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Abstract: Global change threatens invertebrate biodiversity and its central role in numerous 

ecosystem functions and services. Functional trait analyses have been advocated to uncover 

global mechanisms behind biodiversity responses to environmental change, but the 

application of this approach for invertebrates is underdeveloped relative to other organism 

groups. From an evaluation of 363 records comprising >1.23 million invertebrates collected 

from rivers across nine biogeographic regions on three continents, consistent responses of 

community trait composition and diversity to replicated gradients of reduced glacier cover 

are demonstrated. After accounting for a systematic regional effect of latitude, the 

processes shaping river invertebrate functional diversity are globally consistent. Analyses 

nested within individual regions identified an increase in functional diversity as glacier cover 

decreases. Community assembly models demonstrated that dispersal limitation was the 

dominant process underlying these patterns, although environmental filtering also was 

evident in highly glacierized basins. These findings indicate that predictable mechanisms 

govern river invertebrate community responses to decreasing glacier cover globally. 

Introduction: Invertebrates account for >95% of animal biodiversity, playing a major role 

transferring matter through the web of life 1,2. Understanding invertebrate functional 

responses to environmental change is of urgent importance to reduce significant extinction 

threats 3, and changes to major ecosystem functions given the important role of 

invertebrates in processes such as carbon cycling, soil fertility and water purification. The 

increasing availability of globally-representative ecological databases has enabled new 

insights into large-scale synchrony of functional trait responses of selected animal and plant 

groups to environmental change 4-8. Yet, no studies have focused on how environmental 

change influences the traits and functional diversity (FD) of invertebrates at the global scale. 
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Quantifying the extent to which invertebrates respond to environmental gradients is vital 

for understanding community assembly processes, functional responses to global change, 

and effective ecosystem conservation and management.  

Ecologists consider organismal traits central to understanding processes maintaining 

biodiversity because of consistent responses along environmental gradients, whereas 

taxonomic responses can be influenced by biogeographical constraints on evolutionary 

processes and dispersal 9,10. Here we evaluate community level trait and functional diversity 

responses of river invertebrates to a gradient of decreasing glacier cover worldwide 

(Supplementary Figure 1), to elucidate the key processes driving their response to this 

cryospheric symptom of global environmental change. Glaciers cover ∼10% of the Earth’s 

land surface, but the most recent estimates of global glacier change 11 indicate mass loss of 

259 ± 28 Gt y−1 between 2003 and 2009 with global runoff from glaciers exceeding 1,350 

km3 y−1 . Changes in hydrology and river geomorphology caused by glacier loss are expected 

to have major implications for river ecosystems 12. Glacier fed rivers can inform our 

understanding of the ecological processes driving trait and functional diversity responses 

across large spatial scales for two principal reasons: (i) negative glacier mass-balance in 

most regions of the world due to climate change 12,13 creates consistent gradients in river 

habitat conditions characterised by increasing water temperature as ice influence 

decreases, and more stable river channels driven by reductions in glacial sediment 

production, less variability in flow regimes and vegetation colonisation of river banks 14; (ii) 

broadly similar post-glacial habitats without anthropogenic modifications are found 

worldwide within confined geographic zones (Arctic and alpine), thereby minimising inter-

region dispersal and enhancing speciation amongst metapopulations 15. In addition, 
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although the effects of glacier retreat on taxonomic biodiversity have been examined 16,17, a 

unified understanding of river invertebrate traits, FD and assembly processes in response to 

glacier retreat or other forms of environmental change remains elusive.  

Trait information was compiled and standardised from databases of aquatic invertebrates 

covering Europe, North America and New Zealand. Aquatic invertebrates are used widely for 

river biomonitoring owing to their high biodiversity and diverse environmental 

requirements; thus, their functional traits are well described 18 enabling their use as a 

‘model’ group for understanding the effects of decreasing glacier cover on river ecosystems 

globally. Trait information was integrated with a taxonomic dataset totalling >1.23M 

individual invertebrates comprised of 113 genera and sub-families, collected from river sites 

where glacier cover varied widely in the river catchment or over time (Supplementary Figure 

