
To be published in
IEEE Trans, on Nucl. Sci.

Invited paper to be presented
at Nuclear Science Symposium,
San Francisco, Nov. 14-16, 1973.

BNL 18360

- 73///Z— 3S"

FUNCTIONAL DISTRIBUTION -
AN ARCHITECTURE FOR MULTI-USER COMPUTER NETWORKS

IN INSTRUMENTATION*

D. G. Ditnmler
Brookhaven National Laboratory

Upton, New York 11973

November 1973

\ ••

This work was performed under the auspices of the U. S. Atomic
Energy Commission.

Giauiiati oz idia DXICUMBIX &

-NOTICE-
Titis report was prepared as an account of work
sponsored by the United States Government. Neither
the United States nor the United States Atomic Energy
Commission, nor any of their employees, nor any of
their contractors, subcontractors, or their employees,
makes any warranty, express or implied, or assumes any
legal liability or responsibility for the accuracy, com-
pleteness or usefulness of any information, apparatus,
product or process disclosed, or represents Shct its use
would not infringe privately owned rights.

BNL 1 8 3 6 0

FUNCTIONAL DISTRIBUTION -

AN ARCHITECTURE FOR MULTI-USER COMPUTER NETWORKS I N INSTRUMENTATION*

D. G. Dimmler

Brookhaven National Laboratory
Upton, New York 11973

A new approach ie Introduced for the design of
Multi-User Real-Time Computer Networks. The approach
leads to a system architecture called "Functional Dis-
tribution". Definitions of the concept and key issues
of a practical implementation are discussed using as an
example a Multi-User Experiment Control System. The
discussion also includes the architecture of that hard-
ware which has been traditionally referred to as the
"interface between an experiment and a computer".

A. Background

In the late 50's, it first became feasible to use
real-time computer installations in instrumentation and
laboratory automation. The key question to be answered
by the system designer at that time was:

How to use these new real-
time computers to enhance
the performance of experi-
mental or laboratory setups?

In the Nuclear Instrumentation field, the problems
attacked were mainly associated with multiparameter,
multichannel analysis.1»^

to overcome, the above limitations, support grew for
general-purpose multi-user centralized architectures
where all resources were pooled at one structure with
the idea of gaining economy and performance by sharing
with some tradeoffs in independence flexibility.

Disappointments in economy, flexibility, indepen-
dence and sometimes performance of many general purpose
centralized architectures soon shifted the major inter-
est to networks where the system designer was faced with
still another question:

How can the tasks requested
from the system be parti-
tioned onto the various
components of the network?

Partitioning, a familiar task for computer hard-
ware designers, hardware interface designers and
computer software designers, now entered system design.
Partitioning gained further significance with the con-
tinued introduction of more and more complex functions
by LSI circuit manufacturer?. The LSI functions in-
troduce partitions which have the tendency to make both
the familiar hardware partitions and the independent
software partitions uneconomical. Some combinations of

Developments in the computer industry rapidly modi- the above and other parameters**** may account for the
fled the question to: confusing presence of network architectures.

What is the most appropriate I was recently asked to propose a new architecture
computer architecture for a for the replacement of a one-decade-old dedicated mul-
given laboratory environment? tiple-experiment system6'***** with a more modern fa-

cility. Besides performance and other improve-
Pursuance of this question brought a confusing va- ments, the following general features aie expected from

riety of approaches towards the late 6O's3>4> in the the new facility:
area of multi-user systems. Several attempts at
classification of the approaches have been made, how-
ever.5

Dedicated architectures had the reputation that
they could be used independently of other people's
plans, experiments and laboratories. The tradeoffs
were in the economy of high-performance peripherals
which were too expensive to connect to dedicated archi-
tectures and in higher level languages which were geared
towards more general configurations. With the intent

References from Nuclear Instrumentation are given here.
There is ample evidence that the situation has been sim-
ilar in the general field of instrumentation and auto-
mation.

Multi-user system is here defined as a system which

operates several experiments or laboratory setups
concurrently.

Political boundaries, organizational boundaries,
funding regulations, etc., have, of course, a substan-
tial influence here. These parameters, although im-
plicitly considered, are not within the scope of this
presentation.

The present facility to be replaced is called:
Multiple Spectrometer Control System (MSCS).

Reactor ExperimentThe new facility is called:
Control Facility (RECF).

This work was supported by the U. S. Atomic Energy
Commission.

fr.

(a) A single high-level ap-
plication language which
affords maximum convenience
to the user should exist in
order not to load down the
experimenter with complex
computer terminology.

(b) Protection against acci-
dental interaction between
experiments should be in-
creased to a degree that
experiment A can be in a
testout and modification
phase, whereas experiment
B is in an unattended rou-
tine run phase without un-
scheduled interactions.

(c) The facility should be in-
crementally expandable with
prevailinp state-of-the-art
hardware and software. This
expansion is to apply to new
experiments with presently
unknown specifications as
well as to existing experi-
ments with changing specifi-
cations.

(d) The previous point implies
that parts of the facility
may become obsolete in the
future. The facility as a
whole, however, should not
have a scheduled obsolescence.

In searching for material I came across a rhetor-
ical question mentioned in a summary of a panel dis-
cussion in 1969 on "Future Trends in Nuclear Instrumen-
tation".? The question was: "Whatever happened to the
(promised) flexibility (of on-line computers)?" The
answer was: "It simply did not happen".

Instead of finding an answer in studies of newer
systems, I was prompted to other questions: "Why are
system architectures becoming obsolete faster than the
hardware and software components they incorporate and
are made of?" "Is there something wrong with the tra-
ditional approaches to system design?"

