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Abstract

Background: Novel stroke rehabilitation techniques that employ electrical stimulation (ES) and robotic technologies

are effective in reducing upper limb impairments. ES is most effective when it is applied to support the patients’

voluntary effort; however, current systems fail to fully exploit this connection. This study builds on previous work

using advanced ES controllers, and aims to investigate the feasibility of Stimulation Assistance through Iterative

Learning (SAIL), a novel upper limb stroke rehabilitation system which utilises robotic support, ES, and voluntary effort.

Methods: Five hemiparetic, chronic stroke participants with impaired upper limb function attended 18, 1 hour

intervention sessions. Participants completed virtual reality tracking tasks whereby they moved their impaired arm

to follow a slowly moving sphere along a specified trajectory. To do this, the participants’ arm was supported by a

robot. ES, mediated by advanced iterative learning control (ILC) algorithms, was applied to the triceps and anterior

deltoid muscles. Each movement was repeated 6 times and ILC adjusted the amount of stimulation applied on

each trial to improve accuracy and maximise voluntary effort. Participants completed clinical assessments (Fugl-

Meyer, Action Research Arm Test) at baseline and post-intervention, as well as unassisted tracking tasks at the

beginning and end of each intervention session. Data were analysed using t-tests and linear regression.

Results: From baseline to post-intervention, Fugl-Meyer scores improved, assisted and unassisted tracking

performance improved, and the amount of ES required to assist tracking reduced.

Conclusions: The concept of minimising support from ES using ILC algorithms was demonstrated. The positive

results are promising with respect to reducing upper limb impairments following stroke, however, a larger study is

required to confirm this.

Keywords: Functional electrical stimulation, Upper limb, Stroke rehabilitation, Iterative learning control, Robotic

support, Virtual reality

Background
Stroke is a leading cause of death and disability in the

UK, and about 50% of people who survive a stroke re-

quire some form of rehabilitation to reduce impairment

and assist with activities of daily living [1-3]. Upper limb

function is particularly important in regaining independ-

ence following stroke; impairments impact on daily liv-

ing and well-being [4,5].

Research has consistently identified treatment intensity

and goal oriented strategies as critical elements for suc-

cessful therapeutic outcomes [6-10]. To further maxi-

mise rehabilitation effects, novel therapeutic and cost-

effective rehabilitation interventions need to be devel-

oped and may combine different methodological techni-

ques. For example, the combined use of electrical

stimulation (ES), robot-aided therapy and virtual reality

(VR) environments has been suggested to be particularly

promising with respect to upper limb rehabilitation in

chronic stroke [10,11].
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Following stroke, robot and ES therapies have been

demonstrated to reduce upper limb motor impairments

[6,7,10,12-14]. Furthermore, these techniques have been

highlighted as a way to facilitate the intensity of the

training received [10], and allow training despite muscle

weakness and without the aid of a therapist. In addition,

when used with a real-time system which displays the

participants’ arm and hand movements in a VR environ-

ment, the practiced movements can be very task-specific

[11,15]. These types of technologies may be more easily

transferred into patients’ homes, increasing the intensity

and task specificity of the training and reducing the time

and expense constraints on therapists [16].

The therapeutic effect of ES in rehabilitation is known

to increase when associated with a person’s voluntary ef-

fort [12]. However, a disadvantage of many ES approaches

is that they fail to encourage voluntary contribution. In

addition, the vast majority of upper limb stroke patient

trials using ES employ open-loop or triggered controllers

[12,17], which can lead to imprecise control of movement.

In the few cases that closed-loop control has been

employed, a simplistic structure and lack of a model

means accurate performance is still rarely achieved [18].

Employed mainly with spinal cord injury patients, one of

the few advanced control methodologies used comprises

artificial neural networks [19,20]. However such model-

free approaches have limited ability to adapt to changing

physiological conditions, must be re-trained for use with

different movements, and being of a “black-box” structure,

do not permit stability and performance analysis.

