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SUMMARY 

 

Human brain transcriptomes can highlight biological pathways associated with Alzheimer’s disease (AD); 

however, challenges remain to link expression changes with causal triggers. We have examined 30 AD-

associated, gene coexpression modules from human brains for overlap with 251 differentially-expressed 

gene sets from mouse brain RNA-sequencing experiments, including from models of AD and other 

neurodegenerative disorders. Human-mouse overlaps highlight responses to amyloid versus 

neurofibrillary tangle pathology and further reveal age- and sex-dependent expression signatures for AD 

progression. Human coexpression modules enriched for neuronal and/or microglial genes overlap broadly 

with signatures from mouse models of AD, Huntington’s disease, Amyotrophic Lateral Sclerosis, and 

also aging. Several human AD coexpression modules, including those implicated in the unfolded protein 

response and oxidative phosphorylation, were not activated in AD models, but instead were detected 

following other, unexpected mouse genetic manipulations. Our results comprise a powerful, cross-species 

resource and pinpoint experimental models for diverse features of AD pathophysiology from human brain 

transcriptomes. 

 

INTRODUCTION 

Alzheimer’s Disease (AD) is a progressive and incurable neurodegenerative disorder, with 

rapidly increasing prevalence due to population aging (Scheltens et al., 2016). At autopsy, AD is 

characterized by extracellular neuritic amyloid plaques and intraneuronal neurofibrillary tangles, 

comprised of misfolded and aggregated Amyloid-Beta (Aβ) peptide and the Microtubule Associated 

Protein Tau (MAPT/Tau), respectively. Based on RNA sequencing (RNA-Seq) from 2,114 human 

postmortem brain samples, the Accelerating Medicines Partnership-Alzheimer’s disease (AMP-AD) 

consortium has identified 30 coexpression modules significantly associated with AD clinical-pathologic 

diagnosis (Logsdon et al., submitted). These data show promise to highlight completely unexpected 

molecular insights into AD pathogenesis; however, interpretation is hindered by several obstacles. One 

major challenge arises from the recognition that the AD pathologic cascade initiates decades prior to 
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onset of clinical manifestations (De Strooper et al., 2016; Jack et al., 2013), whereas human brain 

expression profiles can only be generated cross-sectionally at the time of death. Indeed, it is essential to 

reconstruct the longitudinal, aging-dependent time-course of molecular derangements in order to pinpoint 

the earliest possible opportunities for intervention and to develop effective biomarkers. Second, most 

brains from older persons with AD show mixed pathologies at autopsy, including many other age-related 

lesions associated with cognitive impairment (Kapasi et al., 2017). Therefore, functional dissection of 

human coexpression modules requires differentiating specific causal triggers, including (i) AD lesions 

(Aß plaques and/or Tau tangles), (ii) other neuropathology, or (iii) brain aging more generally. Lastly, 

even following the most comprehensive analysis, it remains challenging to determine which gene 

expression changes associated with disease are truly primary and therefore causal, rather than simply a 

consequence of AD.   

By contrast with studies of human postmortem tissue, mouse models allow for controlled 

experimental manipulations to isolate the effects of specific molecular lesions, investigate for dynamic, 

age-dependent changes, and definitively establish causation. A large number of AD mouse models have 

been extensively characterized, and these systems have already contributed enormously to our 

understanding of disease pathogenesis (Götz and Ittner, 2008; Jankowsky and Zheng, 2017; LaFerla and 

Green, 2012). The most widely used transgenic models express mutant forms of the amyloid precursor 

protein (APP) gene, with or without presenilin-1/2 (PSEN1/2), which are associated with autosomal 

dominant, early-onset AD; or alternatively, MAPT mutations, which cause familial frontotemporal 

dementia (FTD). These models recapitulate features of AD neuropathology, including plaques or tangles, 

along with variable degree of neuronal dysfunction/loss, and progressive neurobehavioral impairments 

(Ballatore et al., 2007; Esquerda-Canals et al., 2017). More recently, gene expression profiling, including 

RNA-seq, has been applied to elucidate brain transcriptome signatures. Among the results, these 

investigations have highlighted the importance of immune/inflammatory and neuronal/synaptic changes 

(Boisvert et al., 2018; Cummings et al., 2015; Gjoneska et al., 2015; Matarin et al., 2015; Rothman et al, 

2018; Stephenson et al., 2018; Swartzlander et al., 2018). While some reports have identified selected 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 3, 2019. ; https://doi.org/10.1101/506873doi: bioRxiv preprint 

https://doi.org/10.1101/506873


 4 

overlaps between expression changes in AD mouse models and human brains (Bennett et al., 2018a; 

Castillo et al., 2017; Mostafavi et al., 2018; Neuner et al., 2019; Rojo et al., 2017), other studies have 

questioned the overall degree of conservation (Burns et al., 2015; Galatro et al., 2017; Hargis and 

Blalock, 2017). 

The goal of this study is to systematically define correspondences between gene expression 

changes associated with AD in human brains and those caused by controlled experimental manipulations 

in mouse models. In addition to the brain RNA-seq datasets available from mouse models of AD, our 

cross-species analysis takes advantage of hundreds of other experimental comparisons relevant to diverse 

neurologic disorders, brain health, and aging. Our results highlight strengths and limitations among 

currently available AD models, and enhance understanding of the causes and consequences for gene 

expression signatures in human brains.   