I would like to shed some light on these questions
in the presentation. In the following, an approach to
system design is introduced which has led to a system
architecture called Functional Distribution. Some key
issues of the approach and its implementation are dis-
cussed. Although the discussion of the approach is
based on the example of a system used in the control of
multiple experiments, it is believed that the approach
as well as the results have general applicability to
real-time system design.

B. Analysis of the Approach

The approach is based on two conclusions:

(a) Experimenters as well as ex-
periments relate to an ex-
periment control system1* on
the functional level. Typ-
ical requests issued by an
experimenter are: prompt ex-
periment parameters, start
experiment, move motor from
position A to position B,
stop experiment. If the ex-
periment is involved in the
analysis of data, then a typ-
ical command to the system is:
move data from File A to File B.

(b) One of the major mistakes of
traditional approaches has been
to partition, too early, a given
functionally defined task to be
performed into a hardware task
and an independent software task.
Quite often this partition has
been a: priori assumed.

Figure 1 shows this partition into hardware and
software tasks using as an example the function
"BINARY-TO-BCD-CONVERSION" which might be necessary for
an expansion of an existing system. This elementary
Functional Subsystem is embedded somewhere within a
Functional Architecture and is partitioned into two
implementation levels. These two levels are the follow-
ing:

(a) A set of Software Subsystems
consisting of programs, in-
cluding instructions and algo-
rithms. These programs are em-
bedded in Software Structures.

(b) A set of Hardware Subsystems,
defined in more detail as
Resources.*" are embedded into
Hardware Structures.

The example shows the dilemma of the a priori
partitioning. LSI technology provides, as of recently,
another implementation partition which is: to use an
LSI circuit11 and to forget about the software struc-
tures as well as a fair amount of the hardware struc-
ture and embedded subsystems. This, however, can only
be done if a functional architecture is recognizable.
This example shows, in addition, that complex hardware
structures and associated software structures become
technologically obsolete because a device having a cost
of a few dollars appears and seems to survive on the
market.

A system is defined here as follows: A system has its
own environment and is, in fact, a subsystem of some
broader system.1" A system may be broken down into an
embedded set of more elementary subsystems. An Exper-
iment Control System is more specifically defined here
as a real-time system used in the control of, data ac-
quisition from, and monitoring of experiments.

In order to avoid the above mentioned serious
drawbacks, the following strategy in the design of a
new system seems to be appropriate:

(a) study the system to be
designed on a functional
level;

(b) break down the system into
a set of hierarchical,
nested functional subsystems
which are interconnected via
a Functional Architecture;

(c) then, at sooe point which
looks reasonable, partition
the functional subsystems
into independent hardware
and software subsystems.

Iterations within the strategy are, of course,
necessary because it is necessary (a) to use as many
existing implementation structures as are economically
and other^ir^ feasible and (b) to find architectures
whith hopefully fit into future trends of partitioning
in the computer and electronics industry.

Before I proceed, the definition of a node
be introduced.

should

A node is a functional subsystem which has, on
the implementation level, an embedded hardware struc-
ture** and, if applicable, an embedded software struc-
ture. The node boundary is defined in functional terms,
called a protocol. Within this definition, a typical
general purpose Centralised Resource Sharing system
would constitute one node; a set of dedicated systems
would constitute a set of nodes which have no architec-
tural interconnection and a network consists of a set
of nodes which are incorporated within an architecture
of the system. The node, of course, may include an in-
ternal architecture. In Fig. 1, the two functional sub-
systems FS1 and FS2 are members of one node.

C. System Overview

Experiment Control Systems are organized along
Data Flows and Control Flows'™ aa shown in Fig. 2.
Three environments can be recognized:

A functional subsystem may consist of a set of more
elementary functional subsystems which are embedded.

It follows that a node includes at least two hardware
resources: a processor and a memory resource.

The protocol may, in turn, include an embedded hard-
ware structure and software structure.

This is a noteable difference to some other systems.
For instance, traditional time sharing systems are oro-
cedure oriented.

(a) the Experiment Environment,
which is self-explanatory;

(b) the Input/Output Environment*
where all input and output
media, such as cards, magnetic
tapes and/or connection to a
larger computer center, are
managed;

(c) the Control and Monitoring
Environment, which includes
the control devices, usually
teletypewriters and function
keyboards as well as monitor-
ing display devices.

A Pata Flow exists between the Experiment and In-
put/Output Environments. The Main Control Flow is
directed from the Control Environment to selected points
within the Data Flow. Monitoring information flows in
the opposite direction of the Main Control Flow and
originates from arbitrary points within the Data Flow.

D. Global Subsystems

As shown in Fig. 3, section 1, an Experiment Control
System may be broken down into global functional sub-
systems which, in turn, may be further broken down into
more elementary embedded functional subsystems.

The Experiment Service Subsystem includes hardware
and software for experiment-related functions such as
motor control, control of data transfer from and to the
experiment, local processors within the data flow, etc.

The Application Subsystem most closely resembles
the traditional general purpose computer with a general
purpose computerprocessor and memory on Which applica-
tion programs are operating. In the case of ex-
periment control, this program resembles the main control,
the measuring sequence and essociated analysis. This
subsystem is not discussed further here.

The File Subsystem includes the hardware and soft-
ware for the management of on-line files on file storage
devices.

The I/O Subsystem includes the hardware and soft-
ware for the peripheral devices and/or for transmission
to a larger computer center. Data Acquisition Systems
and Monitoring Systems are, as seen in Fig. 3, simpler
subsets of the Control System.

E. Properties of System Design Parameters

Known implementation properties of some system
design parameters are shown in Exhibit 4. Elaborations
on the parameters are given in Appendix A. It is the
purpose of the exhibit to assist in assigning functional

Application programs, as opposed to system programs
and library programs, are generally written in a high-
level language.

subsystems to nodes so that the various subsystems can
be economically implemented with the least complexity
with consideration given to the possibility of using
existing designs and predicting future trends.

