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Abstract. Scintillometer measurements allow for estima-

tions of the refractive index structure parameter C2
n over large

areas in the atmospheric surface layer. Turbulent fluxes of

heat and momentum are inferred through coupled sets of

equations derived from the Monin–Obukhov similarity hy-

pothesis. One-dimensional sensitivity functions have been

produced that relate the sensitivity of heat fluxes to uncertain-

ties in single values of beam height over flat terrain. However,

real field sites include variable topography. We develop here,

using functional derivatives, the first analysis of the sensitiv-

ity of scintillometer-derived sensible heat fluxes to uncertain-

ties in spatially distributed topographic measurements. Sen-

sitivity is shown to be concentrated in areas near the center of

the beam path and where the underlying topography is clos-

est to the beam height. Relative uncertainty contributions to

the sensible heat flux from uncertainties in topography can

reach 20 % of the heat flux in some cases. Uncertainty may be

greatly reduced by focusing accurate topographic measure-

ments in these specific areas. A new two-dimensional vari-

able terrain sensitivity function is developed for quantitative

error analysis. This function is compared with the previous

one-dimensional sensitivity function for the same measure-

ment strategy over flat terrain. Additionally, a new method

of solution to the set of coupled equations is produced that

eliminates computational error.

1 Introduction

Large-aperture scintillometers infer the index of refraction

structure parameter C2
n over large areas of terrain in the at-

mospheric surface layer. The structure parameter for tem-

perature C2
T is resolved, and this information solves for

the sensible heat flux HS through the application of equa-

tions derived from the Monin–Obukhov similarity hypothe-

sis (Hartogensis et al., 2003; Moene, 2003). The sensible heat

flux in the atmospheric surface layer is given by

HS = −ρcpu⋆T⋆, (1)

where ρ is the density of air, cp is the heat capacity at con-

stant pressure, u⋆ is the friction velocity, and T⋆ is the tem-

perature scale (e.g., Monin and Obukhov, 1954; Obukhov,

1971; Sorbjan, 1989; Foken, 2006). The temperature scale

T⋆ is resolved by

T⋆ =



























±

√

C2
T

a
zeff

1/3(1 − bζ )1/3 ζ ≤ 0,

±

√

C2
T

a

zeff
1/3

(1 + cζ 2/3)1/2
ζ ≥ 0,

(2)

(3)

where zeff is the effective beam height above the ground,

ζ ≡ zeff/l, where l is the Obukhov length (e.g., Sorbjan,

1989), and a, b and c are empirical parameters. The values

of the empirical parameters are taken to be a = 4.9, b = 6.1,

and c = 2.2, as seen in Andreas (1989) after an adjustment

from the original values seen in Wyngaard et al. (1971).
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These values may not be appropriate for all field sites. We

will assume that C2
T is resolved by neglecting the influence

of humidity fluctuations, although this does not influence our

results.

As can be imagined from Eqs. (2) and (3), it is important

to know the height z at which C2
T is being sampled; this cor-

responds to the scintillometer beam height. The beam height

usually varies along the beam path. Even if turbulence is be-

ing sampled above an extremely flat field, uncertainty in z

will still be present. Previous studies such as Andreas (1989)

and Hartogensis et al. (2003) have quantified the sensitivity

of HS to uncertainties in z over flat terrain. It is the goal of

this study to extend the theoretical uncertainty analysis of

Andreas (1989) and Hartogensis et al. (2003) to take into ac-

count variable terrain along the path. The value of this is in

the ability to evaluate uncertainty estimates for scintillome-

ter measurements over variable terrain, as well as to study

the theoretical effect that the underlying terrain has on this

uncertainty.

The studies of Andreas (1989) and Hartogensis et al.

(2003) assume an independently measured friction veloc-

ity u⋆. With large-aperture scintillometers, u⋆ may be in-

ferred through the Businger–Dyer relation of wind stress,

which is coupled to the Monin–Obukhov equations (e.g.,

Hartogensis et al., 2003; Solignac et al., 2009). Alternatively,

with displaced-beam scintillometers, path-averaged values

of the inner-scale length of turbulence lo can be measured

(in addition to C2
n), which are related to the turbulent dis-

sipation rate ǫ, which is in turn related through coupled

Monin–Obukhov equations to u⋆ (e.g., Andreas, 1992). As

a first step towards a variable terrain sensitivity analysis for

large-aperture scintillometers, we will assume independent

u⋆ measurements such that the Businger–Dyer equation will

not be considered. Additionally, in order to take into account

thick vegetation, the displacement distance d is often intro-

duced. We will not consider this for the purposes of this

study.