1; Supplementary Table 1). Traits that offer resistance or resilience to environmental stress 

in glacier fed river systems 19 were included, specifically body size, life-cycle length, 

pupation, adult life-stages, respiration mode, locomotion/substrate attachment, diet and 

resistance elements. Fuzzy codes were adopted to represent affinities of each taxon to each 

trait (e.g. 0 = no affinity to 3 = strong affinity) and acknowledge variability of traits at 

different life stages and in response to varied environmental conditions. Although the rivers 

in the nine biogeographic zones span different geological ages and climatic zones, similar 

aquatic environmental change gradients, with higher water temperature and channel 

stability, were evident as glacier cover decreased (Supplementary Table 2). These 

parameters are known to be central drivers of taxonomic biodiversity patterns in glacier-fed 

rivers 20. We tested the hypotheses that there would be consistent responses to decreasing 
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glacier cover apparent for: (i) individual traits and their combinations, (ii) the distribution 

and abundance of taxa in functional trait space, and (iii) community assembly processes. 

Central to our approach is the concept of the metacommunity, defined as a set of local 

communities that are linked by dispersal of multiple potentially interacting species 21. 

Within this framework, local community structure is analysed as a function of the regional 

species pool to reveal the processes driving community assembly 22. The sets of processes 

involved can be described broadly by four non-exclusive ‘paradigms’: neutral (random loss 

and gain of species); species sorting (niche-based environmental filtering driven by local 

habitat heterogeneity); patch dynamics (local species diversity limited by dispersal) and 

mass effects (niche-based processes distorted by high immigration rates). Most ecological 

applications assume that species sorting is the dominant paradigm 23, yet this special case 

only occurs where fitness differences between species are sufficient and dispersal rates are 

of an optimal, intermediate magnitude to allow efficient tracking of the environment 

without drowning out niche-based processes 24. 

The combination of data on species traits and metacommunity structure underlies the most 

promising community prediction tools available to date. In the context of dispersal, 

metacommunity processes are best described as probabilistic species pools 25 yet available 

models are not capable of fully reflecting this at present 22,26. We propose a powerful, 

probabilistic approach (Supplementary Figure 2) in which trait selection and 

metacommunity processes are integrated via four model components: (i) a uniform model, 

under which taxa are selected randomly from the species pool; (ii) a pure dispersal model, 

that weights a taxon’s probability of selection from the species pool as a function of their 

occurrence at sites at varying distances from the focal site under consideration, predicting 
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abundance as the mean abundance of the taxon throughout the metacommunity; (iii) a 

pure trait selection model, which selects taxa iteratively from the species pool and predicts 

abundances until the community (abundance) weighted means of traits exhibited by the 

generated community closely matches the observed means; and (iv) a mixed model, that 

combines occurrence probabilities from the dispersal component with abundances from the 

trait selection component. In all cases, species richness is fixed at observed values. By 

comparing the ability to explain community structure of the latter three model components 

relative to the uniform (null) model, we can demonstrate the relative influence of dispersal 

limitation (patch dynamics), trait selection (species sorting), and both in combination. 

Results and discussion: Consistent responses of invertebrate community trait composition 

occurred across a gradient of decreasing glacier cover globally and Fuzzy Correspondence 

Analysis (FCA) axis 1 scores increased significantly towards high latitudes (Figure 1). 

Decreasing glacier cover was associated strongly with: a shift in life cycle length from a 

predominance of multi-generations per year (multivoltine) to longer generation times 

spanning one (univoltine) or more (semivoltine) years; an increase in no pupation versus a 

decrease in aquatic pupation; a decrease in burrowing; increases in coarse particulate 

organic matter (CPOM) consumption but decreases for fine particulate organic matter 

(FPOM) feeding. Life cycle shifts suggest that where glacier cover is high, organisms typically 

develop rapidly in the spring and summer melt seasons before many river flows 

decrease/cease or where rivers freeze through winter. In rivers with less glacial influence, a 

tendency towards year-round flow and greater habitat stability 27 can benefit larger 

organisms with longer life cycles, although the FCA1 variance evident at 0% glacier cover 

exemplifies that some non-glacial rivers in Arctic and alpine areas retain trait profiles similar 
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to rivers with high glacial cover, implying that they may dewater in late summer or freeze in 

winter. Shifts in pupation traits with decreasing glacier cover reflect the increasing relative 

abundance of river insects that undergo incomplete metamorphosis, such as Plecoptera 

(stoneflies) and Ephemeroptera (mayflies), and more non-insect taxa such as Oligochaeta 

(worms). Dietary shifts reflect a tendency for sites with low or no glacier cover to have more 

riparian vegetation supplying litter to rivers, and thus more CPOM for detritivores.  