Computer installations always represent a major
monetary and organizational commitment.* Therefore it
lias been decided to group the parameters according to
their primary impact on cost. Hie exhibit shows that
three cost areas muse be considered:

Investment cost

Operating cost

Depreciation cost, where only
the influence of technological
obsolescence is of interest here.

Key considerations in the assignments are:

(a) Seasonable tradeoffs among
Investment cost, operating
cost and depreciation cost
of a node (not the entire
system) are attempted.

(b) Isolation of malfunctions
(isolation against un-
intentional interference)
between experiments and
between functional sub-
systems should be as good
as is presently economically
feasible.

(c) It is the intent to find
protocol definitions which
have a substantially lower
rate of technological obso-
lescence than the functional
subsystems themselves. This
way, functional subsystems
can be replaced selectively
and updated without rendering
the system obsolete.

(d) An important consideration is
the present feasibility of
partitioning because software
offered by most manufacturers
in the computer field is based
on centralized processor and
primary memory sharing princi-
ples. It is believed that
economic considerations will
prompt computer manufacturers
to make software generally
available which is based on
distributed processor princi-
ples.

F. A Practical System

Assignments

A study of the parameter properties leads to the
subsequently described assignments.

The Input/Output Subsystem and File Subsystem for
all experiments are incorporated into one node and are
shared as shown below. The reasons are the following:

(a) Economic reasons and, in the
case of the File Subsystem,
logistic reasons furnish an
incentive for sharing.

(b) The functional boundaries are
fairly solid*** due to the
relatively low sophistication
necessary for experiment control
systems.

(c) The mean time between intentional
changes is long. Thus the node
has a chance to be left alone for
long periods of time.

(d) The technical obsolescence rate
of the subsystems depends on in-
put/output devices and file de-
vices. These resources become
obsolete at a low rate. Thus
there is a good chance that the
node has a Irrg, technologically
useful life expectancy.

(e) The node is generally applicable
in fields unrelated to real-time
applications. Thus, the proba-
bility of future gain in economy
is enhanced.

(f) The required response times are
long compared to the speeJ of the
central processor and the primary
memory. Thus, efficient scheduling
of these resources for the purpose
of sharing is feasible.12

The Application Subsystem as well as part of the
Experiment Service Subsystem of each experiment will be
incorporated into nodes which are private to the ex-
periment. The reasons are as follows:

(a) Sharing of processors and primary
memory becomes inefficient because
of the short response time usually
required.12

Organizational commitments are often expressed in terms
of cost.

Secondary and iterative impacts are assumed to be
minor and are not considered here.

The most solid boundary in the computer field seems
to be the functional boundary between the I/O subsystem
and the I/O environment. Card formats, magnetic tape
formats and protocol change very little. The artificial
differences which can be often found resemble more a
degree of confusion rather than a difference in need.

(b) The decreasing relative
cost of processors and
primary memory makes
sharing for economic
reasons unattractive.
There are no other rea-
sons for sharing.

(c) The independence between
experiments which is gained
by private nodes has bene-
ficial effects in the areas
of: (a) protection against
accidental interactions, and
(b) future incremental ex-
pandability with prevailing
state-of-the-art technology.

G. Global Architecture of Network

Figure 5 shows the global architecture of the net-
work being developed. A Private Control Node, which
includes the appropriate Application Subsystem and part
of the Experiment Service Subsystem, is assigned to each
individual experiment. The Main Control devices, usu-
ally terminals of some sort, are connected to the appro-
priate node. The Private Control Nodes interconnect to
Service Nodes in both directions within a hierarchical
architecture. The Main Control Flow of the system orig-
inates at the Main Control Devices and is directed from
the Private Control Nodes to the service nodes. Service
Nodes shared by several Control Nodes are located in
higher levels of the hierarchy. In Fig. S one Central
Shared Service Mode is shown. Service Nodes which are
accessed exclusively by one Private Control Node are
located on lower levels of the hierarchy and are re-
ferred to as Private Service Nodes.* Command and data
transfers vithin the system operate on a request/re-
sponse basis. Command transfers in the direction of
the Main Control Flow, which is shown in Fig. 5, are
considered to be Service Requests; command transfers in
the opposite direction are considered to be Service Re-
sponses to previously given requests.

H. Central Shared Service Node

We presently plan to combine three elementary
Input/Output Subsystems and one File Subsystem into one
Central Shared Service Node as shown in Fig. 6.

The Reserved Device Subsystem includes the devices
and appropriate management for datasets which are ex-
plicitly reserved and released by Control Node programs.
These include the familiar unit-record devices such as
magnetic tape units, card reader, and paper tape reader/
punch.

On the hardware implementation level, each Control Node
contains, for logistic reasons, a general purpose com-
puter processor. The Shared Service Node contains, for
practical reasons, a general purpose computer processor.
The Private Service Nodes often do not contain a general
purpose computer processor.

The definition of a dataset here depends on the target
subsystem. It is roughly equivalent to a device in the
Reserved Device Subsystem and to a file in the File
Subsystem.

The Spooled Output Subav«tem includes the output
devices and management for the device* which are oper-
ated in a spooled fashion. The Control Node program
submits output data to the Subsystem which holds the
data temporarily on a disk file. After output completion,
the entire output file i» spilled contiguously to the
output device. The printer and graphic plotter are in-
corporated in this subsystem. Also incorporated is one
shared magnetic tape unit which allows the production of
merged magnetic tapes for off-line coamunicr.tion with a
larger computer center. A Spooled Input Subsystem had
been determined to be non-essential for an Experiment
Control Facility.