We are thus considering a large-aperture scintillometer

strategy with independent u⋆ measurements as in Andreas

(1989) and Appendix A of Hartogensis et al. (2003), and we

consider the line integral effective beam height formulation

from Hartogensis et al. (2003) and Kleissl et al. (2008). The

effective height formulation is also discussed in Evans and

De Bruin (2011) and in Geli et al. (2012). The assumptions

behind this line integral approach are that the profile of C2
T

above the ground satisfies the Monin–Obukhov profile at any

point along the beam path, and also that HS is constant ver-

tically and horizontally within the surface layer region sam-

pled by the beam. In this case, two coupled effects must be

taken into account. Firstly, the scintillometer is most sensi-

tive to fluctuations in the index of refraction towards the cen-

ter of its beam. This is due to the optical configuration of

the scintillometer system; a unit-less optical path weighting

function takes this into account (e.g., Ochs and Wang, 1974;

Hartogensis et al., 2003). The second effect is that, in areas

where the topography approaches the beam, the C2
T being

sampled is theoretically more intense than in areas where the

terrain dips farther below the beam.

In Sect. 2 of this paper, we define the sensitivity function

SHS,z(u) for the sensible heat flux HS as a function of vari-

able topography z(u), where u is the relative path position

along the beam. In Sect. 3, we solve for SHS,z(u) for any

general given z(u). In Sect. 4 we visualize the results by ap-

plying the resulting sensitivity function to the topography of

a real field site in the North Slope of Alaska. We then ap-

ply the resulting sensitivity function to examples of synthetic

beam paths. In Sect. 5 we discuss our results, and we con-

clude in Sect. 6.

2 Definition of the sensitivity function SHS,z(u)

Under stable conditions (ζ > 0), the set of equations to con-

sider consists of Eqs. (1) and (3), as well as

ζ = κgT⋆zeff

u⋆
2T

, (4)

zeff =





1
∫

0

z(u)−2/3G(u)du





−3/2

, (5)

where zeff is derived in Kleissl et al. (2008) based on the

theory from Hartogensis et al. (2003), z(u) is the height of the

beam along the relative path position u, T is the temperature,

G(u) is the optical path weighting function, g is gravitational

acceleration, and κ is the von Kármán constant (0.4).

For unstable conditions (ζ < 0), Eqs. (1), (2) and (4) are

considered, but Eq. (5) is replaced by

zeff =

zeff

2bζ









1 −

√

√

√

√

√

√

1 − 4bζ

zeff





1
∫

0

z(u)−2/3

(

1 − bζ
z(u)

zeff

)−2/3

G(u)du





−3/2








, (6)

where zeff is derived in Hartogensis et al. (2003).

The propagation of uncertainty from measurements such

as z(u) to derived variables such as HS will be evaluated in

the context of the inherent assumptions behind the theoretical

equations. A standard approximation (e.g., Taylor, 1997) to

the uncertainty in estimating the derived variable f = f (µ),

µ = (µ1,µ2, . . . ,µN ), by f̂ = f (x), a function of measure-

ment variables x = (x1,x2, . . . ,xN ), is

σ 2
f =E

{

[f (x) − f (µ)]2
}

≈
N
∑

i=1

(

∂f

∂xi

)2

E
[

(xi − µ2
i )
]

=
N
∑

i=1

(

∂f

∂xi

)2

σ 2
i . (7)

The numerical indices indicate different independent

(measurement) variables, such as T , P , C2
n , u⋆, and beam
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wavelengths λ and z. It is convenient to re-write Eq. (7) as

(

σf

f

)2

=
N
∑

i=1

S2
f,xi

σ 2
i

x2
i

, (8)

where the sensitivity functions Sf,x =
(Sf,x1

,Sf,x2
, . . . ,Sf,xN

) are defined as

Sf,xi
≡ xi

f

(

∂f

∂xi

)

. (9)

Sensitivity functions such as these are developed in An-

dreas (1989) and Andreas (1992). They are each a measure

of the portion of relative error in a derived variable f re-

sulting from a relative error in the individual measurement

variable xi . The problem of resolving the uncertainty in the

derived variables is a matter of identifying the magnitude and

character of the measurement uncertainties, and then solving

for the partial derivative terms in Eqs. (7) and (9).