To assess whether trait profiles underpinning the consistent FCA1 responses were 

attributable to Linnean taxonomic groups (i.e. families, orders) and therefore represented a 

phylogenetic response, hierarchical cluster analysis of the species x trait matrix was 

undertaken to identify distinct functional groups (FGs). Nine FGs were obtained (Figure 2) 

and several of these superseded taxonomic identity, being composed of taxa from multiple 

orders but sharing similar biological trait profiles. For example, FG1 and FG3 were composed 

of the most common, globally incorporated taxa from the Diptera, Ephemeroptera and 

Trichoptera, and representatives of Oligochaeta, Ephemeroptera and Plecoptera, 

respectively. FGs 1 and 3 displayed distinctly different functional strategies associated with 

differing life cycles, diet, body size and pupation strategies (Supplementary Figure 3). The 

relative abundance of FG1 decreased (p <0.001; R2=0.58) and FG3 increased (p=0.004; 

R2=0.36) as glacier cover declined (Figure 2), highlighting that specific trait combinations 

confer different responses to decreasing glacier cover. Many other FGs were globally rare 

and occurred only in low latitude regions and/or at sites of low glacier cover (Figure 2). For 

example, FGs consisting of large, obligate predators with relatively long life cycles (e.g. FGs 

6, 7 and 8) were recorded only in the Alps, Pyrenees, New Zealand and Norway. This is likely 

due to strong environmental filters (e.g. colder water temperature, shorter growing season, 
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reduced basal resources) operating on the regional species pool in Arctic and sub-Arctic 

locations 28.  

Our analysis of FD response to decreasing glacier cover focused on Functional Richness 

(FRic), Functional Divergence (FDiv); Functional Evenness (FEve), Functional Dispersion 

(FDis) and Functional Entropy (FEnt). Decreasing mean index values illustrated that the 

realised trait space for invertebrates narrows significantly with increasing latitude (Figure 3). 

Subsequent analyses to test within-region responses revealed significant increases of FD 

indices with decreasing glacier cover (Figure 4), with the only exception being FDiv 

(Supplementary Figure 4). FRic increased significantly with less glacier cover (p<0.001; 

R2=0.17), reflecting a greater diversity of traits. FEve showed more regular distributions of 

organisms in trait space with decreasing glacier cover (p<0.001; R2=0.28), demonstrating 

greater niche saturation and implying that resistance to new colonisers becomes stronger in 

more benign habitats 29. FDis (p<0.001; R2=0.47) and FEnt (p<0.001; R2=0.44) also increased 

significantly with declining glacier cover. This indicates that dominant species were located 

further from the centre (FDis) and further from each other (FEnt) in trait space, suggesting 

greater competition and/or the opening up of new, distinct niches in more benign habitats. 

Although significant, FDiv was less related to glacier cover (p<0.001; R2=0.08), displaying no 

strong trends within regions. The random effect structure of the ‘best’ candidate models 

suggested that FRic and taxonomic richness were sensitive to variation within regions 

(Supplementary Table 4). Other FD indices were stable across biogeographic regions, 

demonstrating lower sensitivity to species pool effects and thus more useful for tracking 

environmental change in the absence of a priori information on the regional species pool 30. 
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Community assembly modelling indicated that dispersal was the primary mechanism driving 

invertebrate community response to decreasing glacier cover (Table 1), closely following the 

patch dynamics paradigm of metacommunity theory 21. This conclusion was supported by 

the absence of consistent relationships amongst river environmental variable Principal 

Coordinates of Neighbourhood Matrix (PCNM) scores and residuals from the dispersal 

model (Supplementary Figure 6). Compared to uniform and trait-selection models, artificial 

communities assembled through sampling from the species pool were more similar to 

observed communities when samples were weighted based on distance between sites 

where each taxon in the species pool occurred. Constraining the composition of artificial 

communities by observed community weighted means on the first two synthetic traits (FCA 

axes in the trait selection model) did not, on average, make null and observed communities 

any more similar than under the uniform scenario. Even a mixed model including both 

dispersal (species’ occurrences) and trait selection (species’ abundances) did not improve on 

predictions under the pure dispersal model (Table 1; Figure 5; Supplementary Figure 5).  