The Spooled Datasink/Data»ource Subsystem manages
on-line coomunication between a computer center and the
Experiment Control Facility. This subsystem is specific
to the protocol of the larger computer center and is
therefore not appropriate to discuss here without de-
scribing the larger computer center.

The File Subsystem includes the File MaoaEeiDent***
and the devices which contain on-line files.

(a) In dynamically allocated files,
space is allocated as needed by
WRITE statements. This alloca-
tion algorithm is used with se-
quentially organized files.

(b) In preallocated files, the total
space required is declared and
allocated at the time of FIIE
CREATION. This file type is
preferred for sequentially or-
ganized files with predictable
sizes and for files with random
access organizations.

(c) The object program library files
include the libraries for over-
lays. This additional file type
has been defined because of the
difference in the access control
flow bet'iieen files containing
programs and files containing
data.

Access to the Central Shared Service Node

The Private Control Nodes access the Central Node
via Central Logical Channels (CLC's). A group of chan-
nels is privately assigned to each connected Control
Node. The Control Node may assign one dataset to a
CLC. Thus the number of channels assigned to a given

The File Management as here defined manages the
space allocation, file organization and retrieval of
logical blocks. The File Management does not have
knowledge of the content represented by bit patterns in
the logical block; this would be the task of a Data
Management.

On-line files are those files having names which are
interpretable and are recognizable by the Experiment
Control Facility. Each on-line file thus has to be ex-
plicitly created. At this time at least a directory
entry is generated. When no further use of an on-line
file is necessary, the directory entry i& -explicitly
destroyed.

Control Node determines the number of datasets to which
the Control Node can connect concurrently.

A Control Node requiring a service initiates a re-
quest/response cycle, here called a Transaction. A
transaction consists of three phases:

the REQUEST phase

the ACKNOWLEDGE phase

the DATA phase.

During the REQUEST phase, a 16-word logical block
is transmitted from a Control Node to the Central Node.
The content of the block includes the number of the
CLC to be accessed as well as a complete description of
the function requested from the dataset assigned to the
CLC. Typical functions are:

CREATE/DESTROY file

DESERVE/RELEASE dataset

OPEN/CLOSE dataset

READ/WRITE logical block
to/from OPENed dataset

LOAD OVERLAY from Library.

The boundary protocols of these functions are stan-
dard within traditional input/output and file manage-
ment systems and promise to be fairly stable.

At the ACKNOWLEDGE phase, the Central Node trans-
mits the response back to the originatinf Control Node
in a similar 16-word block. If the object of the re-
quest was a data transfer of some sort, then this
transfer occurs at the DATA phase.

Malfunctions at the transaction level are reported
during the ACKNOWLEDGE phase, while malfunctions at the
hardware level are handled at the appropriate individual
phase. Malfunctions occuring subsequent to some WRITE*
transaction generate a message in a direction opposite
to the Main Control Flow. These messages aze considered
"Unsolicited Responses" to a previously given trans-
action and are transmitted as transactions to the appro-
priate Control Node.

Hardware Characteristics of the Link

A hardware finger structure is used for the link
between the Central Node and each Centre1 Node. Each
finger consists of a Central Node terminal, a Control
Node terminal and an optically isolated multiwire cable.
The sequence of control of each finger has the scope of
one transaction. In order to allow for the transaction
of "Unsolicited Responses" which are, as far as the
hardware is concerned, initiated at the Central Node,
the link control is symmetric and employs a master/slave
organization.

Some WRITE operations initialize a store-and-forward
mechanism in the Central Node. Hence, they may gener-
ate malfunction messages which are out of time sequence
with the originating program.

Flow of a Typical Transaction

Figure 7 shows a typical flow of a transaction
using as an example a "WRITE LOGICAL BLOCK OF N WORDS
TO A DATASET". Five interactions between the two nodes
are necessary in a complete transaction. The Control
Node obtains Master Status of the communication link
and thus originates the transaction. It also assumes
the responsibility for terminating the transaction with
a release of the link. The Central Node cannot originate
a transaction during the time the Control Mode holds
Master Status. Transactions between the other Control
Nodes and the Central Node will not be disturbed.

I. Experiment Service Subsystem

The Experiment Service Subsystem is here defined
to be a set of functional subsystems assigned between
the Application Subsystem and the experiment electronics.
All sorts of changes may happen in this area. Here, it
is particularly difficult to find system designs which
are incrementally expandable with prevailing technology.

Developments and partitioning in LSI technology
have probably the most unsettling influence here.1'
Let me elaborate on the impact of the partitioning
question on a simple historical example where the task
is "MEDIUM SPEED <105 total counts/sec) SCALING FROM
MANX SOURCES WITH ASSOCIATED ANALYSIS".

Figure 8 shows two implementations of the functional
sequence SENSE, DERANDOMIZE, INCREWKT, STORE PREVIOUS
COUNT, MULTIPLEX, ANALYZE. The two implementations cor-
respond to designs which were practical in 196415>16 and
in 1969. ' In the 1964 design a pyramid hardware struc-
ture was used for interfacing between a computer on top
of the pyramid and a single module level on the bottom
of the pyramid. The functions DERANDOMIZE, INCREWNT,
and STORE PREVIOUS COUNT were assigned to a module,
which in turn was assigned to one detector. The func-
tion MULTIPLEX was scattered among controllers in the
pyramid, computer hardware structures, and the computer
software structures. The basic justification for this
kind of distribution was that resources were expensive
as compared to interconnections. Thus, resources should
be shared wherever feasible at the expense of inter-
connections and explicit controllers. Around 1968 the
appearance on the market of integrated, alterable diode
matrices1'"1" made multiplexing from many sources a rel-
atively inexpensive and fast function. This event in
connection with the fact that core memory words were at
this time already substantially more economical than
individual sealers made the pyramid hardware structure
obsolete for this task in all its structures, architec-
tures, and subsystems as well as in a fair amount of its
functional boundaries. The new design called for mini-
mizing interconnections and explicit controllers at the
expense of resources. Functional Subsystems were inter-
connected and distributed differently. MULTIPLEX moved
to the hierarchy level closest to the detectors and
DERANDOMIZE now became an explicit subsystem. INCREMENT
followed on the next level and STORE PREVIOUS COUNT was
accomplished in n memory locations within a dual port
core memory. Software structures of the old design were
eliminated. It would have been, obviously, J severe
mistake at that time to proceed with refining the pyramid
structure for that particular task. Even to stick to