Here we seek a solution to the sensitivity function of sen-

sible heat flux as a function of topography SHS,z. In the flat

terrain case, the sensitivity function SHS,z has a single com-

ponent, corresponding to the single measurement variable

z (Andreas, 1989). In our situation, however, we may imag-

ine that since z(u) is distributed over one dimension instead

of a single value of z, SHS,z will be composed of a spectrum

of components:

SHS,z = {SHS,z(u), 0 ≤ u ≤ 1}. (10)

We are thus aiming to expand the sensitivity function de-

noted “Sz” in Fig. 4 of Andreas (1989) (our SHS,z in Fig. 8)

from one dimension to infinitely many, owing to the fact that

some derived variables such as zeff are functions of an inte-

gral over continuous variables z(u) and G(u) (we consider

for generality that z(u) has a continuous uncertainty σ(u)2).

In other words, zeff = zeff[z] is a functional, having argument

z = {z(u), 0 ≤ u ≤ 1}.
Being dependent on a continuum of measurement vari-

ables, the sensitivity function SHS,z(u) here requires the cal-

culation of a so-called functional derivative, δzeff/δz(u) (e.g.,

Courant, 1953; Greiner and Reinhardt, 1996). Functional

derivatives have a long history of application to statistical er-

ror analysis (e.g., Fernholz, 1983; Beutner, 2010, and many

references therein).

For our purposes, a heuristic derivation of δzeff/δz(u) re-

sults from an interpretation of the integral in zeff as the limit

of Riemann sums. That is,

zeff =





1
∫

0

z(u)−2/3G(u)du





−3/2

≡

(

lim
N→∞

N
∑

i=1

zi
−2/3Gi · (1/N)

)−3/2

, (11)

where subscript i indicates that u = (i/N). Upon discretizing

the input variables, we have

(

∂zeff

∂zk

)

=

− 3

2

(

N
∑

i=1

zi
−2/3Gi · (1/N)

)−5/2

∂

∂zk

(

N
∑

i=1

zi
−2/3Gi · (1/N)

)

= −3

2

(

N
∑

i=1

zi
−2/3Gi · (1/N)

)−5/2

× −2

3

(

zk
−5/3Gk · (1/N)

)

=
(

N
∑

i=1

zi
−2/3Gi · (1/N)

)−5/2

zk
−5/3Gk · (1/N). (12)

Letting k = arg mink |z(u)− zk| and taking the limit N →
∞, the desired functional derivative is given by

(

δzeff

δz(u)

)

=





1
∫

0

z(u)−2/3G(u)du





−5/2

z(u)−5/3G(u). (13)

We thus define

SHS,z(u) ≡ z(u)

HS[z]

(

δHS

δz(u)

)

(14)

as the sensitivity function of sensible heat flux HS to uncer-

tainties in variable topography z(u). It is our goal to evaluate

Eq. (14).

3 Solution of the sensitivity function SHS,z(u)

3.1 Stable conditions (ζ > 0)

Under stable conditions, the set of Eqs. (1), (3), (4) and (5) is

coupled in l through ζ ; we begin de-coupling them by com-

bining Eqs. (3) and (4) to obtain

ζ = (±)
κgzeff

4/3
√

C2
T

u⋆
2T

√
a(1 + cζ 2/3)1/2

. (15)

Since ζ > 0, the unsolved sign is positive. With the substi-

tution

3̂ ≡
κ2g2C2

T

u⋆
4T 2a

, (16)

we re-arrange Eq. (15) to obtain

ζ 2 + cζ 8/3 − 3̂zeff
8/3 = 0, (17)
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where zeff in the stable case is determined by a priori known

functions z(u) and G(u) through Eq. (5). The value of 3̂,

including C2
T , is directly determined from the measurements.

The solution of Eq. (17) follows by re-writing it as a fourth-

degree algebraic equation in ζ 2/3:

(ζ 2/3)3 + c(ζ 2/3)4 − 3̂zeff
8/3 = 0, (18)

or more practically, it can be solved through fixed-point re-

cursion on the function

ζ =

√

3̂z
8/3
eff

1 + cζ 2/3
≡ F̂ (ζ ), (19)

where we must consider the positive root. Note that since

Eq. (18) is fourth degree, Galois theory states that it has an

explicit solution form (e.g., Edwards, 1984). It is thus pos-

sible in theory to write HS = h(z(u),C2
n,P ,T ,λ,u⋆), where

h is an explicit function of the measurements; however, it

would be quite an unwieldy equation.

We do not need an explicit solution in order to study the

sensitivity; we can use the chain rule and implicit differen-

tiation as in Gruber and Fochesatto (2013). We establish the

variable inter-dependency using Eq. (17) as a starting point.

The tree diagram for any set of measurements under stable

conditions is seen in Fig. 1. The measurements are at the ends

of each branch, and all other variables are dependent.