The relationship between glacier cover and the residual similarity described by the dispersal 

and trait selection models compared with the uniform scenario (random with fixed species 

richness; Figure 5) suggested that communities are environmentally filtered in highly 

glacierized basins 19 via processes selecting for, or filtering out, traits associated with FCA1 

(voltinism, pupation, diet). However, dispersal limitation exerts a stronger influence that is 

maintained as glacier cover decreases (Figure 5; Table 1), linked to constraints on inter-basin 

organismal movement due to mountainous terrain, dendritic river network structure, flow 

intermittency and habitat fragmentation due to lakes and/or anthropogenic development 

31,32. Our finding that dispersal limitation interferes with species sorting is supported by a 
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growing consensus that organismal movement strongly governs ecological community and 

functional diversity 24. One implication is that under scenarios of rapid future environmental 

change such as a shrinking cryosphere, organisms with only short-distance dispersal ability 

might not keep pace with habitat shifts in space leading to high rates of reorganisation in 

ecological network interactions 33. Dispersal constraints, coupled with movement of 

superior competitors or predators, make it difficult to extrapolate current findings to future 

scenarios, potentially raising wider concerns about the efficacy of invertebrate 

biomonitoring approaches that assume target organisms are free to track changes in the 

local environment. 

Together, these analyses reveal empirical evidence for strong similarities in the forces 

shaping invertebrate functional traits globally in response to decreasing glacier cover. Trait 

patterns for riverine invertebrates have been examined previously only across individual 

continents, and spanning different environmental drivers to our focus on glacier retreat 34,35; 

in contrast, our study of invertebrates simultaneously covered three continents and both 

hemispheres. Functional trait analysis revealed a strong likelihood of latitude-contingent 

trajectories for predicted community responses to global change 16. Fuzzy correspondence 

analysis and FD indices indicated a narrowing of the available and realised functional trait 

space towards polar regions, with high glacial influence rivers being similar to non-glacial 

rivers 36. This was further highlighted by the latitudinal variability in FG patterns across the 

glacier melt gradient, with higher intercepts and lower slope values for FG1 at higher 

latitudes (Figure 2). These patterns are supported by plant studies which suggest 

environmental filtering as a central driver of latitudinal patterns 37; however, our findings for 

invertebrates could reflect evolutionary constraints linked to colder conditions and shorter 

10 
 



development periods for ectotherms 38. For example, extremes of low temperature and 

riverbed freezing typical of rivers with high glacier cover at lower latitudes also influence 

non-glacial systems at high latitudes and altitudes.  

Combining a site specific time-series dataset from southeast Alaska with spatially distributed 

data collected from other regions of the world demonstrated a strong similarity of 

taxonomic richness and five functional diversity indices to gradients of catchment glacier 

cover. These findings support the use of spatial records in studies of rivers to infer 

community development over time as glaciers retreat. In our spatially distributed studies, 

there was typically no association between catchment glacier cover and time since 

deglaciation because ice loss: (i) exposes new segments of river channel that often continue 

to be glacially influenced for many years afterwards; and (ii) can expose tributaries that 

have different levels of glacier cover, concurrently 39. This is generally not the case in 

terrestrial ecosystems, where ice retreat leads to a decoupling of the land from ice, and thus 

a direct space-time relationship. Experimental studies have illustrated that invertebrates can 

develop different community structures quickly in situations where low or no glacier cover 

conditions are formed in rivers 40, driven by environmental parameters such as water 

temperature, channel stability and food availability, and if a pool of local colonisers can 

disperse efficiently. 