**
There is ample evidence that in numerous experiment

control applications, real-time applications and other
computer applications conclusions pointing to similar
trends have been reached.

Ŵ/f 1-iftiJfjJ- ̂ Kfi^y.. i ! JKf ° I

the functional boundaries at that time would have been
a serious mistake.

A projection to 1973 would show that:

(a) integrated diode matrices are
today available in all sizes
and shapes;

(b) the derandomizing buffer, at
that time the most advanced
and expensive development in
the functional set, is today
available as an integrated
chip;"

(c) increment processors perform
today, within the same global
functional boundaries, more
ambitious tasks such a* matching
events with windows, etc.;

(d) dual port memories are explicitly
available even in small computers
and implicitly standard as direct
memory access channels.

The following points are noteworthy. Functional
boundaries seem to stabilize. The distribution of
functional subsystems among hardware and software sub-
systems and structures seems to be in a state of flux.
The traditional concept of "Interfacing electronics to
a computer"is based on stable structures and thus adher-
ence to this concept often cannot be justified £ater in
terms of investment cost and depreciation cost. A
generally applicable modular approach with a reasonably
useful life expectancy has to take functional boundaries
and architectural interconnections into consideration.

Mode-Memory Resource-Switch-Architecture

On the basis of the previous example, let me intro-
duce in Fig. 9 a definition of the elements of an Ex-
periment Service Subsystem and its architectural inter-
connections. It is called, for lack of another name,
the NMS (node-memory resource-switch) definition or
architecture oi the Experiment Service Subsystem. The
basic elements of the architecture are nodea, incomplete
nodes, data switches, control switches, switched memory
resources. «-.d busses, where the busses have several
levels of modular structure.

A node has four functionally defined ports: DATA
OUT, DATA IN, GLOBAL CONTROL, LOCAL CONTROL. Functional
ports may be missing or they may share the same hardware
structure.

In the example of Fig. 9, individual lines from the
detector electronics are connected to the DATA IN port
of the Multiplexer Node. The multiplexed data are then
routed via individual busses through the Derandonize
Node, the Increment Node, and via a Data Switch to the
Switched Memory Resource, which happens to be in this
example a core memory. The data flow from the experiment
to the Memory Resource is globally controlled by the

higher level Control Node (the computer in the traditional
description) using the Global Control port of the Multi-
plexer Node. It can be seen from the lack of control
port connections, that the other two nodes contain loop-
ing processors.

The Display Node i* assumed to contain a processor
which formats data from the memory resource for the
purpose of point plotting on a JC-Y.-Z scope. As shown,
the display may be controlled globally from the. Control
Node or the control lines may be switched to a manual
display function board. In addition, an intermixed
control is possible.*41 Bosses 1 and 2 are on lower
levels of modular structure. Busses 3 and 4 are multi-
directional and thus obey a complete master/slave control
protocol.

Incomplete Nodes

As pointed out previously, the most fragile struc-
tures within an Experiment Service Subsystem seem to be
those connected with software. Many of these structures
will be partially or totally eliminated by rapid tech-
nological advances. In order to satisfy the incremental
expandability requirement it is necessary to maintain at
all levels of implementation functional boundaries even
if present conditions call for complex scattering between
several software structures and several hardware struc-
tures. If these boundaries are maintained, a good prob-
ability exists that such functions can be implemented
later in different partitioninga by elimination or de-
population of existing structures and not by modification
(modifications create new Interfaces). Such a strategy
keeps the structures technologically useful as long as
the structure* which are depopulated but unrenoveable do
not represent a major part of the existing syrtem.

The hardware Interfaces of the scattered functional
subsystems are referred to as Incomplete Itodes. The
software subsystems operate in the Control Node in con-
junction with the Application Subsystem.

Hardware Bus Structure

20 2t
At the basic hardware, the UNIBUS ' has been

•elected. It satisfies the requirements of a modern
hardware structure:

(a) minimum restrictions foi the
node hardware structure and
mechanical measurements;

(b) uncommitted data and control
flow direction within a bus
(master/slave control organ-
ization) ;

(c) uncommitted Interconnection
architecture for the connect-
ion of multiple bu*(«s to nodes;

(d) provision for separation between
data and control flow;

(e) request/response relationship o£
the control and data flow ft all
levels.

The time intervals over uhich these changes occur are
highly environment specific.

For instance, the following functions could be imple-
mented. Hove several parameters from the control node
to the display node. Select the parameters presently to
be used via a local function board.

The disadvantage, of course, is chat this bus hard-
ware is a proprietary product of one company. However,
of the available modern bus structures, the UNI3US seems
to enjoy a widespread acceptance at this time. Thus, a
reasonable probability exists of finding a large select-
ion of compatible hardware on the market.