The study reported in this paper investigates the feasi-

bility and effectiveness of a novel 3D rehabilitation plat-

form which combines robotic support, ES and VR. The

system allows patients to receive the benefits of muscle-

specific targeted ES within a tightly controlled, safe and

motivating environment. In this platform, ES is mediated

by iterative learning control (ILC), a technology trans-

ferred from industrial robotics which is applicable to

systems which repeatedly perform a finite duration

tracking operation [21]. After each repetition, ILC uses

data gathered on previous executions of the task, often

in combination with a model of the underlying system,

to update the ES signal that will be applied on the subse-

quent trial. Hence ILC learns from previous experience

the stimulation which maximises performance, and can

effectively respond to changes in the model. ILC calcu-

lates the required control action in an optimal setting,

allowing strict regulation of the amount of ES, its trial-

to-trial variation, and the resulting movement error.

Through use of appropriate weighting parameters a pre-

cise balance can be placed between encouraging volun-

tary effort and ensuring accurate movement [22,23].

ILC is one of very few model-based upper limb ES con-

trol methodologies that has previously been used in a

clinical study [24-26]. During this study, stroke partici-

pants attended 18 intervention sessions of 1 hour duration

in which they practiced planar reaching tasks, tracking a

moving spot of light. These movements were assisted by

ILC mediated ES applied to the triceps of the impaired

arm. Unassisted tracking performance (i.e., movements

without the aid of ES) improved over the course of the

intervention and changes in muscle activation patterns to-

wards those of unimpaired participants were also observed

[24,25]. Whilst establishing the feasibility of advanced

upper limb ES control approaches in the clinical domain,

this planar system did not assist shoulder movement and

by providing full mechanical support to the forearm,

allowed very limited shoulder elevation.

To address these limitations and increase the potential

of this novel approach to stroke rehabilitation, a new sys-

tem has been developed to assist participants in perform-

ing more functional, 3D reaching tasks with ES applied to

triceps and anterior deltoid muscles [22,23]. Termed SAIL:

Stimulation Assistance through Iterative Learning, this

system comprises a commercial robotic arm support inter-

faced with custom-designed ES hardware and real-time ES

control environment, together with a custom-made VR

task display system (see Figure 1).

The commercial exoskeleton robot is a purely passive

‘un-weighing’ system which supports the patient’s arm

against gravity via two springs incorporated into the

mechanism. Each of its joints contains a resolver which

records its angular position and this information is used

by both the ES control system, and the VR task display.

Figure 1 SAIL system components: 1) Hocoma ArmeoSpringW

support, 2) surface electrodes on triceps brachii and anterior deltoid

muscles, 3) realtime processor and interface module, 4) monitor

displaying VR task, and 5) monitor displaying therapist user interface.

6) shows an example of a reaching task displayed to a stroke

participant with left hemipshere damage. An image of their own

arm is shown and they are encouraged to follow a sphere which

moves along a reference path (the trajectory); in this case from

bottom right to top left.
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Whilst building on previous work, the ES controller

incorporates substantial developments in terms of bio-

mechanical modelling, identification, and control com-

plexity compared with the planar system previously

reported. In particular, a five degree-of-freedom bio-

mechanical model of the combined human and robotic

arm system was developed, along with identification pro-

cedures using kinetic, kinematic and ES input data

which are suitable for patients [23,27]. Then parallel

feedback and feedforward controllers were derived using

techniques from nonlinear optimisation to achieve

robust tracking whilst maintaining strict trial-to-trial

bounds on the change in input, and the patients’ arm

dynamics occurring along each trial [22,23,28,29]. More-

over, the muscle structures used in the model, identifica-

tion procedure and controller have been specifically

developed for application to stroke patients [27].

Preliminary tests to assess whether the ILC algorithms

were accurately mediating the ES took place with unim-

paired participants. Results confirmed that SAIL was ef-

fective in moving the arm to produce precise reaching

movements, and that tracking performance improved

over a series of trials see [22,28,29]. The aim of the study

reported in this article was to assess the technological

feasibility and rehabilitation effectiveness of the SAIL

system with chronic stroke participants.