After accounting for regional variability in responses, functional diversity indices showed 

consistent relationships with glacier cover, notably increases in the proportion of overall 

functional space filled (FRic), and a broader profile of traits (FDis) with more regular 

abundance distributions (FEve). Taxonomic responses to glacier retreat have emphasised 

the potential for diversity losses with ongoing global environmental change 16,41, whereas 
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we found that FD increased from high glacier cover to zero catchment glacier cover, 

indicating the potential for functional redundancy amongst these river invertebrate 

communities 19. Although our findings could indicate that redundancy can buffer functional 

process responses if some species are lost, this is unlikely because invertebrates are central 

to complex ecological networks, moderating functional processes through both top-down 

and bottom-up interactions. Studying the functional diversity of ecosystems where 

taxonomic and trait information is available for multiple biological domains will greatly 

improve our understanding of whole system responses to environmental change. 

Biogeographical constraints on taxonomic identity have been suggested as a reason why 

large-scale comparative studies of ecosystem health should focus on process rates (e.g. 

production, decomposition) 42. Our finding that invertebrate traits and FD responded 

similarly to habitat gradients independent of biogeographical differences illustrates that it is 

possible to standardize biological community responses to environmental change across 

large spatial scales where process rate information is unavailable. We expect that the 

globally consistent trait and FD responses identified in our analysis of rivers will also be 

evident amongst invertebrate responses to environmental gradients in other ecosystems. 

Identifying such general patterns and processes will lead to better predictions of 

invertebrate community and ecosystem functioning responses to environmental change. 

Methods 

Study sites 

We compiled 489 records of freshwater invertebrates collected between 1978 and 2013 

from ten different locations in nine biogeographic zones (Supplementary Figure 1; 

Supplementary Table 1).  Macroinvertebrate records from southeast Alaska, USA, were 
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collected from a single river, Wolf Point Creek, in a study that tracked invertebrate response 

to glacial influence decreasing from 70% to 0%. Other locations included the European Alps 

(Austria and Italy), French Pyrénées, Greenland, Iceland, New Zealand Alps, Norway western 

fjords, US Rockies and Svalbard, where samples were collected along gradients of catchment 

glacier cover arrayed in space. At each location, samples were collected in different years 

(Supplementary Table 1) but similar protocols 20 were followed including sample collection 

in the summer melt season, with sites located on main glacier-fed river networks as well as 

those from tributaries. Sites with low/no glacier cover were fed predominantly from 

hillslope groundwater tributaries sourced from snowmelt and/or rainfall at baseflow. 

The full database consisted of records collected using both hand (Surber, Hess, Stone) and 

Kick samples. Kick samples are typically considered to be semi-quantitative samples but 

those used in our study were samples kicked from fixed areas. In two regions (Iceland, 

European Alps), both types of samples had been collected. This allowed us to consider the 

effect of sample type, and whilst observations were not made concurrently at the same 

sites, responses of FCA1 scores, taxonomic richness and abundance to glacier cover were 

similar within the two regions. In particular, regression analysis of FCA1 scores (which 

integrate information on trait profiles and abundances, and which underpinned the 

community assembly modelling) against % glacier cover for Iceland showed no difference 

between Stone and Kick samples, whilst for the European Alps there was no difference 

between Surber and Kick sample data (Supplementary Table 7).  

The percent glacier cover in each river catchment was determined from topographic maps, 

digital elevation models (DEM) and aerial photographs, which were used together to 

delineate catchment and glacier area. For individual sample locations, ArcGIS 10.3 was used 
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to calculate the upstream contributing area from the DEM, and combined with glacier 

polygons to determine the percent glacier cover within the catchment for the year the 

samples were collected. More direct methods of quantifying actual meltwater contributions 

to rivers 41 were not available for all sites and years. Latitude of individual river sites was 

obtained from Google Earth. In-situ measurements of water temperature, river channel 

stability (bottom component of the Pfankuch Index; PI) and suspended sediment/turbidity 

were collected by individual research teams (see primary research papers for measurement 

protocols). Water temperature data and estimates of channel stability (PI) were collected in 

the majority of studies and these have previously been shown to be central drivers of 

biodiversity patterns in glacier-fed rivers 20.  

The assembled invertebrate dataset totalled 489 records comprising 1,276,029 individuals. 

