t)  = evalp,x .r(c ,  init).  It remains to show that for all runs p, p ' ~ R ,  
and all initializations init ,  cp ( in i t )=  cp,(init).  To this effect, let p, p ' ~ R  be two arbitrary but 
fixed runs, and consider the following two new runs of  the program P 11 Q II Q t It "" " I1 a s :  

: ql ,  q2 . . . . .  q n ,  P ~ R U N ( P p  I1 Q) 

o~ : q l ,  q2 . . . . .  qn, P" ~ RUN(Pp ,  II Q) ,  

i.e. ~ (respectively, o") is formed by executing the sequence of assignment statements q 1 ..... qn 
followed by the assignment statements occurring in p (respectively, in p'). Let init be any initial- 
ization of  the variables. Clearly, 

evalx.l~(~3, init ) = evalo.x.y(o,  init ) = co(in# ) 

evalx.r (o  ~, init ) = evat p,~ y (~', init ) = c p,(init ). 

Moreover, since in the run (~ (respectively o ~) the subrun p (respectively p') cannot influence the 
value attained by the variable Y, it is immediate that Y[o, init ] = Y[o  ~, init]. Since by the 
assumption of the theorem the variables X,  Y are functionally dependent it follows that also 
X [~, init ] = X [o ~, init ]. Hence, 

c p(init ) = evalx,r  (~, init ) = evalx.r (~', init ) = c p,(init ). 

This completes the proof of  the theorem. • 

4.1. Examples 
Now a few illuminating examples are in order. 

Example  1. The reader should pay special attention to the variable conditions mentioned at 
the beginning of this section; they are quite important for the validity of  theorem 2. This is easily 
seen in the following example. Let P ,  Q be two processors executing the statements p : 
"X := Y + 1", and q : "Y := X + 1 ", respectively (where + denotes modulo 2 addition). Further, 
suppose that X is a write variable and Y is a read variable of  P (respectively, Y is a write variable 
and X is a read variable of  Q).  Consider the runs p = (p,  q ) and G = (q, p ), and the initialization 
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init = (0, 0) of  the variables X,  Y. It is then easy to see that at the end of  the execution o f  the runs 
p, t~, X[p,  init] = 1, Y[p, init] = 2, X[fs, init] = 2, Y[c~, init] = 1. Hence, the variables X,  Y are 
functionally dependent for the initialization init, but the values assumed by the evaluation map- 
ping evalx.r ( ' ,  init ) are not independent of  the run, since 

evalx.y (p, init) = (1, 2) ~ (2, 1) = evalx,r (~, init ). 

Example 2. If  even one processor is allowed to execute a waiting loop then theorem 2 is 
false. For such an example the reader is referred to [A1]. 

Example 3. The following example illustrates theorem 2. Suppose that P II Q is a wait-free 
program, with distinguished variables X,  Y belonging to the processes P ,  Q ,  respectively. Let 

m = ( M ,  F m ,  G rn,...) be a model of  the protocol and suppose that f : M --> M is a one-to-one 
function. An immediate consequence of  the theorem is that the following claim can be proved. 
Let init be any initialization of  all the protocol variables. I f  for any run p of  the protocol P II Q,  
f (X [p, init ]) = Y [p, init ] then evatx.r (p, init) = (X [p, init ], f (X [p, init ])) is independent o f  the 
run p. 

Example 4. Clearly, theorem 2 (and its extension given in the next section) implies that it is 
impossible to construct walt-free, binary disagreement protocols. Further, it is shown in [Al l  that 
it is impossible to implement Mutual Exclusion without waiting. According to theorem 3 (and its 
extension given in section 5) this is also the case even if we assume that a finite number Q 1 ..... Qs 
o f  "dummy" processors is present. 

