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Abstract (up to 300 words) 116 

Aim: Species interaction networks are known to vary in structure over large spatial scales. 117 

We investigated the hypothesis that environmental factors affect interaction network structure 118 

by influencing the functional diversity of ecological communities. Notably, we expect more 119 

functionally diverse communities to form interaction networks with a higher degree of niche 120 

partitioning. 121 

Location: Americas. 122 

Time period: Current. 123 

Major taxa studied: Hummingbirds and their nectar plants. 124 

Methods: We used a large dataset comprising 74 quantitative plant-hummingbird interaction 125 

networks distributed across the Americas, along with morphological trait data for 158 126 

hummingbird species. First, we used a model selection approach to evaluate associations 127 

between environment (climate, topography and insularity), species richness, and 128 

hummingbird functional diversity as predictors of network structure (niche partitioning, i.e., 129 

complementary specialization and modularity). Second, we used Structural Equation Models 130 

(SEMs) to ask whether environmental predictors and species richness affect network structure 131 

directly and/or indirectly through their influence on hummingbird functional diversity. For a 132 

subset of 28 networks, we additionally evaluated whether plant functional diversity was 133 

associated with hummingbird functional diversity and network structure. 134 

Results: Precipitation, insularity and plant richness, together with hummingbird functional 135 

diversity (specifically functional dispersion), were consistently strong predictors of niche 136 

partitioning in plant-hummingbird networks. Moreover, SEMs showed that environmental 137 

predictors and species richness affected network structure indirectly through their effects on 138 
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hummingbird functional diversity. Plant functional diversity, however, was unrelated to 139 

hummingbird functional diversity and network structure. 140 

Main conclusions: We reveal the importance of hummingbird functional diversity for niche 141 

partitioning in plant-hummingbird interaction networks. The lack of support for similar 142 

effects for plant functional diversity potentially indicate that consumer functional diversity 143 

may be more important for structuring interaction networks than resource functional diversity. 144 

Changes in pollinator functional diversity are therefore likely to alter the structure of 145 

interaction networks and associated ecosystem functions. 146 

 147 

KEYWORDS 148 

functional dispersion, insularity, modularity, network structure, niche partitioning, plant-149 

pollinator interactions, pollination networks, specialization, trait diversity  150 
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1 INTRODUCTION 151 

Species’ traits influence niche partitioning between pairs of species, and thus should affect the 152 

structuring of entire networks of interacting organisms (Fründ, Dormann, Holzschuh & 153 

Tscharntke, 2013; Junker et al., 2013; Maruyama, Vizentin-Bugoni, Oliveira, Oliveira & 154 

Dalsgaard, 2014; Maglianesi, Böhning-Gaese & Schleuning, 2015). We may therefore expect 155 

a correspondence between community trait composition (i.e., functional diversity) and 156 

interaction network structure, such that communities in which species differ strongly in traits 157 

related to their ecological interactions should exhibit a high resource partitioning. Despite the 158 

potential importance for community stability and ecosystem functioning (Fontaine, Dajoz, 159 

Meriguet & Loreau, 2005; Fründ et al., 2013; Mouillot, Graham, Villéger, Mason & 160 

Bellwood, 2013; Schleuning, Fründ & Garcia, 2015), the relationship between functional 161 

diversity and the structure of species interaction networks remains untested at large 162 

geographical scales (Kissling & Schleuning, 2015; Gravel, Albouy & Thuiller, 2016). 163 

Several recent studies have used mutualistic networks to examine how large-scale 164 

variation in environmental factors, notably climate, relate to network structure (e.g., 165 

Dalsgaard et al., 2011; Schleuning et al., 2012, 2014; Trøjelsgaard & Olesen, 2013; Martín 166 

González et al., 2015). Likewise, studies have reported relationships between environment 167 

and functional diversity of assemblages, for both plants and pollinators (Swenson et al., 2012; 168 

Grass, Berens & Farwig, 2014; Rader, Bartomeus, Tylianakis & Laliberté, 2014; Ordonez & 169 

Svenning, 2017). However, apart from a few local and regional studies on a small number of 170 

networks (e.g., Junker, Blüthgen & Keller 2015; Maglianesi, Blüthgen, Böhning-Gaese & 171 

Schleuning 2015), the way in which functional diversity influences species interaction 172 

networks is poorly understood. In addition, despite the reported relationships between 173 

environmental factors and network structure, the mechanisms behind such relationships 174 
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remain speculative (reviewed in Trøjelsgaard & Olesen, 2016 and Tylianakis & Morris, 175 

2017).  176 

One plausible way environmental factors may affect interaction network structure is 177 

through effects on the distribution of species and, hence, community composition (Dalsgaard 178 

et al., 2011; Bartomeus et al., 2016; Sonne et al., 2016, Tylianakis & Morris, 2017). 179 

Environmental factors have been shown to affect the distribution of species traits, e.g., body 180 

size (Olson et al., 2009), as well as plant richness (Kreft & Jetz, 2007). Moreover, high 181 

species richness has been linked to an increase in competition, which should promote greater 182 

trait differentiation within plant and pollinator communities (MacArthur & Levins, 1967; 183 

Inouye, 1978; Vamosi et al., 2006; Fründ et al., 2013). For example, traits linked to 184 

pollinators’ body size and shapes have been shown to determine interaction partitioning 185 

within plant-pollinator interactions (e.g., Inouye, 1978; Vizentin-Bugoni, Maruyama & 186 