J. Remarks on the Implementation

Computer Hardware

20
One PDP11/40 each will be assigned to the Central

Shared Service Node and to the eleven presently planned
Private Control Nodes. Ten of these Control Nodes will
be connected to individual experiments. The remaining
nodes will be used for program preparation, since it may
be necessary to do program preparation in parallel with
an experiment run. The same processor for all nodes was
chosen for reasons of interchangeable ity in the case of
maintenance problems and for the simplicity of initial
programming. The concept, however, does not require the
same processor at all control nodes.

Appendix 3 lists the presently planned hardware con-
figuration.

It is necessary in this project to concentrate more
on the structure of the software and the boundaries of
the subsystems than on the features of the various func-
tions. Xt has been taken into consideration that ex-
isting software boundaries are often a curious mixture
between conceptual intentions and violations resulting
from realities. A study of the structures reveals that
generally:

. Boundaries between application
programs (software processors)
and their run-time systems seem
to be reasonably clean;

. boundaries between the run-time
system and the first level of
the operating system seem to be
vague;

. boundaries within the operating
system are often well-defined
on the conceptual level. On the
implementation level, these def-
initions are often severely vi-
olated.

Some important points for the partitioning task are
as follows:

, The operating system is partitioned
according to the functional assign-
ments outlined in the presentation.
Functionally recognizable portions
are kept; missing parts are coded.
Unnecessary parts are removed.

The Central Shared Service Node
contains, expressed in traditional
terms, only system software. The
resource sharing operating system
software is expected to stabilize.
Additions to the subsystems are ex-
pected in the future; modifications
are unlikely. In order to accommo-
date this philosophy, the software
for the Central Node is designed es-
sentially from scratch.

Software for the Experiment Service
Subsystem is initially complex but
is expected to decrease in complexity
and volume in the future by depopulation
as a result of scheduled enhancement
of the appropriate experiment or lab-
oratory setup with state-of-the-art
technology. Thus, a serious attempt
has been made to find a structure
which will allow depopulation without
change.

Schedule

We expect to have the system in operation by the
end of 1974.

K. Acknowledgements

The author wishes to thank V. Radeka for very
helpful guidance and advice. Extensive discussions
about the concepts with S. Rankowitz and F. Stubblefield
are gratefully acknowledged.

Boundaries between company sup-
plied software processors and
the first level of the operating
system are kept intact and, if
necessary, simulated. He hope to
be able to use future versions of
company supplied processors. A
continuous interface effort is
expected here which has an impact
on the operating cost of the fa-
cility.

Appendix A

Remarks on Design Parameters:

1. Parameters with primary Impact on investment cost

Economically achievable response time

There is a direct relationship between response time
requirements and investment cost in resource sharing
systems. The longer the response time requirements, the
more efficiently available resources can be managed.
Elaboration on this parameter is given elsewhere.12

Transferability of functional subsystems

The degree to which functional subsystems are ap-
plicable in and transferable to other installations in
the experiment control field, to relsted fields and to
unrelated fields in the general purpose computer area
is expressed with this parameter.

Relative hardware investment cost

The relative distribution of hardware resources
within a typical experiment control system is considered
here. In the determination of the parameter properties,
consideration has been given to the fact that electro-
mechanical resources such as peripherals and file devices
are likely to reduce substantially less In cost than
purely electronic resources such as processors and memory.
The cost of the latter resources is determined by the
economy achieved in large-scale integration and other
electronic fields. For instance, the cost of a core
memory bit has decreased approximately one order of mag-
nitude in five years.

2. Parameters with primary impact on operating cost

Mean time between changes

Changes have a considerable impact on the operating
cost of a subsystem, this is particularly true for
functional subsystems which include:

(a) complex system software;

(b) inflexible hardware interconnections.

The operating cost is mainly generated by:

1. the hardware development cost
generated by the change;

2. the software development cost
generated by the change;

3. the obsolete hardware and soft-
ware due to the change;

4. the introduction of unsettling
new operating procedures and
new design errors. This point 1
has, as a matter of experience,
a high influence if software
changes are necessary.

Damage caused by unlsolated malfunctions

This aspect of system reliability has often been
overlooked. For instance, a parity error in primary
memory within the Experiment Service Subsystem is a
relatively minor malfunction but it can cause substan-
tial damage if reinitialization of an "operating
system" is necessary and this operation results in the
loss of temporary files. The latter serious damage

results because the consequences of the malfunction were
not restricted to the functional subsystem where the
malfunction occurred. It is interesting to note that
this kind of behavior of a computer system is oftea
taken for granted or at aost meets minor opposition.
Elaboration on the definition of malfunction isolation
is given elsewhere.*°

3. Parameters with primary impact on depreciation

Technical obsolescence rate of functional subsystems

A functional subsystem is considered obsolete if the
cost/performance ratio of the function is at • level
such that it would no longer make sense to construct
such a design. The obsolescence of functional subsystem
boundaries is a different natter which relates to obso-
lescence of the architecture of the entire Experiment
Control System.

Appendix B

Presently Planned Hardware
Configuration of Reactor Experiment Control Facility

1. Central Shared Service Hode consists of:

Common Equipment

PDPH/40 processor

48K core memory

Keyboard/printer terminal

CRT terminal

File Subsystem

0.5 million words fixed head disc,
8 msec average access, 4 usec/word transfer

20 million words disc pack unit
30 msec average seek time, 7.5 (jsec/vord
transfer

Reserved Device Subsystem

Two 9-track magnetic tape units

Card reader

Paper tape reader/punch

DEC tape

Spooled Output Device Subsystem

7-track magnetic tape unit

Electrostatic line printer

Electrostatic plotter

Eleven Control Nodes each consisting of:

PDP11/40 processor

16K core memory

Keyboard/printer terminal

Paper tape reader (for bootstrap and
"minimum stand-alone" operations).