 

RESULTS 

To enable cross-species comparisons of brain transcriptome data, we reprocessed brain RNA-Seq data 

from 96 distinct mouse studies relevant to AD, other neurodegenerative disorders, aging and related 

mechanisms (Figure 1 and Table S2, Methods), and curated 376 unique experimental comparisons 

(genetic manipulation vs. control condition). The resulting 251 sets of significant DEGs (gene 

membership >10, fold-change > 1.2, FDR < 1%) define brain “gene expression signatures” (mean = 1385 

genes, range = 10 - 12,393) characteristic of the respective mouse model comparisons (Table S3 and 

Supplemental Files). These expression profiles encompass 25,181 unique genes out of 52,873 total in the 

mouse transcriptome. As visualized using the t-SNE algorithm (Figure 1C), the curated expression 

signatures capture a combination of disease-specific and overlapping features characteristic of the 

heterogeneous mouse models included in this study. Even among mouse models for the same disease 

category, the overall extent of gene sharing among the corresponding sets of DEGs was modest (Figure 

S1); therefore, the included comparisons sample a wide spectrum of brain transcriptional responses. We 

next evaluated the overlap between each mouse expression signature and 30 human AD-associated brain 
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coexpression modules, based on analyses of human postmortem brain RNA-seq from AMP-AD (Table 

S1) (Logsdon et al, submitted). Overall, we detect 1,569 significant overlaps (padj < 0.01), with the 

majority (68%) of experimental models showing evidence for gene expression changes corresponding to 

multiple human modules (mean = 6 overlapping modules per mouse model DEG set) (Figure 2). As 

expected, since human coexpression modules derived from different brain regions demonstrate extensive 

gene sharing, many mouse DEG sets show consistent overlaps within “module clusters” consisting of 

overlapping gene sets similarly enriched for neuronal, microglial, astrocytic, oligodendroglial, and/or 

endothelial expression signatures (Logsdon et al., submitted). We next assessed the direction of gene 

expression changes in mouse and human brains. The majority (77%) of overlapping gene expression 

signatures are concordant across species (Figure 2). For example, module clusters enriched for microglial 

genes are up-regulated in brain transcriptomes from human AD and mouse models, whereas those 

enriched for neuronal genes are predominantly down-regulated, but with notable exceptions (Figure 2 & 

Figure 3C). Lastly, 28 out of 30 modules significantly overlap (padj < 0.01) with at least 1 mouse model 

expression signature. In sum, these results support broad conservation of gene regulatory systems in the 

mammalian brain, and highlight that many AD-associated brain expression patterns are recapitulated in 

available mouse experimental models.   

 

We next systematically examined whether available mouse models of AD show gene expression 

changes similar to those detected in human AD brains (Figure 3A). Our reprocessed dataset includes 53 

expression signatures from 12 distinct AD transgenic models, including numerous APP and MAPT 

transgenic strains. Human microglial- and neuronal-enriched coexpression modules strongly overlap with 

expression signatures from mouse AD models (Figure 3A-C). For example, the microglial-enriched 

FPturquoise module overlaps significantly (padj < 1x10
-5

) with the majority of expression signatures from 

both APP (66%) and MAPT (67%) mouse models. While overlaps with the neuronal-enriched modules, 

such as PHGbrown, were more restricted, this pattern was still observed in a substantial proportion of 

models (22% and 25% of APP and MAPT models, respectively). In most cases, the attenuation of gene 
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expression from neuronal modules and activation of microglial-enriched signatures appears to be 

mutually exclusive. Interestingly, coincident changes in both neuronal and microglial modules (Figure 

3A, circles) was characteristic of selected MAPT transgenic strains, and was also seen in the CDK5-P25 

mouse which similarly develops extensive Tau pathology and brain atrophy (Cruz et al., 2003). This 

coincident microglial/neuronal overlap pattern is only rarely seen among expression signatures from the 

APP models (1 out of 34 DEG sets). We also considered overlaps in relation to the level of pathologic 

burden previously reported in each APP or MAPT model (Figure 3A). Overall, mouse expression 

signatures exhibited strong overlaps with microglial-enriched human modules at later, more severe stages 

of brain pathology. Reciprocally, neuronal module overlaps characterized models with earlier and 

comparatively mild pathologic burden. RNA-seq profiles generated from multiple aged timepoints permit 

examination of dynamic changes in human overlap patterns for selected AD models (Figure 3B). For 

example, in the TgCRND8 APP transgenic mouse, microglial module activation is seen by 6-months, and 

this signature is sustained in evaluations at 12-months (M248, M250, and M251; Figure 3A, cross-hatches 

and Figure 3B, top). By contrast, in the rTg4510 MAPT mouse model, transient gene expression changes 

overlapping neuronal-enriched human modules either preceded or accompanied the appearance of 

microglial expression signatures (M239-M244; Figure 3A, arrowheads, and Figure 3B, bottom). In 

addition, when compared to males, female rTg4510 mice revealed accelerated progression in brain 

transcriptional changes (Figure 3B, bottom), consistent with a sex by age interaction. Compared with the 

microglial- and neuronal-enriched module clusters, overlaps between AD mouse model expression 

signatures and astrocytic, oligodendroglial, and/or endothelial-enriched modules were more sparsely 

detected (Figure 3A). For example, TCXyellow and STGyellow—two modules similarly enriched for 

oligodendroglial markers and implicated in sphingolipid metabolism—showed selective overlap with 

aged APP transgenic models (e.g. TgCRND8 (M247), 5xFAD (M223), APPPS1 (M3) and PS2APP 

(M145); Figure 3A, squares, and Figure S2). In sum, our cross-species analyses highlight significant 

overlaps between transcriptional responses in AD mouse models and human postmortem brains, and 
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pinpoint those expression signatures denoting age- and sex-dependent disease progression as well as Aß- 

versus Tau-pathology. 