The required global partial derivatives are now defined

through the variable definitions, the above equations, and the

tree diagram. We have

(

δHS

δz(u)

)

=
(

∂HS

∂T⋆

)

(

(

∂T⋆

∂zeff

)

ζ

+
(

∂T⋆

∂ζ

)(

∂ζ

∂zeff

))(

δzeff

δz(u)

)

. (20)

We will need one derivative that we are not able to retrieve

directly from explicit definitions. By implicitly differentiat-

ing Eq. (17) under the guidance of the tree diagram seen in

Fig. 1, we derive

(

∂ζ

∂zeff

)

=
(

43̂zeff
5/3

3ζ + 4cζ 5/3

)

= 1

zeff

(

4ζ(1 + cζ 2/3)

3 + 4cζ 2/3

)

. (21)

The functional derivative term
(

δzeff

δz(u)

)

for stable conditions

has been evaluated in Eq. (13).

3.2 Unstable conditions (ζ < 0)

Under unstable conditions, the set of Eqs. (1), (2), (4) and (6)

is coupled in l through ζ ; note that zeff is coupled to ζ in the

unstable case. We combine Eqs. (2) and (4) to obtain

ζ = (±)
κg

√

C2
T

u⋆
2T

√
a
zeff

4/3(1 − bζ )1/3. (22)

Figure 1. Variable inter-dependency tree diagram for the stable case

(ζ > 0). The measurement variables are at the end of each branch;

all other variables are derived.

Since ζ < 0, the sign is negative. With the substitution

3̆ ≡
(

κg

√

C2
T

u⋆
2T

√
a

)3/4

, this leads to

zeff = 1

3̆

(−ζ )3/4

(1 − bζ )1/4
→ ζ

zeff
= −3̆(bζ 2 − ζ )1/4. (23)

We substitute Eq. (23) into Eq. (6) to obtain

ζ =

1

2b









1 −

√

√

√

√

√

√

1 + 4b3̆(bζ 2 − ζ )1/4

·
[

1
∫

0

(z(u) + bz(u)23̆(bζ 2 − ζ )1/4)−2/3G(u)du

]−3/2









≡ F̆ (ζ ). (24)

This single equation is in the single unknown ζ , since z(u),

G(u) and 3̆ are known; it is also in the fixed-point form ζ =
F̆ (ζ ). The tree diagram for the unstable case is seen in Fig. 2.

Evaluation of global partial derivatives proceeds analogously

to the stable case as in Eq. (20). Now we have

(

δHS

δz(u)

)

=
(

∂HS

∂T⋆

)((

∂T⋆

∂zeff

)(

∂zeff

∂ζ

)

+
(

∂T⋆

∂ζ

)

zeff

)

(

δζ

δz(u)

)

. (25)

To pursue the solution of SHS,z(u), we will need to solve

for
(

∂zeff

∂ζ

)

by the differentiation of Eq. (23):

(

∂zeff

∂ζ

)

= (2bζ − 3)

43̆(−ζ )1/4(1 − bζ )5/4
= zeff(3 − 2bζ )

4ζ(1 − bζ )
. (26)

We can solve for
(

δζ
δz(u)

)

by implicit differentiation of

Eq. (24). In finding
(

δζ
δz(u)

)

, it is useful to define

f (3̆,ζ(z(u),3̆),z(u)) ≡ 1 + 4b3̆(bζ 2 − ζ )1/4

·





1
∫

0

(z(u) + bz(u)23̆(bζ 2 − ζ )1/4)−2/3G(u)du





−3/2

, (27)
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where, from Eqs. (24) and (27), we have

√

f = (1 − 2bζ ). (28)

From Eq. (27), we have

(

δf

δz(u)

)

=
(

∂f

∂ζ

)(

δζ

δz(u)

)

+
(

δf

δz(u)

)

ζ

, (29)

such that, by implicitly differentiating Eq. (28) and then sub-

stituting, we derive

(

δζ

δz(u)

)

=
−
(

δf
δz(u)

)

ζ
(

∂f
∂ζ

)

+ 4b(1 − 2bζ )
,

=
− 4ζ(1−bζ )

(1−2bζ )

(

z(u) + bz(u)23̆
(

bζ 2 − ζ
)

1
4

)− 5
3 (

1 + 2bz(u)3̆(bζ 2 − ζ )
1
4

)

G(u)

{[

1
∫

0

(

z(u) + bz(u)23̆(bζ 2 − ζ )
1
4

)− 2
3
G(u)du

]

+b3̆(bζ 2 − ζ )
1
4





1
∫

0

(

z(u) + bz(u)23̆(bζ 2 − ζ )
1
4

)− 5
3
z(u)2G(u)du





− 4(bζ 2 − ζ )
3
4

3̆





1
∫

0

(

z(u) + bz(u)23̆(bζ 2 − ζ )
1
4

)− 2
3
G(u)du





5
2















(30)

All the information we need to solve for SHS,z(u) is now

resolved.