3. Communication link Between Controlled Nodes and
Central Nodes:

Concept, development and implementation done at
BNL. The maximum data rate at each finger of the link
is ~ 100K words (16 bits/word).

References

1. Session "Data Processing in Nuclear Electronics"
in Proc. of Int. Symp. on Nucl. Electr., Paris,
November 1963.

2. Proc. of Conf. on Automatic Acquisition and Re-
duction of Nuclear Data, Karlsruhe, July 1964.

3. Proc. of Conf. on Coiq>. in Exp. Physics, Skytop,
March 1969.

16. D. G. Dimmler and G. Kriiger. A Display System
With an On-line Computer, Proc. of Conf. on Auto-
matic Acquisition and Reduction of Nucl. Data,
Karlsruhe, July 1964.

17. D. 6. Dimmler. A Computerized Data Acquisition
System for High Event Rates from Many Sources.
Froc. Nuclear Electronics Symposium, Xspra, Hay
1969.

18. Radiation, Inc., Microelectronics Division,
Melbourne, Florida.

19. Signetics, Digital Circuits, 1972, p. 7-135.

20. PDP11/40 Processor Handbook, Digital Equipment
Corporation, Maynard 1972.

21. DIGITAL LOGIC HANDBOOK, Digital Equipment Corp-
oration, Maynard, 1973.

4. L. J. Lidofsky, Contrast and Similarities in
Systems; Proc. on Future Trends in Nuclear Instru-
mentation, Ispra, May 1969.

5. D. G. Dinmler. Panel discussion on Proc. of Conf.
on Comp. in Exp. Physics, p. 178, Skytop, March
1969.

6. P. R. Beaucage, M. A. Kelley, D. Ophir, S. Rankowitz,
R. J. Spinrad and R. V. Norton. Multiple Spectro-
meter Control by Computer, Nucl. Inst. and Methods
40(1966) 26-44.

7. L. Stanchi. Report on Panel Discussion; Proc. on
Future Trends in Nuclear Instrumentation, Ispra,
May 1969.

8. H. Chestnut. System Engineering Tools, p
J. Wiley & Sons, New York 1966.

12,

9. J. M. Salzer. Evolutionary Design of Complex
Systems. In D. P. Eckman Systems: Research and
Design, J. Wiley & Sons, New Yosk 1961.

10. D. G. Dlmmler. Architecture of a Maintenance Sub-
system in a Multi-User Computer Installation.
Proc. of Workshop on Fault Detection and Diagnosis
in Digital Circuits and Systems, Lehigh University,
Allentown, December 1970.

11. TTL Databook, Texas Instruments, 71241-23-CHI,
p. 398, 1973.

12. D. G. Dinmler. Study for the Expansion of the On-
line Data Processing Facility, BNL 50180 (T-536),
BNL external report, June 1968.

13. A. J. Collmeyer. File Organization Techniques.
Computer Group News, Vol. 3, No. 2, March 1970.

14. Fairchild, OPTIMOS-MOS Technology, p. 9, Fairchild
Semiconductor, Mountain View, California, September
1972.

15. G. Kriiger and D. G. Dinraler. A Multiple Input Data
Acquisition System Using a Small On-line Computer.
Proc. of Conf. on Automatic Acquisition and Re-
duction of Nucl. Data, Karlsruhe, July 1964.

Figure Captions

Fig. 1. Levels of Description and Implementation

Fig. 2. Data and Control Flow

Fig. 3. Global Subsystems of Control System and Subsets

Exhibit 4 System Design Parameters

Fig. 5. Global Architecture of a Practical System

Fig. 6. Internal Architecture of the Central Shared Service Node

Fig. 7. Flow of a Typical Transaction

Fig. 8. Two Implementations of a Functional Sequence

Fig. 9. Example of HMS Architecture in Experiment Service Subsystem

USER,
EXPERIMENT,
EXPERIMENTER,
OTHER COMPUTER SYSTEM
ENVIRONMENT

FUNCTIONAL SYSTEM
-ARCHITECTURE-

BINARY TO BCD
CONVERSION

HARDWARE SYSTEM
-H.W. STRUCTURE-

SOFTWARE SYSTEM
-S.W. STRUCTURE-

FUNCTIONAL
LEVEL

IMPLEMENTATION
LEVEL

FIGURE 1
I A

.*̂ ^̂^

INPUT/OUTPUT ENVIRONMENT

CONTROL/MONITORING
ENVIRONMENT

EXPERIMENT
ENVIRONMENT

FIGURE 2

;j^;fcTf^^

INPUT/OUTPUT

FILE
SUBSYSTEM

• T

kd:
INPUT/OUTPUTl
SUBSYSTEM |

• T
APPLICATION SUBSYSTEM

£ t
EXPERIMENT SERVICE SUBSYSTEM

iACTUATORS)

V-T.::J.
7*7
(SENSORS'

_U:J:.^

CONTROL!
DEVICES

L)
S!