Sazima, 2014). Thus, one hypothesis is that environmental factors influence species and 187 

functional diversity in communities (Kreft & Jetz, 2007, Olson et al., 2009, Ordonez & 188 

Svenning, 2017), which then mediate effects on network structure (Fründ et al., 2013; 189 

Mouillot et al., 2013; Bartomeus et al., 2016, Tylianakis & Morris, 2017). Specifically, a 190 

higher functional diversity in communities should lead to networks with a greater partitioning 191 

of interactions (Inouye, 1978; Junker et al., 2013, 2015; Maruyama et al., 2014; Maglianesi, 192 

Blüthgen et al., 2015). 193 

We investigate this hypothesis using a large dataset of 74 quantitative plant-194 

hummingbird mutualistic interaction networks distributed widely across the Americas. 195 

Hummingbirds, a species-rich family of nectar-feeding birds, are important pollinators in the 196 

New World, showing specialized interactions with the plants they pollinate (Stiles, 1981; 197 

Cronk & Ojeda, 2008; Zanata et al., 2017). Due to their high diversity and strong 198 
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specialization for nectarivory, hummingbirds have frequently been used as a model system to 199 

study the evolutionary, historical and ecological factors structuring the assembly of species 200 

into communities (Snow & Snow, 1972; Stiles, 1981; Graham Parra, Tinoco, Stiles & 201 

McGuire, 2012; Vizentin-Bugoni et al., 2014; Maglianesi, Böhning-Gaese et al., 2015; Martín 202 

González et al., 2015; Sonne et al., 2016). We here evaluate the relationships between 203 

environmental factors, species richness, functional trait diversity, and network structure. Our 204 

aim is to elucidate whether functional trait diversity mediates the effects of environmental 205 

factors on network structure at a macroecological scale. We focused on hummingbird body 206 

mass, bill length and shape, as these traits are known to influence their interactions with their 207 

nectar-plants (Feinsinger & Colwell, 1978; Dalsgaard et al., 2009; Maglianesi, Blüthgen, 208 

Böhning-Gaese & Schleuning, 2014; Maglianesi, Böhning-Gaese, et al., 2015; López-209 

Segoviano, Bribiesca & Arizmendi, 2018). Because hummingbirds depend on floral nectar for 210 

energy intake and partition floral resources according to their morphology, we expected that 211 

hummingbird communities with higher degree of functional diversity should form specialized 212 

interaction networks with higher degree of niche partitioning (MacArthur & Levins, 1967; 213 

Feinsinger & Colwell, 1978; Inouye, 1978; Stiles, 1981; Maglianesi, Blüthgen, et al., 2015). 214 

We similarly expected a positive relationship between plant functional diversity and the 215 

degree of interaction niche partitioning as plant traits have been shown to constrain plant-216 

hummingbird interactions (Maglianesi et al., 2014; Vizentin-Bugoni et al., 2014). Moreover, 217 

we expected that predictors linked to productivity, such as temperature and precipitation, are 218 

positively associated with both functional diversity (e.g., Ordonez & Svenning, 2017) and 219 

network specialization (Dalsgaard et al., 2011; Trøjelsgaard & Olesen, 2013; Martín González 220 

et al., 2015), whereas past climate instability should decrease specialization (Dalsgaard et al., 221 

2011; Ordonez & Svenning, 2017). Climatic seasonality, on the other hand, may increase both 222 

the functional diversity (Swenson et al., 2012) and interaction partitioning (Schleuning et al., 223 
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2014) by causing regular species turnover related to predictable environment variability. In 224 

addition to climatic effects, we expected that topographical heterogeneity has a positive effect 225 

on both functional diversity and network specialization by generating habitat heterogeneity 226 

and enabling species to track changing climates more easily (Sonne et al., 2016; Ordonez & 227 

Svenning, 2017), while insularity is expected to have a negative effect due to ecological 228 

release and increased generalization on islands (Traveset, Olesen, et al., 2015). We tested 229 

these hypotheses by examining how environmental predictors affect network structure both 230 

directly and indirectly through their influence on functional diversity.  231 

 232 

2 METHODS 233 

2.1 Plant-hummingbird networks 234 

We used a dataset of 74 quantitative plant-hummingbird interaction networks distributed 235 

across the Americas (Figure 1), from 38°58' North to 31°48' South (updated from Martín 236 

González et al., 2015; see Appendix S1 in Supporting Information). Each network describes 237 

interactions among plant and hummingbird species for a given community, with interactions 238 

summarized as a quantitative bipartite matrix having plants as rows and hummingbirds as 239 

columns, and each cell filled with the observed frequency of pairwise interactions. We 240 

focused on mutualistic interactions among plants and hummingbirds, and thus excluded 241 

instances of nectar robbery or theft, as they characterize other interaction types (Maruyama, 242 

Vizentin-Bugoni, Dalsgaard, Sazima & Sazima, 2015). Species names and classification 243 

followed The Plant List (www.theplantlist.org) and the International Ornithological 244 

Committee World Bird List (IOC, www.worldbirdnames.org), respectively. In total, our 245 
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dataset comprised 158 species of hummingbirds (~46% of the 345 species in the IOC Bird 246 

List, Appendix S2) and 984 species of plants from 85 families (Appendix S3). 247 

2.2. Hummingbird morphological traits and functional diversity 248 

For all hummingbird species, we compiled information on three morphological traits that 249 

influence their interactions with flowers as well as interspecific competition for nectar: bill 250 

length, bill curvature and body mass (Snow & Snow, 1972; Feinsinger & Colwell, 1978; 251 