3.3 Full expression for the sensitivity function SHS,z(u)

Since we are considering an independent u⋆ measurement,

we have ST⋆,z(u) = SHS,z(u) = z(u)
T⋆

(

δT⋆

δz(u)

)

. We obtain

ST⋆,z(u) = (31)



















































































































z(u)−2/3G(u)
1
∫

0

z(u)−2/3G(u)du

(

1
3+4cζ 2/3

)

ζ > 0,

−z(u)(z(u) + bz(u)23̆(bζ 2 − ζ )
1
4 )−

5
3

·(1 + 2bz(u)3̆(bζ 2 − ζ )
1
4 )G(u)

{[

1
∫

0

(z(u) + bz(u)23̆(bζ 2 − ζ )
1
4 )−

2
3 G(u)du

]

+b3̆(bζ 2 − ζ )
1
4

·
[

1
∫

0

(z(u) + bz(u)23̆(bζ 2 − ζ )
1
4 )−

5
3 z(u)2G(u)du

]

− 4(bζ 2−ζ )
3
4

3̆

·
[

1
∫

0

(z(u) + bz(u)23̆(bζ 2 − ζ )
1
4 )−

2
3 G(u)du

]
5
2







ζ < 0.

(32)

Figure 2. Variable inter-dependency tree diagram for the unstable

case (ζ < 0). The measurement variables are at the end of each

branch; all other variables are derived.

4 Application of the results for the sensitivity function

SHS,z(u)

4.1 Imnavait Creek basin field campaign

As an example, we use topographic data from the Imnavait

Creek basin field site (UTM 5N 650220.5 East, 7615761.5

North), where there is a campaign to determine large-scale

turbulent fluxes in the Alaskan tundra; it is seen in Figs. 3a

and 4. We assume for simplicity that vegetation patterns, wa-

ter availability, and other changes across the basin that could

affect the flow in the atmospheric surface layer do not repre-

sent a significant source of surface heterogeneity. The eleva-

tion data seen in Fig. 3a are from a 5 m resolution digital ele-

vation map (DEM), which has a roughly 0.5 m standard devi-

ation in a histogram of the difference between the DEM ele-

vations and 50 randomly distributed GPS ground truth points,

as seen in Fig. 3b. Note that the systematic offset between the

DEM and the GPS ground truth measurements does not con-

tribute to systematic error in z(u). Note also that some of this

spread in data may be due to an active permafrost layer.

For this field site, we can solve for ζ under unstable con-

ditions through Eq. (24). As can be seen in Fig. 5, we ar-

rive at the solution for ζ with the recursively defined series

[F̆ (ζguess), F̆ (F̆ (ζguess)), F̆ (F̆ (F̆ (ζguess))), . . . ] that is guar-

anteed to converge monotonically for any ζguess < 0.

A plot of ζ as a function of 3̆ for this field site is seen in

Fig. 6. Note that the relationship between ζ and 3̆ is bijec-

tive; any value of 3̆ is uniquely associated with a value of

ζ .

Considering the field case study of the Imnavait Creek

basin, where the height of the beam over the terrain z(u)

and the standard path weighting function G(u) are seen in

Figs. 3a and 4, Eqs. (31) and (32) lead to the sensitivity func-

tion seen in Fig. 7. Note that SHS,z(u) is a function of u and

ζ only, since, for any one beam height transect z(u), 3̆ is
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Figure 3. Topography and space view of the Imnavait Creek basin, North Slope of Alaska. The scintillometer beam runs roughly north–south

on a 1.04 km path. The emitter and receiver are each raised off the ground by 3.8 m. Vegetation along the path is representative of Arctic

tundra. Superimposed is a histogram of 50 points of the GPS ground truth elevation survey minus the DEM elevation.
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Figure 4. Height of the beam above the ground z and the path

weighting function G as functions of relative path position u, us-

ing the Imnavait experimental site as seen in Fig. 3a. Uncertainties

are based on the approximate standard deviation in the histogram in

Fig. 3b, although they do not influence the analysis presented in this

study.

mapped bijectively with respect to ζ through Eq. (24), as

seen in Fig. 6.