Method
Design

All participants attended 18 sessions at the University of

Southampton, Faculty of Health Sciences. Data collec-

tion was carried out by an experienced researcher. Parti-

cipants also attended three clinical assessment sessions

that were carried out by independent assessors (a

physiotherapist and psychologist); the Action Research

Arm Test (ARAT; [30]) and Fugl-Meyer Assessment (F-

M; [31]) and the cancellation subtests of the Behavioural

Inattention Test ([32]; see [33]). All assessments were

conducted according to standard protocol.

Participants

A convenience sample of stroke participants was recruited

from a volunteer list held by the Faculty of Health

Sciences and from local stroke groups. Inclusion cri-

teria were: i) aged 30–75 years; ii) ES produced move-

ment without undue discomfort; iii) could comply with

study protocol; iv) could communicate effectively; v)

gave informed consent; vi) stroke causing hemiplegia for at

least 6 months and vii) impaired upper limb that included

an inability to effectively extend the elbow in reaching. Ex-

clusion criteria were: i) any active device implant; ii) any

metal implant in upper limb; iii) uncontrolled epilepsy; iv)

pregnancy; v) any serious or unstable medical or psycho-

logical condition or cognitive impairment; vi) interpreter

required; vii) participation in another upper limb physical

rehabilitation study. Participants were recruited over two

months from October to December 2010.

Procedure

Preliminary session

Following University of Southampton, Faculty of Health

Sciences ethical approval (FoHS ETHICS-2010-30) eight

participants volunteered for the study. All participants

gave written informed consent. A total of five partici-

pants were recruited to the study (the other three parti-

cipants did not respond to the ES: inclusion criterion ii).

Clinical outcome assessments

Prior to the intervention sessions, two assessments (set

four weeks apart) were completed to establish baseline

performance for three clinical outcome measures. Fol-

lowing the intervention sessions, a final assessment was

conducted one or two days later.

Assessments of the upper limb consisted of the F-M

and ARAT outcome measures, assessing impairment

and function respectively. These are valid and reliable

for use with stroke participants [30-32,34,35].

Intervention sessions

During the intervention sessions, participants practiced

reaching movements, moving their impaired arm to

track a slowly moving ball along a specified trajectory

displayed on a computer screen. As illustrated in Fig-

ure 2, there were 18 possible trajectories; each could be

in one of three orientations relating to space in front

and to the hemiplegic side (centre, off-centre and far),

one of three lengths (proximal, middle, and distal) and

one of two speeds (5 second and 10 second duration).

To assist training of elbow extension and shoulder

flexion and abduction, the impaired arm was supported

by a robotic arm and ES was applied to the triceps and

anterior deltoid. Between each trial, the ILC scheme

modified the ES signal applied to each muscle, using

data recorded over previous attempts together with the

full dynamic model, in order to precisely assist tracking

during the next attempt (see “Model Parameters” for a

more detailed description of ILC). At the same time, the

ILC scheme strictly controlled the level of ES assistance

to encourage maximum voluntary contribution from the

participant (see [22,23], for full details).

Set up

Equipment and workspace

At the beginning of each session, the researcher identi-

fied each muscle and placed electrodes over the muscle

body. The arm was then supported by the researcher, ES

was applied to the muscle and the movement observed.

The electrodes were adjusted as necessary until the best
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movement with the minimal ES was achieved. Partici-

pants were then seated at the workstation in front of

two computer screens: one screen was viewed by the

participant and the other by the researcher. The partici-

pant’s screen (which was located on the hemiplegic side)

showed a VR environment displaying the trajectory to be

tracked and a representation of the participant’s arm

(that mirrored the participant’s movements in real-time;

see Figure 1). This provided the participant with imme-

diate visual feedback and facilitated motivation for the

tracking task. The second screen displayed a custom

graphical user interface which was used by the re-

searcher to select the tasks and adjust the parameters

used. The participant’s hemiplegic arm was loosely

strapped into the support mechanism, which was

adjusted so that the participant’s arm was fully sup-

ported off the knee (see Figure 1).