Stiles, 1981; Dalsgaard et al., 2009; Maruyama et al., 2014; Vizentin-Bugoni et al., 2014; 252 

Maglianesi et al., 2014, Maglianesi, Blüthgen, et al. 2015; López-Segoviano et al., 2018). Bill 253 

length and curvature were measured by inspecting an average of 10 adult specimens, both 254 

males and females, deposited at museums (see details in Appendix S6); body mass data were 255 

gathered from the literature (Appendix S2). For all three traits, we used the mean trait values 256 

per species, as interspecific trait variation is larger than intra-specific variation and plays a 257 

larger role in determining the division of floral resources among coexisting hummingbird 258 

species (Graham et al., 2012; Tinoco, Graham, Aguilar & Schleuning, 2017). In our data, the 259 

intraspecific coefficient of variation across all hummingbird species averaged 6.2% for bill 260 

length and 8.3% for bill curvature, while interspecific variation amounted to 42.4% and 261 

246.9%, respectively (see also Appendix S2). 262 

 To calculate hummingbird FD metrics, we computed the pairwise Euclidean distances 263 

between hummingbird species based on their traits. These distances were projected into a 264 

functional trait space using a Principal Coordinate Analysis (Villéger, Mason & Mouillot, 265 

2008; Figure 2). Traits were standardized to zero mean and unit variance prior to the 266 

calculation of Euclidean distances. We used two measures to quantify distinct facets of FD in 267 

hummingbird communities. First, we calculated from the multivariate trait space the sum of 268 

the branch length of the Minimum Spanning Tree (MST) connecting all hummingbirds co-269 
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occurring in a community. This measure estimates the total trait variability within each 270 

community and is similar to functional richness (Villéger et al., 2008), but has the advantage 271 

that it can be calculated for communities comprising only two co-existing species (as was the 272 

case for some communities in North America and the Caribbean islands). Large MST values 273 

indicate the occurrence of species with distinct traits, but do not consider species abundance 274 

in its calculations. Second, we calculated the Functional Dispersion (FDis) of each 275 

community by computing the mean distance of all species in a community to its centroid in 276 

functional trait space (Laliberté & Legendre, 2010). FDis accounts for differences in species’ 277 

frequencies in the community, by weighting the mean distance and the position of the 278 

community centroid with species’ abundances. In this study, we approximated hummingbird 279 

species abundance by using the sum of interactions for each hummingbird species in the 280 

interaction matrices (see details in Appendix S7, S8). High values of hummingbird FDis 281 

indicate the co-occurrence of hummingbird species with distinct trait combinations (Laliberté 282 

& Legendre, 2010). Calculation of FDis was performed with the function dbFD in the R 283 

package ‘FD’ (Laliberté & Legendre, 2010). The two functional indices analyzed in this study 284 

(MST and FDis) represent complementary aspects of FD and are only moderately correlated 285 

(Pearson's r = 0.57, P < 0.05, n = 74 networks). If FDis is calculated without weighting by 286 

species abundance, this correlation becomes higher (r = 0.80, P < 0.05). Moreover, MST 287 

showed a stronger correlation with hummingbird species richness (Pearson's r = 0.76, P < 288 

0.05) than did weighted FDis (r = 0.43, P < 0.05). 289 

2.3. Plant functional diversity 290 

For a subset of 28 networks, including mainland and island communities and comprising 103 291 

hummingbird and 467 plant species (51.2% and 47.5% of the complete dataset, respectively), 292 

we also computed plant functional diversity. We considered three traits that have been 293 
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associated with hummingbird specialization and partitioning of interactions among flowers: 1) 294 

floral corolla length (e.g., Maglianesi et al., 2014; Maruyama et al., 2014); 2) color spectrum 295 

visible to human eye of the visited flowers, reflecting different degrees of specialization to 296 

ornithophily (Wilson, Castellanos, Hogue, Thomson & Armbruster, 2004; Dalsgaard et al., 297 

2009); and 3) plant life form, reflecting resource availability (Feinsinger & Colwell, 1978) 298 

and/or vegetation strata (Jordano, Bascompte & Olesen, 2006; see details on plant trait 299 

assessment at Appendix S4-S6). We calculated plant FDis for each network, based on the 300 

pairwise Gower distances as suggested for the combination of continuous and categorical trait 301 

variables (Laliberté & Legendre, 2010). Weights of individual species in the FDis metric were 302 

given by independent measures of local floral abundances (Appendix S6). For this same 303 

subset of communities, we also re-calculated hummingbird FDis to test whether it relates to 304 

plant functional diversity. In addition, we estimated plant and hummingbird FDis based only 305 

on corolla and bill length, respectively, as we only had the corolla length as a continuous 306 

variable for plants. Results from single-trait analyses were qualitatively identical and are 307 

therefore not shown. 308 

2.4 Network indices and sampling intensity 309 

To characterize network structure, we calculated two quantitative indices widely used in the 310 

literature to quantify the extent to which species partition their interactions, namely 311 

complementary specialization (H2' and d', Blüthgen, Menzel & Blüthgen, 2006), and 312 

quantitative bipartite modularity (Q, Dormann & Strauss, 2014). Although conceptually 313 

distinct, these indices characterize a similar ecological pattern from the hummingbird’s 314 

perspective, namely the partitioning of interactions along a niche dimension represented by 315 

the plant species in the network (Blüthgen, 2010). The complementary specialization indices 316 

derive from Shannon’s entropy and quantify how realized species’ interactions differ from 317 
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those expected in randomly interacting communities relative to partner availability, i.e. reflect 318 

the niche partitioning among species (Blüthgen et al., 2006; Blüthgen, 2010). Two variants, 319 

the network-wide specialization H2' and the species level specialization d' are commonly 320 

used; a guild level specialization can be estimated as the weighted mean of d' across all 321 

species from the same guild <d'> (Blüthgen et al., 2006). In our dataset, hummingbird 322 

specialization <d'> was strongly correlated with network wide specialization H2' (Pearson's r 323 