Note that if we consider a constant ratio of
σz(u)
z(u)

, system-

atic error propagation can be re-written as

1
∫

0

σz(u)

z(u)
SHS,z(u)du = σz(u)

z(u)





1
∫

0

SHS,z(u)du



 . (33)

The term in square brackets on the right of Eq. (33) is plot-

ted in Fig. 8.

4.2 Synthetic scintillometer beam paths

It is interesting to examine the sensitivity function over syn-

thetic paths that are representative of commonly used paths

in scintillometry. Two synthetic paths can be seen in Fig. 9.

They include a slant path as well as a quadratic path repre-

senting a beam over a valley.

The sensitivity function ST⋆,z(u) = SHS,z(u) for synthetic

path 1 (the quadratic path) seen in Fig. 9 is seen in Fig. 10.

For synthetic path 2 (the slant path), the sensitivity function

is seen in Fig. 11.
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Figure 5. Graphical visualization of the fixed-point

solution of Eq. (24). The recursively defined series

[F̆ (ζguess), F̆ (F̆ (ζguess)), F̆ (F̆ (F̆ (ζguess))), . . . ] converges mono-

tonically for any ζguess < 0. A typical value of 3̆ = 1/4 is used,

representing slightly unstable conditions in the atmospheric surface

layer. The initial guess is ζguess = −1, and the path of convergence

is shown by the red line. The Imnavait Creek basin terrain and

beam path are used for z(u), along with the standard path weighting

function G(u) as seen in Figs. 3a and 4.

Figure 6. Solution of Eqs. (19) and (24) produced with a monoton-

ically converging series as explained in the text and as visualized in

Fig. 5. The Imnavait Creek basin terrain and beam path are used for

z(u), along with the standard path weighting function G(u) as seen

in Figs. 3a and 4. The mapping between ζ and 3̆ and between ζ and

3̂ is bijective. Note that the solution of ζ for 3̆ = 1/4 corresponds

to the intersection of F̆ with ζ in Fig. 5.
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Figure 7. Sensitivity function SHS,z(u) = ST⋆,z(u). For stable con-

ditions (ζ > 0), ST⋆,z(u) is given in Eq. (31). For unstable condi-

tions (ζ < 0), ST⋆,z(u) is given by Eq. (32), where values for ζ

as a function of 3̆ are obtained through a numerical solution of

Eq. (24), which may be visualized with Fig. 6. The Imnavait Creek

basin terrain and beam path are used for z(u), along with the stan-

dard path weighting function G(u) as seen in Figs. 3a and 4.

5 Discussion

A sensitivity function mapping the propagation of uncer-

tainty from z(u) to HS has been produced for a large-aperture

scintillometer strategy incorporating independent u⋆ mea-

surements, and the line integral footprint approach to vari-

able topography developed in Hartogensis et al. (2003) and

Kleissl et al. (2008). This was accomplished by mapping out

the variable inter-dependency as illustrated in the tree dia-

grams in Figs. 1 and 2, and by applying functional deriva-

tives. The solution to SHS,z(u) is given in Eqs. (14), (31) and

(32).

As seen in Figs. 3a, 4, and 7, our results for ST⋆,z(u) =
SHS,z(u) show that sensitivity to uncertainties in topographic

heights is generally higher under unstable conditions, and

it is both concentrated in the center of the path and in ar-

eas where the underlying topography approaches the beam

height. This finding intuitively makes sense, since scintil-

lometers are more sensitive to C2
T at the center of their beam

path, and C2
T decreases nonlinearly in height above the sur-

face and strengthens with greater instability. For the Imnavait

Creek basin path, the value of SHS,z(u) increases to 3 at small

dips in the beam height beyond the halfway point of the path,

as seen in Fig.7. Note that the asymmetry along u of SHS,z(u)

corresponds to the asymmetry of the path, which is mostly at

a higher (> 6 m) height in the first half, and at a lower height

(≈ 4 m) in the second half, as seen in Fig. 4. Also note that

the local maxima in SHS,z(u) occur at roughly u ≈ 60 % and

u ≈ 65 %; these correspond directly to topographic protuber-

ances seen in Figs. 3a and 4. Note that the total error in HS

is contributed from the whole range of u along SHS,z(u), so

even though we may have values of up to 3 in the sensitivity
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Figure 8. Average value of ST⋆,z(u) = SHS,z(u) over beam path u,

given by
∫ 1

0 ST⋆,z(u)du, and the flat terrain sensitivity function Sz

derived in Andreas (1989) (for ζ > 0, the functions are identical).