The frequency of stimulation was fixed at 40 Hz in all

tests, with a pulsewidth controlled in real-time by the

ILC algorithms. To identify ES amplitudes for both mus-

cles, the pulsewidth was set at a maximum value and the

participants gradually increased the ES amplitude ap-

plied to each muscle until they reached a comfortable

level that produced movement. Note that although the

participants controlled the ES amplitude, this was moni-

tored by the researcher. The pulsewidth was then

reduced to zero, and the stimulation amplitudes were

then fixed for the remainder of the session to ensure

participant comfort and safety. A workspace in which

participants could extend to their full range of move-

ment with assistance from ES was also established, by

calculating the spatial coordinates from the highest point

in ipsilateral space that the participant could reach when

ES was applied to both muscle groups, the lowest point

closest to the participant’s contralateral thigh, and a

front point relating to elbow extension directly in front

of the participant. In this way, the workspace related dir-

ectly to the amount of movement produced by the ES.

Model parameters

Parameters required for the dynamic model of the com-

bined arm and support used by the ILC were also estab-

lished (see [22] for full details). This involved firstly

locating the axis about which the anterior deltoid pro-

duces movement, which was achieved by stimulating the

muscle and then fitting a plane to the resulting movement

of the elbow in 3D space using least squares optimisation

[22] (Figure 2 shows an example of this axis, which is nor-

mal to the fitted plane). Using the measured lengths of the

participant’s upper arm and forearm, the kinematic rela-

tionship between the arm’s position in Cartesian space

and the vector of joint angles, Φ(t), could then be calcu-

lated, as well as the system Jacobian matrix, J(Φ)).

Next a 6 axis sensor was attached to the extreme link of

the robotic support and ES was applied to each muscle in

turn. The resulting force, h(t), recorded by the sensor was

then related to the torque vector developed by the mus-

cles, τ(t), via the Jacobian matrix (see Figure 3). A model

of the dynamic relationship, τ(u(t), Φ(t),) _Φ (t)), linking a

vector containing the stimulation pulsewidth (in microse-

conds, μs) applied to each muscle, u(t) and the resulting

torque generated, τ(t), was then identified using algo-

rithms described in [27]. The remaining parameters in the

Figure 2 Example of arm location, joint axes, and different trajectories. Tracking task duration was 5 or 10 seconds.
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dynamic model comprise the inertial matrix β(Φ(t)),

Coriolis matrix, CðΦðtÞ; _ΦðtÞÞ together with the non-

conservative torque matrix FðΦðtÞ; _ΦðtÞÞ which accounts

for joint stiffness, spasticity, gravity and the unweighing

action of the robot. These terms can all be identified by

applying ES to the muscles while moving the arm using

the sensor, and using an optimisation procedure on the

resulting signals, hðtÞ and uðtÞ (see [22] for full details).

Due to time constraints, generic model parameters for,

Bð�Þ, Cð�Þ and Fð�Þ were used for each participant.

The resulting model shown in Figure 3 is significantly

more complex than the previous planar case due to kine-

matic redundancy, additional degrees of freedom, multi-

variable inputs/outputs, and under/over-actuation. To

tackle this control problem has necessitated significant ex-

tension in the ILC algorithms employed compared with

the planar case [22,23]. First the vector of ideal joint move-

ment is specified and denoted by Φ�ðtÞ. On the kth repeti-

tion of the task, the vector of joint angle errors is then

denoted ekðtÞ ¼ Φ
�ðtÞ �ΦkðtÞ . In choosing the stimula-

tion to supply on trial k+ 1, the action of ILC is then to

minimise a quadratic objective function of the form

where ts is the sampling time and td is the duration of each

trial. Through selection of weighting matrices Q and R, this

objective function allows the designer to specify the relative

importance of error reduction, or on the amount of ES ap-

plied to assist the patient’s movement. The optimal solu-

tion directly yields parameters appearing in the feedback

controller, together with the feedforward signal, vkþ1ðtÞ ,
applied on the subsequent trial. Full details of the ILC algo-

rithms used, together with full details of the model can be

found in [22,23,28], and [29].

Unassisted tracking tasks

Participants completed four unassisted tracking tasks

immediately following set up, and at the end of each

session. These tasks involved tracking a slowly moving

sphere along the far distal, far middle, off-centre mid-

dle, and centre distal trajectories at 10 seconds dur-

ation, (see Figure 2). Participants attempted each

unassisted tracking trajectory once (i.e., each task con-

sisted of one trial). Participants received no ES. For

each task, there was a five-second countdown prior to

the commencement of each trial (presented both visu-

ally and verbally).