= 0.93, P < 0.05). We mostly focused on <d'> as we calculated FD based on morphological 324 

data for hummingbird species. 325 

A complementary measure of interaction partitioning is modularity Q, which 326 

quantifies the prevalence of preferentially interacting subgroups in the networks (Dormann & 327 

Strauss, 2014). The formation of such modules of interacting species can be related to a high 328 

degree of trait matching between species (Maruyama et al., 2014, Maruyama, Vizentin-329 

Bugoni, Dalsgaard, Sazima & Sazima, 2015). Here, we used the QuanBiMo, a modularity-330 

searching algorithm specifically designed for quantitative bipartite networks (Dormann & 331 

Strauss, 2014). Both <d'> and Q scale from 0 to 1, with zero indicating low 332 

specialization/modularity and 1 high specialization/modularity (Blüthgen et al., 2006; 333 

Dormann & Strauss, 2014). Network analyses were conducted using the ‘bipartite’ package in 334 

R (Dormann, Fründ, Blüthgen & Gruber, 2008; R Core Team, 2016). 335 

 Intrinsic characteristics of the networks, such as size (i.e., number of interacting 336 

species) and sampling effort, may affect network indices (Blüthgen et al., 2006; Vizentin-337 

Bugoni et al., 2016). The quantitative network indices used here take species interaction 338 

frequencies into account and are less sensitive to sampling insufficiency than metrics based 339 

on binary networks that only report the presence or absence of interactions between species 340 

pairs (Blüthgen et al., 2006; Vizentin-Bugoni et al., 2016). Nevertheless, to minimize 341 
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potential biases due to differences in sampling among networks, we Δ-transformed our 342 

metrics (Schleuning et al., 2012, Dalsgaard et al., 2017). In this transformation, the mean 343 

value of a metric obtained by multiple randomizations of a null network is subtracted from the 344 

observed value (Schleuning et al., 2012, Dalsgaard et al., 2017). Here, we used the Patefield 345 

null model, which fixes the network size and the marginal totals, i.e. species richness and 346 

species’ total number of interactions, while shuffling interactions randomly (Dormann et al., 347 

2008). The specialization index <d'> is already subject to a correction for the marginal totals 348 

of the species in the network (Blüthgen et al., 2006), but modularity is not (Dormann & 349 

Strauss, 2014); thus, we report the null model corrected ΔQ values in the main results. 350 

Nonetheless, results for both untransformed and Δ-transformed specialization and modularity 351 

metrics were similar (see Appendix S9). 352 

 In addition to null model corrections, we calculated sampling intensity (SI) and 353 

network asymmetry, both of which may affect the degree of specialization (Blüthgen et al., 354 

2006; Schleuning et al., 2012). Sampling intensity is defined as the square root of the number 355 

of interaction events divided by the geometric mean of the total species number in the given 356 

bipartite network (Schleuning et al., 2012) and network asymmetry is defined as the ratio 357 

between hummingbird and plant richness. Since network asymmetry was only weakly related 358 

to the calculated metrics (r = -0.21, P = 0.07 for <d'> and r = -0.09, P = 0.42 for ΔQ), we did 359 

not consider it further. However, SI was included in the models (see Table 1). 360 

2.5 Environmental variables 361 

We extracted information on current climate, topography, and long-term climate stability 362 

within a 10 km radius around each study site from WorldClim 30 arc-second rasters 363 

(Hijmans, Cameron, Parra, Jones & Jarvis, 2005). Current climate was represented by mean 364 

annual temperature (MAT), mean annual precipitation (MAP), temperature seasonality 365 
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(estimated as the standard deviation across monthly temperatures; TS), and precipitation 366 

seasonality (estimated as the coefficient of variation for monthly precipitation means; PS). To 367 

determine the topographical variation (Topography) at each study site, we also used the 368 

WorldClim digital elevation model (DEM). This combines the SRTM gap-filled 30 arc 369 

second DEM (CGIAR - http://srtm.csi.cgiar.org/), covering from 60N to 60S with the 370 

GTOPO30 DEM (https://lta.cr.usgs.gov/GTOPO30) for other parts of the world. Topography 371 

was represented by the standard deviation of elevation within a 10 km radius around each 372 

study site. We described paleoclimate stability using the change in temperature and 373 

precipitation from the Last Glacial Maximum (LGM) to the present, as estimated using two 374 

different models, CCSM3 (Collins et al., 2006; Otto-Bleisner et al., 2006) and MIROC 3.2 375 

(K-1 model developers, 2004). For each site, we calculated the change in temperature and 376 

precipitation from the LGM to the present (Anomaly), and its spatial rate of displacement 377 

(Velocity) as complementary measures of past to present climate variability (Loarie et al., 378 