 

Numerous mechanistic parallels have been recognized between AD and other neurodegenerative 

disorders, including similar protein aggregate pathologies, proteostatic and oxidative stress, 

neuroinflammation, and the critical role of aging in disease risk and/or progression (Block and Hong, 

2005; Bucciantini et al., 2002; Guo and Lee, 2014; Haass and Selkoe, 2007; Nixon, 2005; Ross and 

Poirer, 2004). We therefore examined potential overlap between human AD coexpression modules and 

differential expression signatures from other mouse experimental disease models, including Huntington’s 

disease (HD), frontotemporal dementia-amyotrophic lateral sclerosis (FTD-ALS), Parkinson’s disease, 

spinocerebellar ataxia (SCA), Creutzfeldt-Jakob disease (CJD) and Rett syndrome, along with available 

data from aged, wildtype mice mouse strains (Figure 4 and Figure S4-6). Similar to APP/MAPT 

transgenic mice, most disease models strongly activate expression signatures overlapping with neuronal- 

and microglial-enriched human modules. For example, the neuronal-enriched PHGbrown module 

overlaps with mouse brain expression signatures from models of HD (M94, padj=2.5x10
-10

), FTD-ALS 

(FUS) (M173, padj=4.8x10
-6

), SCA (M155, padj=1.5x10
-18

), and prion disease (M200, padj=6.0x10
-32

). 

Similarly, the microglial-enriched FPturquoise module significantly overlaps with models of FTD-ALS 

(TDP43) (M24, padj=2.0x10
-42

), prion disease (M199, padj=3.7x10
-18

), and Rett Syndrome (M198, 

padj=3.1x10
-3

), and more selectively in HD (M81, padj=1.1x10
-4

) and SCA (M151, padj=5.3x10
-5

) models. 

Therefore, these signatures likely represent common brain transcriptome responses induced by diverse 

neurodegenerative triggers (e.g. APP, MAPT, Huntingtin, SCA1, and others). Consistent with this, we 

found that genes implicated in immune biology and inflammation comprise those recurring most 

frequently among the 251 mouse expression signatures included in this study (Figure S3). In addition, 

expression signatures from aged, wildtype mice also show significant overlaps with either neuronal- 

(M194) or microglial-enriched (M56, M219) human coexpression modules, or both (M220, M221) 

(Figure 4). For example, compared with 3-month controls, hippocampal tissue from 24-month-old mice 
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(M56) revealed expression signatures overlapping with FPturquoise (padj=2.9x10
-17

) and other modules 

implicated in inflammation and immunity.  As discussed below, this result suggests that these patterns 

may not be specific for disease states but rather may accompany brain aging more generally. We therefore 

examined for any human coexpression modules with overlap profiles showing relative specificity for AD 

models. While none show absolute specificity, we found that modules enriched for oligodendroglial 

markers, including FPblue and TCXyellow are strongly activated in selected AD models (e.g. M145, 

M247, M223, M65 in Figure 3) but show comparatively sparse or weaker overlap with expression 

signatures from the majority of other disease models. Thus, these modules may highlight transcriptional 

programs that are preferentially activated by AD pathophysiology, such as Aß neurotoxicity. 

 

Our analyses also considered many additional mouse genetic manipulations based on potential 

relevance to neurodegenerative mechanisms (Figure 1B-C). Indeed, several other mice showed strong 

overlaps with human AD coexpression modules similar to canonical AD transgenic models (Figure 4A-

B). For example, the C57BL6/J (B6J)-nmf205 mouse (M182) has an expression signature which overlaps 

significantly with both the neuronal- and microglial-enriched human AD coexpression modules 

(PHGbrown, padj=9.6x10
-39

, and FPturquoise, padj=6.4x10
-6

, respectively), similar to that seen in selected 

MAPT transgenics (M230, M243) and the CDK-P25 mouse (M64, M65). This mouse model consists of 

mutations in both the translation GTPase GTPBP2 and the neuronal tRNA
Arg

UCU
 
gene causing 

neurodegeneration in association with ribosome stalling (Ishimura et al., 2014; Ishimura et al., 2016). In 

another example, expression of a mutant form of neuroserpin in mouse neural progenitor cells (Guadango 

et al., 2017) activates a transcriptional signature (M205) that significantly overlaps with the astrocyte-

enriched modules, including IFGyellow (padj=8.1x10
-17

), as well as FPblue (Figure 4B, padj=4.7x10
-6

), an 

oligodendroglial-enriched module showing some selectivity for AD transgenic models (above). 