To provide a measure of tracking performance which

could be compared across different tasks, the norm of

the tracking error for each joint was calculated (if ei;kðtÞ

denotes the i th element of the vector ekðtÞ at time ‘ t ’,

then the norm of the tracking error for the i^th joint is

given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

t¼0;ts;2ts⋯tdei;kðtÞ
2

q

). This norm is then

divided by the norm of the reference trajectory for that

joint, calculated in a similar manner. The result was sub-

tracted from 1 so that a ‘performance’ of 1 corresponded

to perfect tracking, and a negative value indicated move-

ment away from the desired trajectory.

Assisted tracking tasks

Assisted tracking tasks were selected according to clinical

need. As such, some trajectories may have been used more

than once or not at all. During each task, ES was applied

to the muscles to assist the participant’s tracking. For three

of the participants, the triceps and anterior deltoid were

trained simultaneously (participants 1, 3, and 5). However,

for two participants (2 and 4), an adverse response was

observed when both muscles were stimulated (i.e., a flexor

synergy was observed, probably related to spasticity). In

these cases, ES was mainly applied to one muscle at time

(e.g., stimulation of triceps and then anterior deltoid). Par-

ticipants were instructed to move their arm so that their

hand kept pace with the sphere. To indicate good per-

formance, the sphere changed colour depending on error:

green indicated tracking error of less than 5 cm and red

indicated tracking error that was greater than 5 cm.

J ukþ1ðtÞð Þ ¼
X

t¼0;tS ;2tS⋯td ekþ1ðtÞ
T
Rekþ1ðtÞ þ ukþ1ðtÞ � ukðtÞð ÞTQ ukþ1ðtÞ � ukðtÞð Þ

n o

ð1Þ

Figure 3 Iterative learning control scheme used for ES showing model of the combined human arm and mechanical support used in

the controllers. The subscript ‘k’ denotes the iteration number, ΦðtÞ is the vector of human arm joint angles, Φ�ðtÞ is the vector of joint angles

that the arm is required to follow, u(t) is the vector of stimulation pulsewidths applied to each muscle, and v(t) is the signal calculated by ILC to

enforce tracking of Φ�ðtÞ by ΦðtÞ (ILC also adjusts parameters in the feedback controller). The remaining parameters are described in the text,

with full details given in [22]. Note that patient’s voluntary effort can be included as an external disturbance [36].
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In each task, participants completed 6 trials tracking

the same trajectory. A 15 second rest period between

iterations was designed to reduce fatigue, and was

extended if necessary. During this period a graphic was

presented illustrating tracking performance for the trial

just completed. The ILC calculated the optimal stimula-

tion signals for application in the next iteration by mini-

mising the objective function (1) using knowledge of the

biomechanical model in combination with data from

previous attempts. Participants started each movement

from the same initial position, which was determined at

the start of the first trial. Participants completed be-

tween 4–6 tasks in each session depending on fatigue.

For each trial tracking performance was measured (as

above) and the percentage of maximum ES applied was

calculated by dividing the norm of the ES by the norm

of the maximum stimulation that could be applied.

Examples of these signals are shown in Figure 4, which

also illustrates ILC correcting the applied ES to bring

about accurate tracking.

Statistical analysis
The data from the two pre-intervention assessment ses-

sions were tested for differences using a t-test and then

averaged for baseline performance. A one-tailed, paired

t-test, with a significance level of p< .05, was used to

compare baseline and post-intervention F-M and ARAT

outcome measures. An improvement of 10% of the total

number of points available for these measures was con-

sidered a clinically relevant improvement [34]. The max-

imum score for the F-M (motor component) was 66 and

the maximum score for the ARAT was 57. In line with

previous work [24,37], changes in assisted and unassisted

performance were analysed by calculating best-fit linear

regression slopes of performance against session number

for each participant, and applying one-sample t-tests.

Significance was associated with a value of p< .05. Clin-

ical assessment data (means and standard deviations)

and regression analyses (mean slopes and p-values) are

given in Tables. Tracking performance is presented

graphically.