2009). As our data cover a large geographical extent, we assumed that the regionally 379 

downscaled climate estimates are good indicators of the variation of local climate among 380 

communities. In addition to data on past and current climate and topography, we included 381 

insularity as a dummy variable (1 - island, 0 - mainland). To meet statistical assumptions of 382 

normality, MAP was square root transformed and TS was log-transformed prior to further 383 

analyses. All variables were scaled to zero mean and unit variance. As velocity and anomaly 384 

both describe historical climate change, and are derived from the same model projection, we 385 

built one model for each of the two measures of historical climate change. As velocity 386 

includes topographical heterogeneity in the calculations (Loarie et al., 2009), we did not 387 

include velocity and topography in the same models. In the main text, we report the results 388 

regarding anomaly and topography; results regarding velocity as an integrated measure of 389 
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historical climate variability were qualitatively similar and are reported in the Supplement 390 

(Appendix S10).  391 

2.6 Macroecological analysis 392 

We divided the macroecological analysis into two steps in order to simplify and reduce the 393 

number of predictors in the Structural Equation Models (SEMs). First, we fitted multi-394 

predictor linear models for both specialization <d'> and modularity ΔQ, considering the two 395 

indices for hummingbird FD (MST and FDis), separately, plus hummingbird richness 396 

(Hummingbirds). Besides these predictors, we included the following environmental 397 

predictors: temperature (MAT), precipitation (MAP), temperature seasonality (TS), 398 

precipitation seasonality (PS), topography (Topo), temperature anomaly (AnomT), 399 

precipitation anomaly (AnomP) and insularity (Insu). Finally, we included plant species 400 

richness (Plants) that has been shown to influence resource partitioning in flower-bird 401 

networks (Zanata et al., 2017), potentially independent of floral functional diversity (Souza et 402 

al., 2018). For the subset of 28 networks with plant FDis measures, we used linear models to 403 

test whether plant FDis predicted network level specialization H2' and ΔQ. The same 404 

procedure was repeated with hummingbird FDis within this subset. 405 

We fitted four principal models incorporating the combinations of two measures of FD 406 

(MST and FDis) and the two network indices (<d'> and ΔQ). The two FD measures were 407 

always fitted separately as these were correlated; for comparison, we also fitted a model with 408 

unweighted FDis (i.e., without incorporating abundance; Appendix S11). We checked for 409 

multicollinearity in the full model by evaluating the condition number (CN ≤ 5) and the 410 

variance inflation factor (VIF ≤ 5). This led to the exclusion of MAT and Hummingbird 411 

richness as predictors (see additional results in Supporting Information). Models considering 412 

hummingbird richness instead of FD measures had less statistical support (Appendix S12). 413 
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Model performance of all combinations of predictor variables was assessed based on the 414 

Akaike Information Criterion with correction for small samples (AICC). Model selections 415 

were performed with the function dredge in the R package ‘MuMIn’ (Barton, 2014), 416 

according to their AICC. In all cases, multiple models presented ΔAICC values ≤ 2.0 in 417 

relation to the best model, i.e., no single best model was identified (Burnham & Anderson, 418 

2002). Hence, model averaging was performed across all possible models using the function 419 

model.avg in ‘MuMIn’ (Barton, 2014). We report the averaged coefficient values and the 420 

relative importance of each predictor variable by summing the Akaike weights across the 421 

models including the respective variable across all possible models (i.e., Σwi; Burnham & 422 

Anderson, 2002). We did not include interaction terms between predictors in our models due 423 

to the lack of a clear hypothesis justifying their inclusion. Spatial autocorrelation in models’ 424 

residuals was assessed by computing Moran’s I correlograms using the ‘ncf’ package in R 425 

(Bjornstad, 2016), with distance classes of 500 km and a truncation distance of 5000 km. The 426 

linear model with specialization <d'> showed significant positive spatial autocorrelation. 427 

Therefore, we re-ran this model using a simultaneous autoregressive (SAR) model that 428 

specifies the autoregressive processes within the error term (Kissling & Carl, 2008). The SAR 429 

modeling was conducted using the “spdep” package in R (Bivand & Piras, 2015). The spatial 430 

connections between networks were determined as the three nearest neighbors. For the SAR 431 

model, no significant spatial auto correlation remained in the residuals (see also Appendix 432 

S6). 433 

The second step of our analysis used SEMs to quantify the extent to which predictors 434 

influence network structure directly or indirectly via FD. The advantage of SEMs is that both 435 

direct and indirect associations among variables are considered simultaneously, hence 436 

allowing a hierarchical model structure (Shipley, 2002). We constructed two sets of SEMs for 437 
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each of the network metrics: (i) one based on the hypothesis that environmental and species 438 

richness predictors affect FD and network metrics in parallel, resulting in covariation between 439 

FD and network metrics, and (ii) another based on the hypothesis that FD directly affects 440 

network metrics (no covariation between FD and network metrics). A priori SEMs were 441 

constructed based on results from the previous model selection, which consistently 442 

demonstrated that insularity, MAP and plant richness had the greatest importance in 443 

determining network structure. All other predictors, except hummingbird FDis, had 444 

consistently low importance values, usually with a Σwi below 0.3, and thus were not included 445 

in the SEMs (see Table 1, S9–S12). As MST was found not to influence <d'> or ΔQ, only 446 

SEMs for FDis were constructed. By including the same set of predictors in each SEM, 447 

models were directly comparable, enabling a direct interpretation of whether environmental 448 

factors and plant richness are likely to affect network structure directly or indirectly through 449 

the functional composition of morphological traits (Shipley, 2002). Appropriate fits for SEMs 450 

were obtained by including error covariance links based on high modification indices and 451 

large residual correlations. Model fit was evaluated with a chi-square test, a comparative fit 452 

index (CFI), and a Root Mean Square Error of Approximation (RMSA). The chi-square test 453 

measures the coincidence between the empirical and the fitted variance-covariance structure 454 

in the data. Here, models were accepted if P > 0.05. The CFI relates the chi-square of the 455 

model, with the chi-square value of an independent model assuming zero correlation among 456 

variables while also accounting for sample size (Shipley, 2002). CFI ranges between 0 and 1, 457 

and models with CFI > 0.09 were considered to have an appropriate fit (Shipley, 2002). 458 