Autosomal dominant mutations in neuroserpin cause familial encephalopathy with neuroserpin inclusion 

bodies, a rare, young-onset neurodegenerative dementia caused by protein aggregation within the 

endoplasmic reticulum and associated ER stress (Roussel et al., 2013). 
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Of the 30 human AD-associated coexpression modules, a minority show virtually no overlap with 

AD mouse model brain expression signatures (asterisk, Figures 2,3A,4A). Such modules are strong 

candidates for features of AD pathobiology that are poorly recapitulated by existing AD mouse models. 

Interestingly, our cross-species analyses pinpoint a number of other mouse model expression signatures 

that overlap these modules (Figure 4A-B). For example, conditional knockout of the DNA 

methyltransferase, DNMT1 (M54), in the mouse brain (Narayanan et al., 2014) activates a set of DEGs 

that significantly overlap (Figure 4B, padj=1.4x10
-11

) with a human module, IFGblue, implicated in the 

unfolded protein response and DNA repair pathways. In another example, brain RNA-seq from a Gnasxl-

deficient mouse (Holmes et al., 2016) (M156) overlapped with the FPbrown coexpression module (Figure 

4B, padj=5.4x10
-9

) that is enriched for genes involved in oxidative phosphorylation and mitochondrial 

translation.  Interestingly, Gnas, which encodes a G-protein alpha stimulatory subunit, is a complex, 

imprinted genomic locus implicated in hypothalamic control of energy balance. Loss of the Gnasxl 

isoform causes a hypermetabolic mouse phenotype, resulting in growth retardation, hypoglycemia, and 

reduced adiposity (Nunn et al., 2013). 

 

DISCUSSION 

Mouse genetic models have contributed enormously to our understanding of AD pathophysiology 

(Ballatore et al., 2007; Esquerda-Canals et al., 2017); however, the utility of these mice as robust 

preclinical models for AD has been challenged (Drummond and Wisniewski, 2017; Onos et al., 2016; 

Sasaguri et al., 2017). First, most AD mouse models are based on rare forms of familial autosomal 

dominant AD, which are caused by single, highly penetrant gene mutations. By contrast, late-onset AD 

arises from dozens of other risk variants, including many with modest effect sizes (Karch et al., 2014; 

Lambert et al., 2013; Sims et al., 2016), perhaps in combination with non-genetic risk factors. Second, 

unlike mouse models, most brain autopsies from individuals with AD show evidence of heterogeneous, 

mixed pathologies which likely modify disease onset, manifestations, and progression. Third, it has been 
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suggested that widely used mouse neurobehavioral assays may be poor predictors of clinically relevant 

outcomes in human AD. In this study, we use the brain transcriptome to examine the correspondence 

between 30 human AD brain gene expression networks and 251 mouse experimental comparisons. These 

analyses provide a systems-level view of the molecular overlap between AD in humans and mouse 

models, as represented in the brain transcriptome. 

Our results show that many AD transgenic mice, including both APP and MAPT models, show 

differential expression signatures that significantly overlap with AD-associated coexpression modules 

from human brains. The most robust overlaps were detected among module clusters strongly enriched for 

neuronal and microglial genes. However, these modules account for only 14 out of 30 total coexpression 

networks (47%), and as discussed further below they do not appear to be specific for AD. By contrast, a 

second group of human modules, especially those enriched for oligodendroglial genes, show 

comparatively greater specificity for AD, albeit for a rather restricted subset of models. Lastly, a 

substantial minority of AD-associated human brain coexpression modules had virtually no detectable 

overlap with available AD mouse models. The overlaps we define highlight those molecular features of 

AD biology recapitulated in existing AD mouse models, whereas non-overlapping modules may identify 

aspects of AD pathophysiology poorly captured. We conclude that most AD mouse models show overall 

poor correspondence to human disease, based on brain transcriptomes, with exception of 

neuronal/microglial-enriched modules. This is an important caveat for interpretation of studies using these 

animal models, and may explain in part their poor predictive power as AD preclinical models. Our 

findings are consistent with a complementary study of mouse data from gene expression arrays (Hargis 

and Blalock, 2017). Since the overall correlation of the brain transcriptome and proteome is modest 

(Seyfried et al., 2017), it will be important in future work to consider whether human-mouse gene 

expression overlaps are improved at the protein level.  

Our analyses also highlight the value of experimental models for interpretation of human brain 

transcriptome profiles. Analyses considering either cross-sectional or longitudinal datasets similarly 

suggest that transcriptional changes overlapping human brain neuronal-enriched modules may represent 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 3, 2019. ; https://doi.org/10.1101/506873doi: bioRxiv preprint 

https://doi.org/10.1101/506873


 11

an earlier, transient stage of AD, whereas microglial signatures are a subsequent and more sustained AD 

endophenotype. These results are consistent with other studies of AD mouse model transcriptomes 

reporting changes in neuronal- and microglial-enriched gene pathways (Cummings et al., 2015; Gjoneska 

et al., 2015; Matarin et al., 2015). Additionally, human brain astrocytic and oligodendroglial modules 

overlap with differential expression signatures from CDK5-P25 and 14 month-old 5xFAD models, which 