MONITORING
(HARD/SOFT

COPY)

EXPERIMENT

CONTROL SYSTEM

INPUT/OUTPUT

OUTPUT
SUBSYSTEM

APPLICATION SUBSYSTEM

EXPERIMENT SERVICE SUBSYSTEM

CONTROL
DEVICES

L:< _j

r

I SENSORS'

MONITORING
(HARD/SOFT

COPY)

r

1 EXPERIMENT

DATA ACQUISITION SYSTEM

I
__l

APPLICATION SUBSYSTEM

EXPERIMENT SERVICE SUBSYSTEM

CONTROL^
DEVICES

L̂
S 1

r i
i SENSORS;

4

MONITORING
(HARD/SOFT

COPY)

LEGEND•
DATA FLOW
CONTROL FLOW
MONITORING FLOW

I EXPERIMENT I
I I

MONITORING SYSTEM

FIGURE 3

** -5 s t K.

^W^Deiign paraneter
^ ^ ^ properties

S u b s y s t e n s ^ ^ ^

IWUT/OOTPUT
SUBSYSTEM

FILE SUBSYSTEM

AtFLICATION
SUBSYSTEM
(Excluding

Application Program)

EXFER1MEIII
SERVICE

SUBSYSTEM

E X F E U t e n
ELECTRONICS

INVESTMENT COST

Economically
achievable

responae time

> 101 lee

~ S x 10"2 to

10"1 IK

~ 10° aac

~ 10"5 aec

- 10-» « c

Transferability
oi functional

subsystem

Generally
applicable to
fletdi unrelated
to experiment

control

Global iiibiysteai
apccUlc, hope-
fully itore l i e
•entary (ubayaceai
tnntfersble to
related field.

Relative
Hardware

Investment Cost

High,
wrtlcolarly for
Z/0 devices and

{lie devices

Hedtm

tow

OPERATING COST

Mean Time
Between Changes

HIM

Long

Medium

Short

Danage caused
by unlaolated

malfunction

High
damage t o (l i e
unrelated to
malfunction)

Very high
(daaage to

eference file
unrelated to
malfunction)

Medium

Low

DEPRECIATION
COST

Technical
baolescence rate
of functional

aubayatear
(not functional

boundaries)

Low
> 5 years

Very low
> 5 yeara

Hcdlul
~ 2 to 3 years

High
~ 1 year

High
< 1 year

MASON FOR SHARKS OF SUlSYSTtM
VTHEEN SEVERAL EXKUMMTS

1. Economic

1.1 High Investment in
I/O devices

1.2 Low/medium utaga
of device!

1. Same, aa above

2. Sharing of reference t i l e s
and l ibraries (data sharing)

Economy of processors and
primary memory

Economy of computer (primary
memory + processor hardware
V system software) technology
as compared to other tech- .
nologles (LSI d ig i ta l , analog).

FIGURE 4

n -i~r t* '"•^?ir*«f*'

INPUT/OUTPUT ENVIRONMENT

t
SHARED
SERVICE
NOOECS)

COMMUNICATION
LINK

t
PRIVATE
CONTROL

NOOE(S)

PRIVATE
SERVICE
NODES

MAIN CONTROL DEVICE (S)
(ONE SET PER PRIVATE
NODE)

EXPERIMENT ENVIRONMENT

FIGURE 5

CARD READER,
RESERVED MAGNETIC
TAPE UNIT (S),
PAPERTAPE READER/
PUNCH.

SHARED MAGNETIC
TAPE UNIT,
LINE PRINTER,
GRAPHIC PLOTTER.

TO/FROM
COMPUTER CENTER

RESERVED
DEVICE

SUBSYSTEM

SPOOLED
OUTPUT DEVICE

SUBSYSTEM

FILE
SUBSYSTEM

SPOOLED
DATASINK/
DATASOURCE
SUBSYSTEM

CENTRAL ROUTING SUBSYSTEM

DATASET ASSIGNMENT
oooo

CENTRAL LOGICAL
CHANNEL

FROM/TO
PRIVATE
CONTROL
NODE A

FROM/TO
PRIVATE
CONTROL
NODE B

FROM/TO
PRIVATE
CONTROL
NODE C

FROM/TO
PRIVATE
CONTROL
NODED

FROM/TO
PRIVATE
CONTROL
NODE E

FIGURE 6

PRIVATE
CONTROL NODE

I
COMMUNICATION
LINK

CENTRAL SHARED
SERVICE NODE

OBTAIN
MASTER STATUS

SUBMIT
REQUEST

SUBMIT
DATA

RELEASE MASTER STATUS
RELEASE LINK

MASTER OBTAINED
INTERRUPT

CHANNEL READY
INTERRUPT

REQUEST
(16-WORD BLOCK)

ACKNOWLEDGE
(16-WORD BLOCK)

DATA
(NWORD BLOCK, N*VARIABLE)

SUBMIT
ACKNOWLEDGE

RECEIVE AND
PROCESS DATA

FIGURE 7

RESOURCE
OPTIMIZATION

(1964)
FUNCTIONAL

SEQUENCE

COMPUTER
INTERFACE

CONTROLLERS

MOOULE
CONTROLLERS

MODULES

EXPERIMENT
ELECTRONICS

EXPERIMENT
PRIVATE
CONTROL

INTERCONNECTION
OPTIMIZATION

(1969)

ANALYZE

MULTIPLEX

STORE PREVIOUS COUNT

INCREMENT

DERANOOMIZE

SENSE

| MULTIPLEXOR |

(TJr\
•> DETECTORS

•TIME

FIGURE 8

?--™^.-.; ; r . t>t:r-^

CONTROL
NOOE

SWITCHES

SWITCHED
MEMORY

RESOURCES

SERVICE
NODES

PORT
I

PORT

DATA SWITCH

SWITCHED
MEMORY

RESOURCES

i
BUS 4

BUS 3

CONTROL SWITCH

ANALOG BUS

EXPERIMENT
ELECTRONICS/

LOCAL CONTROL
DEVICES X-Y-Z

SCOPE
LOCAL

CONTROL
DEVICE

BUS 2 BUS!

S -s S v
\ \ \

MANUAL
CONTROL
DEVICE

-NODE

PORTS'
•*- LOCAL CONTROL
"- GLOBAL CONTROL

DATA IN
DATA OUT

/I

ANALOG BUS

DETECTOR
ELECTRONICS

FIGURE 9