Finally, the RMSA index was included due to its sensitivity to the number of fitted 459 

parameters. A RMSA < 0.07 indicated an appropriate model fit (Shipley, 2002). All SEM 460 

analyses were conducted using the ‘lavaan’ package (Rosseel, 2012) in R (R Core Team, 461 

2016). 462 
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3 RESULTS 463 

Communities varied considerably in measures of hummingbird functional diversity 464 

(coefficient of variation - CV; MST = 55.3%; FDis = 43.4%) and network structure (CV; 465 

<d'> = 53.1%; Q = 48.5%, Figure 1). No strong latitudinal trend was observed for these 466 

variables (linear models with absolute latitude as a predictor; hummingbird FDis: R2 = 0.08, P 467 

= 0.02; <d'>: R2 = 0.05, P = 0.05; Q: R2 = 0.09, P < 0.01), although MST was higher at low 468 

latitudes (R2 = 0.37, P < 0.01).  469 

All best-fitting models included hummingbird FDis as a predictor, showing a positive 470 

association with both hummingbird complementary specialization <d'> and network 471 

modularity ΔQ (Table 1; Figures 1–2). Moreover, FDis was the only variable that consistently 472 

had high importance values across different models, with a positive effect on both 473 

untransformed and Δ-transformed network indices (Table 1, Appendix S9). On the other 474 

hand, MST had a negligible importance in predicting network structure (Table 1), as did 475 

unweighted FDis (Appendix S11) and hummingbird richness (Appendix S12). MAP was 476 

positively related to hummingbird specialization <d'> (Table 1), whereas plant richness was 477 

positively and insularity negatively related to modularity ΔQ (Table 1). Other environmental 478 

variables were not important in any of our models. 479 

For the subset of 28 networks with plant abundance and trait data, plant FDis showed 480 

less variation than hummingbird FDis (Coefficient of Variation = 24.2% vs. CV = 43.2%, 481 

Appendix S5). Plant FDis was unrelated to plant richness (R2 = 0.01, P = 0.51) and 482 

hummingbird FDis (r = 0.07, P = 0.70), and also to network structure (H2': R2 = 0.01, P = 483 

0.54; ΔQ: R2 = 0.04, P = 0.34). Within this subset, hummingbird FDis was positively 484 

associated with the degree of interaction partitioning (H2': R2 = 0.36, P < 0.01; ΔQ: R2 = 0.55, 485 

P < 0.01), consistent with the analysis across all networks. 486 
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 SEMs indicated that the combined influence of precipitation, insularity and plant 487 

richness explained a larger amount of the variation in specialization and modularity than in 488 

FDis (Figure 3a, c). Notably, including hummingbird FDis as predictor of network structure 489 

(Figure 3b, d) increased the overall explanatory power of the models (adjusted R2, Figure 3). 490 

Environmental predictors affected network structure more strongly through direct links, but 491 

also had indirect effects through their influence on functional diversity. Precipitation (MAP) 492 

affected specialization both directly (β = 0.32; Figure 3b) and indirectly through FDis 493 

(indirect coefficients are obtained by multiplication of coefficients, i.e., 0.41 × 0.31 = 0.13; 494 

Figure 3b). In the case of modularity, the indirect association with precipitation (0.41 × 0.39 = 495 

0.16; Figure 3d) was similar to the direct one (β = 0.14; Figure 3d). Plant species richness 496 

(specialization: direct = 0.19, indirect = 0.07; modularity: direct = 0.27, indirect 0.09; Figure 497 

3b, d) and insularity (specialization: direct = -0.21, indirect =-0.06; modularity: direct = -0.28, 498 

indirect -0.07; Figure 3b, d) showed stronger direct and weaker indirect associations with 499 

network metrics. 500 

 501 

4 DISCUSSION 502 

Functional diversity of hummingbirds was correlated with network structure in plant-503 

hummingbird communities across the Americas, with hummingbird communities composed 504 

of functionally distinct species (i.e., those with a high functional dispersion) forming 505 

specialized and modular interaction networks with their nectar plants. In contrast, plant 506 

functional diversity was unrelated to network structure. Our result that precipitation was both 507 

directly and indirectly related to network structure through its association with hummingbird 508 

functional diversity illustrates how the environment, through its effects on community trait 509 
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composition, may influence the realization of species interactions within local communities 510 

(McGill, Enquist, Weiher & Westoby, 2006).  511 

In addition to precipitation, we show that plant richness was positively related to the 512 

extent to which hummingbirds partition floral resources, with both direct and indirect effects 513 

through hummingbird functional diversity. This association may be driven by the resource 514 

diversity for hummingbirds, and partly be related to precipitation since the annual number of 515 

days with rainfall – a variable closely related to annual precipitation – is one of the major 516 

drivers of global vascular plant richness (Kreft & Jetz, 2007). This notion is reinforced by the 517 

importance of plant species richness in our models, and its covariation with precipitation 518 