5. Extensions to More General Protocols 

The previous two theorems on functional dependencies can easily be extended to programs, 
which-- in  addition to assignment statements--include the following additional types of  state- 
ment constructions: if ... then ... else.., fi; for  i := 1 ..... n do ... od. We extend the language Y~ by 
adding relation symbols R,  S ..... (with subscripts and/or superscripts) each of  a certain arity > 1. 
Statements of  the form R (vl ..... vn) are called primitive statements. In addition, to assignment 
statements now we also have boolean statements, i.e. boolean combinations of  primitive state- 
ments. The class of  program statements is the smallest class of  statements such that assignment 
statements are program statements, and is closed under 

(a) if ot then p else p" fi, where tx is a boolean statement, 

(b) f o r i  := 1 ..... n d o p  od, 

where p ,  p" axe sequences of  program statements. A processor P will now be executing a 
finite sequence of  program statements each of  which must satisfy one of  the following conditions 
[A1]: 

• if it is an assignment statement then its variables satisfy the variable atomicity conditions 
for the processor P (see section 3), 

• if it is a program statement of  the form (a) above then all the variables occurring in ct must 
be local to P ,  

• if it is a program statement of the form (b) above then both variables i ,  n must be local to 
P ,  and p has no assignments to either i or n.  

An interpretation or model of  the protocol is defined as before. For any run p and any ini- 
tialization init the definition of  X [p, init ] as well as of  the evaluation function evalx,~, is similar 
to the definition given in the introduction (however, the definition o fX  [p, init ] is given by induc- 
tion on the length of  p and the construction of  the protocol formulas). In the sequel we outline a 
proof of  the validity of  theorems 2 and 3 in this more general context. 

Proof  of  Theorems 2 and 3 (outline), Suppose we are given a program P II Q performed 
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by processors P and Q,  executing the program statements ~1 ..... ~m and ~1 ..... ~n,  respectively, 
and let X,  Y be variables belonging to P ,  Q ,  respectively. We add extra local variables to the 
language according to the rules below in such a way that to each initialization init (in the old 
language) there corresponds an initialization init (in the new language), and vice versa. The 
main idea is to replace each program statement of  type (b) or (c) with an appropriate sequence of  
assignment statements and form a new protocol P tl Q such that: 

• f i  (respectively, Q)executes the sequence of  assignment statements ~1 ..... ~,n (respectively, 
(respectively, ~ t  ..... ~/~), 

• toeveryrunpeRUN(P IIQ)therecorrespondsamnp~RUN(P II Q)  such that for any ini- 
tialization init 

x [ e  IlQ,p, ini t]=x[e llQ,p, init],Y[e IlQ,p, init]=Y[e IIQ,p, init], (6) 

and vice versa. The essential details of  the construction are as follows (see [A1]). Take the first 
for  statement occurring in P ,  say for  i := 1 ..... n do p o d ,  and consider the sequence s of  state- 
ments preceding it in P .  Let N be the maximal value of  n over all concurrent executions of  s 
and Q. Now replace the above statement with the following sequence of  2N statements: i := 1; if 
i > j then skip else p fi; . . . .  , i := N ;  if i > j then skip else p fi, where skip is an assignment 
statement of  the form x :=x, for some local variable x. We can thus eliminate one by one all for 
statements. Next we eliminate the if statements; since such statements can be nested they are 
eliminated one by one starting with the inner-most one. For every write variable x introduce a 
new local variable 2 and replace each assignment statement x := F with the two assignment 
statements x := F ;  2" := F .  Replace if ~ then p else p '  fi by the sequence a :=~; p [a ]; p" [~a ], 
where a is a new local variable and p [a ] is the same sequence as p except that each asignment 
statement x := F in p with x a write variable is replaced in p [a ] by x := F ,  if a ,  and x := x oth- 
erwise, and each asignment statement x := F in p with x a local variable is replaced in p [a ] by 
x := F ,  if a ,  and x := 2- otherwise, and similarly forp" [-,a ]. 

Now suppose that the variables X,  Y are functionally dependent in the protocol P II Q.  
Then we must show that the variables X,  Y will be functionally dependent in the protocol P II Q,  
as well. This follows from the fact that every run of  P 1] Q is "essentially" of  the type p, for some 
run p of  P II a .  It follows from theorem 2 that the quantity evalx,r(P II Q ,  p, init) is indepen- 
dent of  the run p. Hence, it follows from equality (6) that evalx.r (P II Q, P, init) is also indepen- 
dent of  the run p, as desired. A similar proof will work for multiprocessor programs. • 
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