Subsequent refinements of the database excluded records for which the numerically 

dominant Chironomidae were not identified to subfamily or below. Finer resolution trait 

data (genus level) are unavailable for the majority of Chironomidae globally 19,43 so trait 

information was applied at the sub-family level. We also excluded records for which no 

accurate information was available for catchment glacier cover at the time of sampling, or 

where streams were influenced by non-glacial disturbances, for example extreme rainfall 

induced flooding. The final dataset retained for analysis therefore was 363 records 

comprising 1,230,902 individuals. For each sample, we amalgamated all species level 

observations typically to genus level (sub-family for Chironomidae, Order for Oligochaeta), 

resulting in 113 unique taxa.  

Using information available in aquatic invertebrate trait databases covering Europe 44, North 

America 45,46 and New Zealand 47, traits were selected to provide information on phenotypic 
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responses that have been suggested previously as indicators of environmental changes in 

localised studies of glacier-fed river invertebrate communities 19,40,48. We avoided ecological 

traits that described habitat preferences as these typically represent the 'outcome' of 

biological traits 49. Trait databases for Europe and New Zealand existed already as fuzzy 

codes designed to account for trait plasticity, and which allowed relatively easy translation 

to our selected traits/codings. Continuous measurements (e.g. body length, gape size) 

provide an alternative approach for invertebrate trait analysis but these datasets were not 

available at the individual invertebrate level for the samples we collated. North American 

aquatic invertebrate traits have historically been coded in binary form which do not account 

for any variability of traits within taxa, so therefore we used a combination of information 

from European databases where there was clear concordance for genera, and we used our 

own knowledge and that of North American freshwater ecologists for taxa where 

information was not readily available. We defined fuzzy codes (0 = no affinity, 1=weak 

affinity, 2 = medium affinity, 3 = strong affinity) for eight traits (body size, life cycles per 

year, pupation, adult life stages, respiration mode, locomotion/substrate attachment 

modes, diet and resistance elements; Supplementary Table 3) based on the existing, yet 

distinct, trait databases for Europe, North America and New Zealand. 

All statistical analyses were carried out in R v3.2.2. Fuzzy Correspondence Analysis (FCA) 50 

was used to assess how functional trait composition varied between regions and across the 

glacier cover gradients, with the relationship between each trait and the FCA scores for axes 

1 and 2 (43% and 18% of the overall variance, respectively) assessed using Kendall’s 

correlation coefficients. Taxon abundances were log10(x+1) transformed and used to create 

an abundance weighted trait matrix [samples x traits] 50. FCA was conducted on the [sample 
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x trait] matrix using the ade4 package 51. Hierarchical clustering (Ward’s method) of the 

global species pool (based on their trait profiles) was conducted to identify the key 

functional strategies. A distance matrix was calculated following Pavoine et al. 52 to account 

for the use of fuzzy coded traits. The number of cluster groups (herein functional groups: 

FG) was selected based on an iterative procedure that minimised within group dissimilarity 

and maximised between group dissimilarity. Sixteen clustering scenarios were defined 

(number of groups: 2 – 18) and multivariate analysis of variance (MANOVA) was used to 

assess the optimal clustering scenario based on the coefficient of determination. When a 

significant decrease in the amount of variance explained by additional clusters (<10%) was 

recorded, the number of clusters at this point was deemed to be the optimal, most 

parsimonious solution 53 (see Supplementary Table 5 for cluster group constituent taxa).   

To describe functional diversity (FD) we calculated a suite of indices (Functional Richness 

[FRic; proportion of functional space filled by a community], Functional Divergence [FDiv; 

the proportion of the total abundance that is supported by the species with the most 

extreme traits], Functional Evenness [FEve; the regularity of abundance distributions in the 

functional space], Functional Dispersion [FDis; the abundance-weighted deviation of species 

trait values from the centre of the functional space], Functional Entropy [FEnt; the 

abundance-weighted sum of pairwise functional distances between species in a 

community]) 54 using the dbFD function from the FD package 55 after log10(x+1) transforming 

taxon abundances. The first two PCoA axes of the trait abundance matrix were used to 

calculate FD and we corrected negative eigenvalues using the approach described by Cailliez 