For stable conditions (ζ > 0), ST⋆,z(u) is given by Eq. (31). For

unstable conditions (ζ < 0), ST⋆,z(u) is given by Eq. (32), where

values for ζ as a function of 3̆ are obtained through a numerical so-

lution of Eq. (24), which may be visualized in Fig. 6. The Imnavait

Creek basin terrain and beam path are used for z(u), along with the

standard path weighting function G(u) as seen in Figs. 3a and 4.

functions, our error bars may still be reasonable. The aver-

age value of SHS,z(u) along u is never higher than 1, as seen

in Fig. 8. Knowledge of where the concentration in sensitiv-

ity is allows us to decrease our uncertainty greatly by taking

high-accuracy topographic measurements in these areas, es-

pecially for Arctic beam paths, which must be low due to thin

boundary layers.

For example, if the random error in z(u) in the Imnavait

Creek basin were 0.5 m, the relative error resulting in HS due

to uncertainty in z(u) alone would be just 2 % under slightly

unstable conditions where 3̆ = 1/4 and ζ ≈ −3.75, whereas

if we reduce the uncertainty in z(u) to 0.1 m, the relative er-

ror in HS due to uncertainty in z(u) would be just 0.3 %, so

with a reasonable number of survey points (100), the error

can be quite small. However, if we look at Fig. 3b, we see

that there is significant systematic error, perhaps due to shift-

ing permafrost. If we have a perfectly even systematic error

across the whole map, then this error is not propagated. How-

ever, if we have even a small amount of systematic error such

as 0.5 m distributed around the center of the beam path near

the local maxima in sensitivity, we can easily achieve 10 %

to 20 % relative error in HS. In comparison to other vari-

ables, the values for SHS,u⋆ are similar in magnitude to SHS,z

under unstable conditions, smaller under neutral conditions,

and larger under stable conditions (Andreas, 1989). Under

unstable conditions, error from u⋆ may therefore be similar

in magnitude to error from z(u); however, for path-averaged
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Figure 9. Synthetic path beam heights including a quadratic path

(path 1) and a slant path (path 2).

u⋆ scintillometer strategies, this is not an issue. For C2
n , the

sensitivity functions are usually smaller, but in isolated re-

gions they are larger (Andreas, 1989).

The average value of SHS,z(u) over the beam path reduces

to identical results to the flat terrain sensitivity function Sz

from Andreas (1989) (which would be denoted ST⋆,z here)

under stable conditions where zeff is de-coupled from ζ , and

nearly identical results (depending on the path) under unsta-

ble conditions where zeff is coupled to ζ , as seen in Fig. 8.

It is unknown as to whether the addition of equations for

path-averaged u⋆ measurements such as the Businger–Dyer

relation seen in Hartogensis et al. (2003) and Solignac et al.

(2009), or displaced-beam scintillometer strategies as seen in

Andreas (1992), would change these results significantly.

We note that the study of Hartogensis et al. (2003) eval-

uated a function similar to SHS,z for flat terrain with an

independent u⋆ measurement (the 2003 Eq. 7 is ignored);

however, at ζ ≈ 0 they found a sensitivity of 1/2 instead

of 1/3 as found in Andreas (1989). The difference in the

results between these two studies is not due to the dif-

ferences between single- and double-wavelength strategies.

The Obukhov length (denoted by LMO in Hartogensis et al.,

2003) is a function of zLAS through the 2003 Eqs. (5) and (6).

The addition of chain rule terms to reflect the dependence of

l on z in Hartogensis et al.’s (2003) Eq. (A2) resolves dif-

ferences between Hartogensis et al.’s (2003) Fig. A1 and An-

dreas et al.’s (1989) Fig. 4; the flat-terrain sensitivity function

for ζ < 0 is

SHS,z = ST⋆,z = 1 − 2bζ

3 − 2bζ
6= 1 − 2bζ

2 − 2bζ
= z

HS

(

∂HS

∂z

)

l

, (34)

which is given correctly in Andreas (1989).
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Figure 10. Sensitivity function SHS,z(u) = ST⋆,z(u). For stable

conditions (ζ > 0), ST⋆,z(u) is given in Eq. (31). For unstable con-

ditions (ζ < 0), ST⋆,z(u) is given by Eq. (32), where values for ζ

as a function of 3̆ are obtained through a numerical solution of

Eq. (24), which may be visualized with Fig. 6. Synthetic beam path

1 (the quadratic path) is used for z(u), along with the standard path

weighting function G(u) as seen in Figs. 9 and 4.