(Table 1, Figure 3). A global analysis of nectarivorous birds, including hummingbirds, 519 

honeyeaters and sunbirds (Zanata et al., 2017), had previously reported a positive relationship 520 

between plant richness and network specialization. Interestingly, the association between 521 

plant richness and network structure was not mirrored by co-variation between network 522 

structure and plant functional diversity (see also Souza et al., 2018). One possible reason for 523 

this is that, in contrast to birds, interaction frequencies of plants usually do not reflect their 524 

abundances (Vizentin-Bugoni et al., 2014; Weinstein & Graham et al., 2017). For instance, 525 

plant species with long corollas often have low abundances (see Vizentin-Bugoni et al., 526 

2016), thus contributing little to abundance-weighted estimates of plant FDis. However, long 527 

corolla flowers are frequently visited by abundant long-billed hummingbirds, thus generating 528 

interaction partitioning (Maruyama et al., 2014; Maglianesi, Böhning-Gaese et al., 2015; 529 

Weinstein & Graham et al., 2017). This potentially results in a mismatch between the 530 

functionally most distinct plant species and those that provide most floral resources, i.e., 531 

higher floral abundance. A closer association between consumer FD and network 532 

specialization may also result from phenological differences between plants and animals. 533 
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While most hummingbirds stay in the community for most of the year, plant species 534 

flowering turnover is usually high, meaning that morphologically specialized plant species are 535 

temporarily replaced by other functionally similar ones (Bergamo et al., 2017). This means 536 

that from the plant side, there is higher redundancy between species and the processes driving 537 

niche partitioning may differ between plants and animals. For instance, hummingbirds often 538 

compete for floral resources, as exemplified by their frequent aggressive defense of floral 539 

resources (Feinsinger & Colwell, 1978), which likely enforces niche partitioning among birds 540 

more than among co-flowering plant species. Overall, our results indicate that total 541 

resource/niche space, as expressed by plant richness, allows for a finer division of resources 542 

(Dalsgaard et al. 2011) 543 

In addition to the positive effect of precipitation and plant richness, insularity had a 544 

negative association with functional diversity and network metrics (Figure 3). Although the 545 

direct links between insularity, specialization and modularity were stronger than the indirect 546 

effects, we could also detect indirect relationships between network structure and insularity 547 

through bird functional diversity. Island communities, especially from oceanic islands, tend to 548 

show a high degree of generalization, consistent with an interaction release and niche 549 

expansion in improvised communities (Traveset, Olesen, et al., 2015). Consequently, plant-550 

pollinator interaction networks on these islands can be less specialized than those on 551 

continents, for instance by showing higher pollinator overlap among plants (Traveset, Tur, et 552 

al., 2015). In accordance with this, higher generalization has been previously shown for 553 

insular plant-hummingbird networks (Martín González et al., 2015), and our results here 554 

indicate that part of this higher generalization is associated with the lower functional diversity 555 

of hummingbirds on islands. 556 
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The incorporation of functional diversity constitutes an important step towards 557 

identifying determinants of network structure at large spatial scales and is particularly 558 

promising for scaling up our understanding of natural systems from local to global scales 559 

(Kissling & Schleuning, 2015; Gravel et al., 2016). Furthermore, it may allow a better 560 

assessment of the association between community structure, ecosystem functioning and 561 

responses to disturbance (Fontaine et al., 2005; Fründ et al., 2013; Mouillot et al., 2013; 562 

Schleuning et al., 2015; Tylianakis & Morris, 2017). For instance, niche partitioning among 563 

morphologically distinct hummingbirds may promote optimal foraging, as trait-matching 564 

leads to an increased efficiency in floral resource use (Maglianesi et al., 2014). In addition, an 565 

increase in floral niche partitioning among pollinators is likely to increase the quality of 566 

pollination services among plants through an increase in conspecific pollen transfer (Inouye, 567 

1978; Brosi & Briggs, 2013). Hence, if pollinator functional diversity is reduced in response 568 

to climate change or direct human-induced disturbances (e.g., Grass et al., 2014; Rader et al., 569 

2014), this is likely to result in a reduced resource partitioning among pollinators and lower 570 

pollination effectiveness (Fontaine et al., 2005; Fründ et al., 2013; Schleuning et al., 2015). In 571 

this regard, we note that not only species traits, but also species’ abundances seem to be 572 

relevant, as unweighted functional diversity metrics (MST and unweighted FDis) were only 573 

weakly associated with network structure. Other studies have similarly found that unweighted 574 

functional diversity indices were only weakly associated with ecosystem functions delivered 575 

by animal communities (e.g., Gagic et al., 2015). Therefore, functionally distinct species in a 576 

community must be sufficiently abundant to fulfill their functional roles in interactions 577 

networks and contribute to ecosystem functioning. The apparent asymmetry between plant 578 

and bird functional diversity could stem from generally low floral abundances of 579 

morphologically specialized plant species, each playing a minor role at the community level, 580 
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compared to functionally specialized hummingbirds with high abundances, which fulfill 581 

critical ecological roles in many communities.  582 

Taken together, our results show an association between environmental factors, 583 

pollinator functional diversity, and network structure at a continental scale, in which 584 

environmental and species richness predictors determined network structure both directly and 585 

indirectly through functional trait diversity. Moving forward, studies should investigate how 586 

interaction networks affect the evolution of the traits of the species embedded in networks 587 