et al. 56. To examine geographical trends in FD we averaged absolute latitude and FD indices 

within regions and fitted general linear models. Using generalized additive mixed models 
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(GAMM), we then analysed responses of taxonomic richness, FD, the first two FCA axes and 

the two most abundant FGs to glacier cover at the site-level whilst controlling for a suite of 

co-variables (region, river basin, site). The Poisson family (log link) was used for taxonomic 

richness, FRic, FDis and FEnt, the Gaussian family (identity link) for FDiv, FEve and FCA axes, 

and the binomial family for relative abundances of FGs. Optimal random effects structures 

were determined by comparing AICs and selecting the most parsimonious model within 2 

points of the minimum AIC. For the models with optimal random effects structures, we 

focused on the R2 adjusted from the generalised additive model (GAM) part of the mixed 

model. This measure of goodness-of-fit does not account for random effects but was 

considered appropriate in this context because we were interested in the globally consistent 

trends. Although optimal random effects structures were not at the region-level for every 

index modelled (most notably taxonomic richness and FRic), we show only region-level 

results in figures to aid interpretation. 

To investigate community assembly and metacommunity processes, we constructed four 

null models with different constraints. Under the ‘uniform’ model, taxa were picked from 

the regional species pool at random 22. Under the ‘dispersal’ model, occurrences of the kth 

species at sites j=1..n in the metacommunity and their Euclidean distances (dist) from the 

focal site i determine a probability weighting (pk) for selection of the species from the 

species pool: 

𝑝𝑝𝑘𝑘 = �
1

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖

𝑛𝑛

𝑗𝑗≠𝑖𝑖
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Occurrences at the focal site do not contribute to the probability of taxon selection. For the 

uniform and dispersal models, species’ abundances are predicted as mean observed 

abundances across the metacommunity. Under the pure ‘trait selection’ model, taxa 

presences are sampled from the species pool at random and iteratively assigned predicted 

abundances until the community weighted mean (CWM) for the gth trait satisfies 

CWMpick=CWMsite±T, where T is a threshold (2.5%) to reduce computational intensity. We 

used CWMs of the first two FCA axes, which cumulatively described 61 % of the overall 

variance in traits and were related strongly to shifts in voltinism, pupation, burrowing habit, 

and diet traits across the gradient of glacier cover. Thus ‘selection’ was made on synthetic 

traits (FCA axes) for computational efficiency. The mixed model combines dispersal-based 

occurrences with trait-based abundances. In all cases, 1000 samples of s (species richness) 

taxa were taken from the species pool with s fixed at the observed value for each site, i.e. 

fixed row sums as recommended by 57. This approach is equivalent to a non-parametric 

version of Shipley’s 22 Community Assembly by Trait Selection (CATS) model, except that a 

different probabilistic species pool can be specified for each individual site, enhancing 

realistic representation of the metacommunity and increasing power to infer stochastic 

dispersal processes. 

We assessed the mean similarity of null picks under the four different community assembly 

models to the observed community using Jaccard’s index for presence-absence and the 

inverse of the Bray-Curtis index (i.e. Bray-Curtis similarity) for abundances. Because the 

results for both similarity indices were very similar, we focused subsequently on Bray-Curtis. 

To standardise the results, we calculated the residual similarity from a 1:1 line through 

results from the uniform model and each of the other three components (Supplementary 
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Figure 5). GAMMs (Gaussian family, identity link) were used to relate Bray-Curtis similarity 

residuals to glacier cover. Alaska was excluded from the community assembly analyses 

because all data came from one site, and Svalbard was excluded due to low regional 

taxonomic richness.  

The apparent importance of dispersal limitation could have been related to spatial 

autocorrelation of environmental variables. Therefore, to assess the extent of any such 

autocorrelation, we generated spatial variables using Moran’s Eigenvector Maps (MEM) 

using the PCNM function in the Vegan package 58. Derived spatial Eigenfunctions associated 

significantly (p<0.05) with four environmental variables (water temperature, PI, Suspended 

sediment concentration [SSC], electrical conductivity) in a redundancy analysis were 

retained to assess relationships with residuals from the dispersal based null model of 

community assembly (Supplementary Figure 6). Turbidity data were provided by some 

studies, thus we used a generic regression model to estimate SSC from turbidity 59 to allow 

comparable analyses. Electrical conductivity data were measured in-situ during the primary 

research studies. 