are both notable for their advanced pathologic changes, potentially consistent with a comparatively end-

stage AD transcriptional endophenotype. Transition points between human-mouse overlaps can be linked 

to the manifestation of disease-relevant mouse phenotypes. For example, CRND8 APP mice manifest 

reduced synaptic markers and hippocampal neuronal loss at 6 months, when overlaps are first detected 

with microglial modules (Adalbert et al., 2009; Brautigam et al., 2012). Similarly, in Tg4510 MAPT 

transgenic animals evaluated at 4 and 6 months, respectively, memory task impairment and subsequent 

neurodegenerative pathologic changes correspond to sequential activation of neuronal and microglial 

expression patterns (Blackmore et al., 2017; Ramsden et al., 2005). Since human brain RNA-seq can only 

be evaluated at the time of death, there are significant challenges to resolve age-dependent changes or to 

definitively establish links with clinical-pathologic progression. Collection of AD mouse RNA-seq from 

additional timepoints may therefore accelerate discovery of improved molecular biomarkers of AD 

progression, and ultimately pinpoint critical windows for therapeutic interventions. Our cross-species 

approach additionally highlights sex-dependent changes, suggesting that female mice manifest a more 

rapid progression based on gene expression profiles, consistent with prior observations in both mice (Jiao 

et al., 2016) and human epidemiology (Altmann et al., 2014; Li and Singh, 2014; Mayeux and Stern, 

2012). The apparent age by sex interaction recapitulated by our human-mouse comparisons is consistent 

with the companion report by Logsdon et al. (submitted), and underscores the substantial impact of sex on 

the brain transcriptome in AD. 

Aging is the strongest known AD risk factor, and as highlighted above, is also a potent modifier 

of the transcriptome in AD mouse models. Using a distinct analytic design and largely independent 

datasets, Hargis and Blalock (2016) reported that DEGs were concordant between aging in humans and 
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rodent models, a conclusion supported by our analysis. Strikingly, the majority of AD-associated human 

brain coexpression modules showing overlaps with APP and/or MAPT transgenic mouse models, were 

also seen in aged, wild-type mice, as well as many other disease models. This result suggests that many 

human brain gene expression changes associated with AD, including neuronal- and microglial-enriched 

modules reported in other studies (Mostafavi et al. 2018; Zhang et al. 2013), may represent common 

transcriptional programs activated by the aging process itself. Rather than representing a specific 

signature of AD pathophysiology (e.g. Aß- or Tau-mediated mechanisms), these pathways appear to be 

triggered and/or accelerated by heterogeneous triggers, including those manipulated in mouse models of 

HD, ALS, SCA1 and other neurodegenerative disorders. Interestingly, several module overlap patterns 

still revealed possible disease-specific signatures. For example, several modules enriched for 

oligodendroglial markers showed comparatively selected overlap AD models, particularly APP transgenic 

models, and related human brain coexpression networks have previously been implicated in AD in 

multiple studies (Allen et al. 2018; McKenzie et al. 2017; Mostafavi et al. 2018). Alternatively, coincident 

activation of both neuronal- and microglial-enriched modules was seen preferentially in models 

characterized by significant Tau pathologic burden. In contrast to AD and other neurodegenerative 

disease models, nearly all differential expression signatures from HD mice (35 out of 37) did not 

significantly overlap with microglial-enriched coexpression modules (Figure S4).  

Our study has several notable limitations. The large size of most human coexpression modules 

may limit sensitivity to detect significant overlaps using the hypergeometric test, especially for functional 

pathways represented by smaller gene sets. Compared to the laboratory preparation of mouse mRNA, the 

extraction and processing of human brain tissue is likely more susceptible to postmortem artefact, 

although AMP-AD analyses adjusted for sample variability in postmortem interval (Logsdon et al., 

submitted). Moreover, the human RNA-seq data, along with the majority of included mouse studies, 

derive from bulk brain tissue, which includes mixed cell types. Indeed, most of the AMP-AD 

coexpression modules are strongly enriched for cell-type specific signatures, which may therefore reflect 

global changes in cell proportions, such as neuronal loss or microglial infiltration. We anticipate that the 
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increasing availability of single cell expression profiles will definitively address this concern. In addition, 

since the extent and tempo of neurodegeneration, including in both human and mouse models, can vary 

widely across different brain regions, RNA-seq profiles from whole brain might obscure more localized 

transcriptome overlaps. Lastly, while we selected nearly 100 independent mouse RNAseq studies for 

inclusion in our analyses, prioritizing those most relevant to AD and neurodegeneration, we omitted many 

others with the potential to provide additional insights. In the future, our approach can thus be generalized 

to examine overlaps with an even broader sample of available mouse data.   

The strengths of our study include consideration of a still large and diverse number of mouse 

studies and the use of a single RNAseq-reprocessing pipeline to facilitate cross-model comparisons. We 

also leveraged AMP-AD coexpression modules based on analyses of more 2,000 human brains and 

representing consensus networks derived from 5 independent algorithms. Importantly, unlike 

comparisons based on pathology or behavioral phenotypes, brain expression profiles likely represent 

more proximal endophenotypes, potentially affording greater sensitivity and reliability for detection of 

cross-species overlaps. In fact, we highlight several overlaps with transcriptomic endophenotypes from 

completely unexpected mouse experimental manipulations which manifest brain expression changes that 

mimic human AD, and in some cases even overlap modules better than currently available AD mouse 

models.  Such “AD transcriptologs”—mouse models based on transcriptome homology—may pinpoint 

non-obvious experimental models for future investigation of AD pathophysiology.   