Results
Participants

The five participants (three men and two women) were

aged between 33 and 67 years (M=52.6, SD=15.27). Par-

ticipants had suffered ischemic strokes, between 6 years

6 months and 11 months prior to recruitment to the study

(M=3 years 10 months, SD= 2 years); four had a hemi-

paresis of the left side and one of the right. All participants

were right-side dominant prior to their stroke. All five par-

ticipants complied with the study protocol (i.e., attended

all sessions) and there was no withdrawal. During each

intervention session participants spent 40–50 minutes

practising reaching movements.

As described above, to reduce flexor synergy, stimula-

tion was mainly applied to one muscle at a time for two

participants (though note that both muscles were stimu-

lated and trained). One of these participants reported

experiencing temporary muscular aches in the hand and

wrist, which was due to excessive gripping associated

with the effort produced to move the impaired arm. An-

other participant reported experiencing minor discom-

fort around the shoulder which was associated with

using the system and lasted about 1 week before disap-

pearing. The other participants reported no adverse

Figure 4 Example of ILC correcting tracking: Elbow and shoulder tracking is shown on first and last trial (left-hand column), together

with corresponding applied ES (right-hand column). Five second padding is applied at beginning and end.
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effects apart from minor fatigue following the interven-

tion sessions.

Clinical outcome measures

The clinical scores for the F-M and ARAT at baseline

and after 18 intervention sessions are shown in Table 1.

There were no significant differences between the two

baseline assessment sessions for the F-M, t(4) =−2.08,

p= .11, or ARAT, t(4) =−1.83, p= .14. A significant im-

provement was found from baseline to post-intervention

for the F-M, t(4) =−4.54, p= .001, with all participants

showing an improvement on the motor subtest of this

assessment. This improvement was above the suggested

10% increase for clinical relevance in 3 of the 5 partici-

pants (see Table 1), although overall the 14% change was

not statistically different from 10%, t(4) = 1.32, p= .26.

No changes were found for the ARAT, t(4) =−.34,

p= .37. Thus, the SAIL system reduced motor impair-

ment of the upper arm in stroke participants but this

did not transfer to functional improvements assessed by

the ARAT.

Unassisted tracking performance

Figure 5 illustrates unassisted tracking performance for

the elbow as a function of session, for each participant

and task. Similar patterns of performance were found

for the shoulder. Best-fitting regression lines were calcu-

lated for each combination of participant, task, and

muscle (giving 40 slopes in total), and one-tailed t-tests

found that the slopes (collapsed across all participants)

were reliably positive for each of the four unassisted

tasks for both the shoulder and the elbow (see Table 2).

That is, the slopes were significantly different from 0,

showing that tracking accuracy (i.e., error between arm

position and target) improved over the course of the

intervention for both shoulder and elbow movements.

Note that the mean slopes in Table 2 correspond to per-

formance increases of between 49% and 93% over the

course of the intervention, thereby confirming signifi-

cant improvement.

Assisted tracking performance

Tracking performance measures and the percentage of

maximum stimulation applied were calculated using the

final trial in each task and were averaged across tasks in

each session. As shown in Figure 6, for both the shoulder

and the elbow, participants tracking performance became

more accurate over the 18 sessions, and the percentage

maximum stimulation decreased. Best-fitting regression

lines were calculated for each participant and muscle, and

one-tailed, one-sample t-tests found that the slopes col-

lapsed across all participants were statistically significant for

each muscle (see Table 2). This suggests that the amount of

movement produced by the ES, for both the triceps and an-

terior deltoid, increased over the intervention. To further

qualify this, we divided tracking performance from the final

trial in each task by the corresponding percentage max-

imum stimulation, and averaged across tasks in each ses-

sion. The slopes of the best-fitting regression lines were

found to be significantly positive (see Table 2), confirming

that over the intervention a greater amount of performance

is elicited per unit of ES applied. Note that the small mean

slope values in Table 2 are due to the difference in scale of

the units used to measure ES and performance.