Data and code availability statement: Trait fuzzy codes, functional diversity metrics, 

contextual river physicochemical data and community assembly model code can be 

accessed at https://doi.org/10.5518/267. Macroinvertebrate species and abundance 

datasets are available directly from the authors of the original studies listed in 

Supplementary Table 1. 
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Table 1. Regression model results for combinations of the four community assembly models 
(data plots are shown in Supplementary Figure 5). With an intercept significantly >0, a slope 
significantly >1 and an R2 of 0.83, the dispersal component was a consistently a better fit to 
the observed community than the uniform model. It was the strongest performing of all 
model components.  
 
 

x y df β0 (±SE) β1 (±SE) R2 P 
Uniform Dispersal 236 0.174 

(0.012) 
1.150 
(0.034) 

0.83 <0.0001 

Uniform Trait 
selection 

236 0.127 
(0.011) 

0.619 
(0.032) 

0.61 <0.0001 

Uniform Mixed 236 0.277 
(0.013) 

0.554 
(0.037) 

0.49 <0.0001 

Dispersal Trait 
selection 

236 0.099 
(0.018) 

0.421 
(0.030) 

0.45 <0.0001 

Dispersal Mixed 236 0.194 
(0.015) 

0.479 
(0.026) 

0.58 <0.0001 

Trait 
selection 

Mixed 236 0.184 
(0.013) 

0.834 
(0.036) 

0.69 <0.0001 
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Figure captions  

Figure 1. (a-i) General Additive Mixed Model (GAMM) results for Fuzzy Correspondence 
Analysis (FCA) axis 1 scores with region-level random effects structure. Mean global fit 
shown with solid grey line and 95% confidence intervals shown with dashed grey line. 
Coloured lines show mean fit (solid) and 95% confidence intervals (dashed) for each region. 
For summary statistics see Supplementary Material.  (j) Site scores on FCA axes 1 and 2. [See 
Supplementary Table 3 for relationships between FCA axis scores and traits, and 
Supplementary Table 4 for model summary statistics; overall n=363] 

Figure 2. GAMM results for Functional Groups 1 (FG1) and 3 (FG3) with region-level random 
effects structure. Bar charts show relative abundance of all FGs per region. Coloured lines 
show mean fit (solid) and 95% confidence intervals (dashed) for each region. [See 
Supplementary Table 4 for model summary statistics, and Supplementary Table 5 for FG 
constituent taxa; overall n=363] 

Figure 3. Boxplots of functional diversity indices, and results of general linear models based 
on regional functional diversity means versus absolute latitude, for (a) functional richness 
(FRic), (b) functional divergence (FDiv), (c) functional evenness (FEve), (d) functional 
dispersion (FDis) and (e) Rao’s quadratic entropy (FEnt). FRic, FDiv and FEve could not be 
calculated for Svalbard due to insufficient taxonomic richness. [See Supplementary Table 6 
for model summary statistics; a-c overall n=271; d-f overall n=363]   

Figure 4. GAMM results for taxonomic richness and selected functional diversity indices 
(FRic and FDis) with region-level random effects structure. Mean global fit shown with solid 
grey line and 95% confidence intervals shown with dashed grey line. Coloured lines show 
mean fit (solid) and 95% confidence intervals (dashed) for each region. FRic could not be 
calculated for Svalbard due to insufficient taxonomic richness. [See Supplementary Figure 4 
for all FD index plots, and Supplementary Table 4 for model summary statistics; n=363 
except FRic n=271]  

Figure 5.  Generalized Additive Mixed Model (GAMM) results for residuals from BC 
dispersal, trait selection and mixed models, with region-level random effects structure. 
Mean global fit shown with solid grey line and 95% confidence intervals shown with dashed 
grey line. Coloured lines show mean fit (solid) and 95% confidence intervals (dashed) for 
each region. Alaska and Svalbard were excluded from this analysis. [See Supplementary 
Table 4 for summary statistics; n=238] 
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