 

METHODS 

Human coexpression modules 

The derivation of 30 AD-associated human coexpression modules is described in the companion report 

from AMP-AD (Logsdon et al., submitted) (doi: 10.7303/syn11932957.1). Briefly, the consensus 

networks are based on RNA-Seq data from 2114 total postmortem brain samples from 3 independent 

cohorts, including the Religious Order Study and the Memory and Aging Project (syn3388564) (Bennett 

et al., 2018; Mostafavi et al., 2018), the Mount Sinai Brain Bank (syn3157743) (Wang et al., 2018), and 
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the Mayo clinic (syn5049298, syn3163039) (Allen et al., 2016; Allen et al., 2018). Postmortem tissue was 

collected from seven distinct brain regions: dorsolateral prefrontal cortex (DLPFC); temporal cortex 

(TCX) and cerebellum (CBE), and inferior frontal gyrus (IFG), superior temporal gyrus (STG), frontal 

pole (FP), and parahippocampal gyrus (PHG). Five distinct algorithms were used to independently 

generate coexpression networks from each brain region, and graph clustering was subsequently applied to 

all modules enriched for AD-differentially expressed genes, leading to 30 aggregate modules (Table S1). 

 

Mouse dataset selection 

Figure 1 depicts the overall analysis pipeline for collecting and processing mouse studies, and examining 

overlaps with human coexpression modules. A total of 96 studies, encompassing data from 2279 mouse 

tissue samples, were analyzed (Table S2). These data were collected from three sources: the Gene 

Expression Omnibus (GEO) database (83 studies), the AMP-AD Knowledge portal (syn5550383) (6 

studies), and through personal communication (7 studies). We searched the GEO database on September 

12, 2017 using the keywords “brain”, “mouse”, and “expression profiling by high throughput 

sequencing”, identifying 881 studies for initial consideration. All studies were next indexed using high 

frequency terms, and secondary filtering was based on manually curated keywords relevant to AD 

pathophysiology (Karch et al., 2014) (Table S2). Lastly, the filtered list of 349 studies was reviewed by 

the study team. We excluded studies, or in some cases specific samples, involving (1) tissue source other 

than nervous system, (2) organisms other than mouse, or (3) non-coding RNA. From the remainder, 79 

GEO studies were selected for inclusion based on relevance to AD, neurodegeneration, or related 

mechanisms. All included studies had publicly available RNA-seq data derived from either mouse brain 

or brain-derived cell lines. Following these initial searches, we discovered only a single eligible RNA-seq 

study for analysis of aging-associated expression changes (GSE61915). Given the importance of aging in 

AD, we identified and included an additional 5 expression array profiling studies related to brain aging. 

Table S2 details all studies included in this analysis, including data source, citations, and relevant 

keywords.  
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RNA-seq/microarray re-processing and differential expression analysis: 

A unified RNA-seq analysis pipeline (Figure 1) was used for reprocessing of all datasets, with the 

exception of 2 HD studies where count files were downloaded directly from GEO. Data processing 

leveraged the cloud formation cluster at Amazon Web Services. We first created one EC2 master instance 

(m3.xlarge) which was used to launch hundreds of EC2 computing nodes (c3.8xlarge). Next, each 

computing node was assigned to process one sample using our customized RNA-seq pipeline, as 

implemented using Snakemake v.4.8.0 (Köster and Rahmann, 2012). For samples in AMP-AD studies, 

the pipeline begins with downloading BAM files from the AMP-AD Knowledge Portal using the Synapse 

python client. The BAM files are then converted to fastq files using Picard SamToFastq command 

v.2.18.2 (http://broadinstitute.github.io/picard). For GEO studies, SRA files were downloaded from the 

database using the GEOquery R package v.2.42.0 (Davis and Meltzer, 2007), and fastq files were 

generated using the fastq-dump command from the NCBI SRA toolkit v2.8.2.1 (Andrews, 2010). 

Alignment to the mouse reference genome GRCm38 (mm10) was implemented using STAR v.2.5.1b 

(Dobin et al., 2013), and BAM file reads were subsequently sorted by coordinate using samtools v0.1.5 

(Li et al., 2009). Genes were quantified using either HTSeq v0.6.0 (Anders et al., 2015) or using the 

‘quantMode’ option from the STAR aligner which utilizes HTSeq algorithm and produces similar results. 

Results were uploaded to the Synapse portal using the python client. Differential gene expression analysis 

was conducted using DESeq2 v1.18.1 (Love et al., 2014). For the limited number of microarray studies, 

pre-processed intensities available from the series matrix files were downloaded from GEO and 

normalized using quantile normalization, followed by differential expression analysis using the limma 

package v3.4.2 (Ritchie et al., 2015). For each study (Table S3), experimental and control pairs were 

manually curated. We required a minimum of n = 2 samples for each group (experimental and control); 

the average for all samples included in each comparison was n = 8.4 (range = 4-28 total samples).  