Equations (7), (9), (31), and (32) may be implemented into

computer code for routine analysis of data. It is worth noting

that the sign of ζ is an a priori unknown from the measure-

ments. Thus, for any set of measurements, we should calcu-

late the set of all derived variables and their respective uncer-

tainties assuming both stable and unstable conditions, and if

uncertainties in the range of ζ overlap with ζ = 0 for either

stability regime, we should then consider the combined range

of errors in the two sets.

In the application of Eq. (7), we must recognize computa-

tional error σfc . Previous studies have incorporated a cycli-

cally iterative algorithm that may not converge, as seen

in Andreas (2012), or that may converge to an incorrect

solution, as illustrated in the section on coupled nonlin-

ear equations in Press et al. (1992). We have developed

techniques to eliminate this error. For unstable cases (ζ <

0), the solution of ζ follows from Eq. (24), which is in

fixed-point form. The solution to Eq. (24) is guaranteed

to converge monotonically with the recursively defined se-

ries [F̆ (ζguess), F̆ (F̆ (ζguess)), F̆ (F̆ (F̆ (ζguess))), . . . ] as seen

in Traub (1964) and in Agarwal et al. (2001), and as demon-

strated in Fig. 5. We may solve for the stable case (ζ > 0)

recursively using Eq. (19), where F̂ (ζ ) demonstrates conver-

gence properties that are similar to those of F̆ (ζ ) in Eq. (24).

It was found to be practical to make ζguess = ±1.

Future expansions of the results presented here should

focus on including multiple wavelength strategies to eval-

uate the latent heat flux and HS, as well as on including

path-averaged u⋆ measurements using lo and C2
n scintillome-

ter strategies as in Andreas (1992) or using a point mea-

surement of wind speed and the roughness length via the

Businger–Dyer relation (e.g., Panofsky and Dutton, 1984;

u
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Figure 11. Sensitivity function SHS,z(u) = ST⋆,z(u). For stable

conditions (ζ > 0), ST⋆,z(u) is given in Eq. (31). For unstable con-

ditions (ζ < 0), ST⋆,z(u) is given by Eq. (32), where values for ζ

as a function of 3̆ are obtained through a numerical solution of

Eq. (24), which may be visualized with Fig. 6. Synthetic beam path

2 (the slant path) is used for z(u), along with the standard path

weighting function G(u) as seen in Figs. 9 and 4.

Solignac et al., 2009). Modification of the analysis for in-

cluding path-averaged u⋆ measurements involves the addi-

tion of one or two more equations (e.g., Eq. 8 in Solignac

et al., 2009, or Eqs. 1.2 and 1.3) in Andreas, 1992) to sub-

stitute into Eqs. (17) and (24), as well as the definition of

new tree diagrams to reflect that u⋆ is now a derived variable.

In these cases, either the turbulence inner-scale length lo or

a point measurement of wind speed and the roughness length

replaces u⋆ as a measurement; u⋆ is derived through infor-

mation from the full set of measurements. Note that if u⋆ is

derived through measurements including z, Eq. (1) implies

that SHS,z = ST⋆,z + Su⋆,z. It is worth investigating whether

computational error can still be eliminated in these cases.

We have considered here the effective height line integral

approach derived in Hartogensis et al. (2003) and Kleissl

et al. (2008) to take into account variable topography. Even if

we assume a constant flux surface layer, under realistic wind

conditions, turbulent air is advected in from nearby topog-

raphy. For example, in the Imnavait Creek basin path seen

in Fig. 3a, if wind comes from the west, the turbulent air

being advected into the beam path comes from a volume

that is higher above the underlying topography than if wind

came from the east. Sensitivity studies should be produced

for two-dimensional surface integral methods that take into

account the coupling of wind direction and topography on an

instrument footprint (e.g., Meijninger et al., 2002; Liu et al.,

2011). Additionally, a new theory may be developed for het-

erogeneous terrain involving complex distributions of water

availability and roughness length such as the terrain in the

Imnavait Creek basin.
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6 Conclusions

Sensitivity of the sensible heat flux measured by scintillome-

ters has been shown to be highly concentrated in areas near

the center of the beam path and in areas of topographic pro-

trusion. The general analytic sensitivity functions that have

been evaluated here can be applied for error analysis over any

field site as an alternative to complicated numerical methods.

Uncertainty can be greatly reduced by focusing accurate to-

pographic measurements in areas of protrusion near the cen-

ter of the beam path. The magnitude of the uncertainty is

such that it may be necessary to use high-precision LIght

Detection And Ranging (LIDAR) topographic data as in Geli

et al. (2012) for Arctic field sites in order to avoid large er-

rors resulting from uneven permafrost changes since the last

available DEM was taken. Additionally, computational error

can be eliminated by following a computational procedure as

outlined here.
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