(Guimarães, Jordano & Thompson, 2011) and the assembly of interacting species within 588 

communities (Bartomeus et al., 2016). For instance, simulation studies may be able to 589 

evaluate how present network structure will affect the diversity of species and their functional 590 

traits in potential future communities, which in turn should feedback on the structure of 591 

interaction networks (Guimarães et al., 2011, Bartomeus et al., 2016). In conclusion, we 592 

believe that our results showing that environmental factors exert indirect effects on interaction 593 

niche partitioning mediated by consumer trait diversity yield a first step towards a 594 

mechanistic understanding of how the environment influences the structure of species 595 

interaction networks. Hence, potential future changes in pollinator functional diversity are 596 

expected to alter the structure of interaction networks and associated ecosystem functions 597 

such as pollination.  598 

 599 
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TABLE 1 Model selection and averaging results of the multi-predictor linear models explaining the variation of hummingbird specialization 814 

<d'> and network modularity ΔQ, corrected by the Patefield null model. We used two functional diversity measures, functional dispersion 815 

(FDis) and minimum spanning tree (MST) reflecting different aspects of trait diversity in hummingbird communities. Important predictors in 816 

explaining network indices variation (Σwi > 0.8) are highlighted in bold. We also show the AICc: corrected Akaike’s information criterion; 817 

AVM: standardized coefficients of the averaged model across all models; MAM: standardized coefficients of the minimum adequate model with 818 

the lowest AICc value; R2 adj: variation explained by the minimum adequate model with the lowest AICc. Acronyms of the predictors - FDis: 819 

functional dispersion; MST: minimum spanning tree; Plants: plant richness; MAP: mean annual precipitation; TS: temperature seasonality; PS: 820 

precipitation seasonality; AnomT: temperature anomaly; AnomP: precipitation anomaly; Topography: topographical variation; SI: sampling 821 

intensity. See Methods for details. 822 

 823 

  Complementary specialization <d'>   Modularity ΔQ  

  FDis  MST   FDis  MST 

 Σwi AVM MAM  Σwi AVM MAM  Σwi AVM MAM  Σwi AVM MAM 

FD index 0.97 0.33 0.31  0.28 0.02 -  1.00 0.43 0.43  0.55 0.12 - 

Plants 0.75 0.16 0.19  0.89 0.23 0.26  0.98 0.28 0.28  0.98 0.34 0.35 

MAP 0.92 0.30 0.33  0.99 0.44 0.45  0.32 0.03 -  0.70 0.17 0.30 

TS 0.32 0.03 -  0.30 0.03 -  0.23 -0.01 -  0.25 0.01 - 

PS 0.23 -0.01 -  0.23 0.01 -  0.54 -0.08 -0.16  0.36 -0.04 - 

AnomT 0.27 -0.02 -  0.26 -0.02 -  0.26 0.01 -  0.27 0.02 - 

AnomP 0.29 -0.02 -  0.25 -0.01 -  0.44 -0.06 -  0.38 -0.05 - 

Topography 0.32 0.03 -  0.33 0.03 -  0.27 -0.02 -  0.26 -0.02 - 

Insularity 0.77 -0.17 -0.21   0.86 -0.22 -0.27   0.99 -0.31 -0.28   0.97 -0.32 -0.35 

SI 0.29 -0.02 -  0.38 -0.05 -  0.52 0.08 -  0.31 0.03 - 

                

R2 adj   0.42    0.36    0.48    0.37 

AICc   177.3    183.8    168.9    182.7 
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FIGURE 1 The location of the 74 plant-hummingbird networks used in the study, showing the 824 

relationship between hummingbird specialization <d'> and functional dispersion. For clarity, 825 

circles for some study sites were moved slightly to minimize overlap. The illustration on the 826 

right depicts how hummingbirds with distinct morphologies partition their interactions by 827 

associating with flowers of corresponding morphology (from network ID 52; Top: Planalto 828 

Hermit, Phaethornis pretrei and Manettia cordifolia with long curved corolla; Bottom: 829 

Glittering-throated Emerald, Amazilia fimbriata and Palicourea rigida with a short corolla). 830 

Points along the white-grey-black gradient indicate communities with better correspondence 831 

between functional dispersion and specialization.  832 

 833 
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FIGURE 2 The relationship between hummingbird functional dispersion (FDis) and network 834 

structure. (a) An example illustrating two networks with similar number of hummingbird 835 

species (Net 74 = 7, Net 22 = 8), but with contrasting FDis. Networks on top depict the 836 

interaction networks with hummingbird species indicated by red and blue boxes at the top and 837 

plant species indicated by black boxes at the bottom (with the interactions indicated by grey 838 

lines). (b) FDis is measured as the mean of the distance (Zi) of a species (small circles) to its 839 

community centroid (large circles) in multivariate trait space generated by a Principal 840 

Coordinate Analysis. Notice that the community from Costa Rica (blue/right) includes several 841 

species located distantly from the community centroid, in contrast to the community from 842 

Southern Brazil (red/left). Linear regressions showing the relationship between hummingbird 843 

(c) specialization <d'> and (d) modularity ∆Q with FDis. Note that the two networks from (a) 844 

are indicated with their respective colors. 845 

 846 
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FIGURE 3 Structural equation models (SEMs) showing the direct and indirect associations 847 

among environmental and richness predictors, functional dispersion (FDis) with 848 

complementary specialization (<d'>; 3a, b) and modularity (∆Q; 3c, d). Models in (a) and (c) 849 

assume a covariation between FDis and networks structure, while (b) and (d) consider a 850 

directional relationship between FDis and network structure. In both cases, the value of R2 is 851 

substantially higher in the models that include the direct link between FDis and network 852 

metrics. Black arrows indicate positive relationships while red arrows indicate negative 853 

relationships, with the thickness of each arrow reflecting their standardized path coefficients. 854 

Double-headed grey arrows indicate covariance links. 855 

 856 

 857 
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