Overall, 376 mouse experimental comparisons were curated for computation of differentially expressed 

gene sets (DEGs), applying a false-discovery rate (FDR) threshold of 1% and minimum fold-change of 
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1.2. The t-distributed Stochastic Neighbor Embedding (t-SNE) algorithm (Maaten and Hinton, 2008) was 

applied to DEGs from all studies (logarithm-transformed fold-change), using the Rtsne function in R. We 

excluded all DEG sets from consideration consisting of fewer than 10 conserved mouse genes, resulting 

in 251 sets of DEGs for consideration in our subsequent analyses. All analysis was done using R v3.4.2, 

and Python v.2.7.12. Table S3 details all DEG sets meeting these criteria, including data sources.  

To facilitate ease of use and repurposing of the data, each mouse DEG set was assigned a unique 

identifier (M###), and we also developed a descriptive nomenclature for annotation. Each gene set 

received a label taking the form: category_experimental condition_sex_age_brain region_cell type_ 

transgene.  In this standardized annotation, “category” denotes the relevant neurologic disease (e.g. AD, 

HD, SCA, ALS) or “other” for gene manipulations not directly linked to human disease, along with the 

specific “experimental condition” describing the mouse genotype or treatment condition. We also note 

“sex” (M or F), “age” (months), and where applicable, “brain region” (e.g. hippocampus), “cell type” 

(e.g. neuron, microglia). In the case of AD mouse models, we also annotate “transgene”, to differentiate 

“APP”, “Tau” (MAPT), or “other” models. If unknown or not applicable, the relevant field(s) are 

replaced with “na”. These annotations and conventions are used throughout our supplementary tables and 

files. 

 

Analysis of mouse-human overlaps 

Mouse orthologs for all human genes were extracted using the HCOP tool available from the HUGO 

Gene Nomenclature Committee (https://www.genenames.org/cgi-bin/hcop) (syn17010253). Using the 

hypergeometric test, we determined the significance of overlap between each of 251 mouse DEG sets 

(above) and the 30 human gene coexpression modules (mouse orthologs) using the phyper function in R 

(Table S4). The Benjamini-Hochberg method was applied to adjust for multiple comparisons, using the 

p.adjust function. All p-values reported in the text were adjusted in this manner. Overlap significance was 

visualized using heatmaps, implemented with pheatmap function in R, using Manhattan distance (for both 

rows and columns) and Ward clustering. In order to determine whether mouse-human overlapping genes 
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also shared expression changes in the same direction, we computed the concordance score for each 

overlap. The direction of change for human genes was extracted from the data in Logsdon et al. 

(submitted) (syn14237651). Specifically, the concordance score is the percentage of genes in the 

concordant direction weighted by the significance based on the hypergeometric test, which is computed as 

follows: 
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The overlap was considered concordant when the weighted concordance is greater (or less) than half 

standard deviation from the median, and padj ≤ 0.01 for the up- or down- differential expression. 
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FIGURE LEGENDS 

Figure 1: Study design and data 

(A) We systematically examined overlaps between 30 Alzheimer’s disease (AD)-associated human co-

expression modules (rows) and differentially-expressed gene (DEG) sets from 376 curated experimental 

comparisons in mouse models with RNA-seq profiles. (B) 96 mouse studies were selected based on 

relevance to AD, other neurodegenerative disorders, and implicated mechanisms. Distribution of 

keywords is shown among all included studies. All RNA-seq data was re-processed using a standard 

pipeline, and experimental versus control comparisons were manually reviewed and curated prior to 

differential expression analysis. (C) The 376 sets of DEGs considered in our analyses highlight 

expression signatures for mouse models of AD and other neurodegenerative disorders, including 

Huntington’s disease (HD), Frontotemporal Dementia-Amyotrophic Lateral Sclerosis (FTD-ALS), 

spinocerebellar ataxia 1 (SCA), Rett syndrome (RETT), Parkinson’s disease (PD), Creutzfeld Jacob 

disease (CJD), and neurofibromatosis (NF). We also considered DEGs from additional mouse models 

relevant to neurodegenerative mechanisms (Other). A T-distributed Stochastic Neighbor Embedding (t-

SNE) plot was generated from all mouse model differential expression signatures included in this study, 

highlighting that these DEG sets capture a combination of disease-specific and overlapping features 

among heterogeneous neurodegenerative models. See also Figure S1 and S3. 

 

Figure 2: Overview of human-mouse overlaps and concordance 

(A) Heat maps show overlap (top) and concordance (bottom) among 30 human coexpression modules 

(rows) and 251 sets of differentially expressed genes (DEGs, columns) from mouse model experimental 

comparisons. The average sample size for each comparison is 8.4 (range=4-28 total samples). Mouse-

human overlap significance, calculated using the hypergeometric test, is represented in grayscale [-

log10(padj)]. Direction (red/blue) and extent of concordance (intensity) for gene expression changes in 

human brains and mouse models is also indicated (bottom). The color bar at top annotates all DEGs based 

on whether they derive from Alzheimer’s disease (AD) models (pink), other neurodegenerative disease 
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models (purple), or other experimental manipulations potentially relevant to AD mechanisms (orange).  

The color bar at left denotes cluster membership for each human coexpression module, based on 

enrichment for cell-type specific gene signatures, including microglia (turquoise), neuron (brown), 

astrocyte (yellow), or oligodendrocyte (green). Module clusters associated with cell-type expression 

signatures (microglia, neuron, astrocytes, and oligodendrocytes) show broad overlaps with mouse model 

expression signatures. By contrast, the remaining modules poorly enriched for known cell type signatures 

(asterisk, right) show sparse overlap with mouse DEGs. Comprehensive results and details for all models 

and resulting overlaps can be found in Table S3 and S4. 

 

Figure 3: Human coexpression module overlaps with AD mouse models 

(A) Heat maps show overlap (top) and concordance (bottom) among 30 human coexpression modules and 

sets of differentially expressed genes (DEGs) derived from Alzheimer’s disease (AD) mouse models. 

Mouse-human overlap significance, calculated using the hypergeometric test, is represented in grayscale 

[-log10(padj)]. Direction (red/blue) and extent of concordance (intensity) for gene expression changes in 

human brains and mouse models is also indicated. The color bar at top annotates AD model comparisons 

based on whether they derive from APP (pink), MAPT (orange), or other (purple) AD models. The 

estimated pathologic burden (plaques/tangles and neuronal loss) in APP and MAPT models is also 

annotated in green, based on Alzforum (http://www.alzforum.org/research-models/). The color bars at left 

denotes cluster membership for each human coexpression module, based on enrichment for cell-type 

specific gene signatures, including microglia (turquoise), neuron (brown), astrocyte (yellow), or 

oligodendrocyte (green). The remaining modules poorly enriched for known cell type signatures (white, 

asterisk) show sparse overlap with DEGs from AD mouse models. Comprehensive results and details for 

all models and resulting overlaps can be found in the Supplemental Tables, cross-referenced by the 

unique ID code (bottom) for each set of model DEGs. Selected human module-mouse DEG overlaps 

referred to in the text are denoted as follows: ��, APP models with oligodendrocyte-enriched module 
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overlaps; +, CRND8-APP models showing sustained, activation of microglial modules from 6 months 

onward; �, transient activation of neuronal modules in TG4510-MAPT model preceding microglial 

module overlap; •, co-activation of neuronal and microglial modules. Comprehensive results and details 

for all models, including sample sizes for all comparisons, and resulting overlaps can be found in Table 

S3 and S4. (B) Mouse model overlaps highlight age- and sex-dependent changes in the AD transcriptome. 

Direction of gene expression changes denoted by red (up) and blue (down). Magnitude of gene expression 

changes shown as percentage of the mouse DEG set overlapping each module. Cell type module clusters 

are denoted by colors on the bottom of the panel, as in A. (C) Representative overlaps of human modules 

with mouse DEGs. Gene counts are noted in black, including for overlapping and non-overlapping 

regions. To assess concordance between human brains and mouse models, gene counts are shown, noting 

increased or decreased expression (red or blue, respectively), including for the whole human coexpression 

module and the overlapping gene set from mouse models. See also Figure S2. 

 

Figure 4: Overlaps with other mouse models 

(A) Heat maps show overlap among human coexpression modules and sets of differentially expressed 

genes (DEGs) derived from mouse models, including pure aging, additional neurodegenerative disorders, 

and other experimental manipulations relevant to Alzheimer’s disease mechanisms. Mouse-human 

overlap significance, calculated using the hypergeometric test, is represented in grayscale [-log10(padj)].  

HD, Huntington’s disease; FTD-ALS, frontotemporal dementia-amyotrophic lateral sclerosis; SCA1, 

spinocerebellar ataxia 1; CJD, Creutzfeld-Jacob disease. Overlaps between HD model expression 

signatures and neuronal gene-enriched human coexpression modules recapitulate polyglutamine length- 

(M100, Q92 vs. M94, Q175) and brain region dependence (M100/M94, striatum vs. M72/M81, cortex). 

Other genetic manipulations generate expression signatures similar to AD mouse models, including (i) 

selective activation of microglial-enriched modules (M183, PTCH1 knockout), (ii) coincident overlaps 

with microglial- and neuronal-enriched modules (M182, nmf205), or (iii) overlap with astrocytic- and 
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oligodendroglial-enriched modules (M205, Neuroserpin). Modules poorly enriched for cell type 

signatures (denoted by asterisk, right) show sparse overlap with DEGs from AD mouse models, but 

selected overlaps are identified with FTD-ALS models (M28, M43) and other, unexpected genetic 

manipulations (M158, M111, M54, and M156). Comprehensive results and details for all models, 

including sample sizes for all comparisons, and resulting overlaps can be found in Table S3 and S4. For 

complete heat maps representing overlaps with HD, FTD-ALS, SCA1, and aging models, see Figure S4-

6. (B) Representative overlaps of human modules with mouse DEGs, as in Figure 3C.  

 

DATA AND SOFTWARE AVAILABILITY 

Data from this study, including all re-processed RNA-seq from mouse models, subsequent differential 

expression analysis, and the overlap analyses with human coexpression modules is available from the 

AMP-AD Knowledge Portal at doi:10.7303/syn16779040.  

 

SUPPLEMENTAL INFORMATION 

Supplemental Information includes 6 figures and 3 tables. 
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