Discussion
The main aims of the study were to investigate the feasi-

bility and effectiveness of SAIL, a novel 3D stroke re-

habilitation platform for the upper limb that combines

ES mediated by ILC, robot and VR technology. This sys-

tem uses the most advanced model-based ES controllers

that have been employed clinically in upper arm stroke

rehabilitation, and comprises a substantial development

upon previous use of ILC in this area. The effectiveness

of ES is suggested to be most beneficial when combined

with a person’s own voluntary intention to move [12].

The ILC component of SAIL was employed to optimise

the potential benefit of this. Three key findings con-

firmed SAIL feasibility and effectiveness from baseline to

post-intervention: a clinically significant improvement in

the F-M; an improvement in unassisted tracking

Table 1 Assessment scores for the ARAT and F-M at baseline and post-intervention sessions

ARAT (57 a) F-M (Motor; 66b)

P. Idc Baseline (pre-1, pre-2) averaged Post Baseline (pre-1, pre-2) average d Post Change

01 (0, 0) 0 1 (7, 12) 9.5 20 16%

02 (4, 10) 7 10 (19, 19) 19 33 21%

03 (9, 9) 9 10 (28, 34) 31 44 20%

04 (3, 5) 4 0 (15, 17) 16 21 8%

05 (11, 13) 12 13 (42, 42) 42 46 6%

Mean(SD) 6.4 (4.62) 6.8 (5.89) 23.5 (12.95) 32.8 (12.28) 14%

Note: a maximum score for hemiplegic side; b maximum score for motor component of the assessment; c P.Id. = participant identity number; dBaseline = pre-1 and

pre-2, refer to the scores from the two pre-intervention assessments. The number outside the parentheses = average score collapsed over the two pre-intervention

assessments.
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performance; and a reduction in the amount of ES

required for accurate assisted tracking.

Tracking performance in the assisted tasks was more

accurate than tracking in the unassisted tasks. In

addition, we found a reduction in the amount of ES ap-

plied to the muscles, and an increase in the accuracy of

assisted tracking. This demonstrates that ILC mediated

ES can assist participants in making precise reaching

movements, and confirms the feasibility of SAIL with

chronic stroke participants. Further tests are now

required to determine the relative contribution of

muscle strength and voluntary control to improved

tracking performance to explain the reduction in ES.

The results showed improvements in unassisted track-

ing performance over the course of the intervention and

improvements in F-M scores. These performance mea-

sures indicated that training the triceps and anterior del-

toid (though not always at the same time for two

Figure 5 Unassisted tracking performance for the elbow as a function of session, for each participant and unassisted task. Panel a)

shows tracking performance for the centre-distal task; Panel b) shows tracking performance for the off-centre-middle task; Panel c) shows

tracking performance for the far middle task; Panel d) shows tracking performance for the far distal task. 1= perfect tracking performance. Best-

fitting regression slopes were calculated for each combination of participant, muscle and task, with mean slopes (across participants) shown

Table 2 Mean slope (and p-value) of the best fit

regression lines (collapsed across participants) for

performance measures in the unassisted and assisted

SAIL tracking tasks

Elbow Shoulder

Slope p-value Slope p-value

Unassisted Performance measures

Centre distal trajectory 0.053 .01 0.055 .05

Off-centre middle trajectory 0.039 .03 0.034 .02

Far middle trajectory 0.031 .03 0.029 .01

Far distal trajectory 0.032 .03 0.032 .007

Assisted Performance measures

Assisted tracking performance .010 .03 .012 .01

Max. % of ES applied −1.306 .02 −1.370 .02

Performance/ES .0008 .03 .0013 .03

Note: small slope values are due to differences in axes units. See Figures 5 and

6 for a graphical representation of slopes.
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participants) using SAIL improved movement of the upper

limb in five stroke participants. However, the observed

motor improvement did not transfer to functional

improvements, as measured by the ARAT. This is consist-

ent with previous work, with a number of systematic

reviews reporting that robotic therapy reduces motor im-

pairment but does not improve functional impairment

[8,13,14,16]. The ability to use the hand is an integral

component of the ARAT and other functional outcome

measures. As the SAIL system only trained the triceps and

anterior deltoid this may explain why no change was

found on this outcome measure. This finding implies that

to observe changes in functional outcome measures, fu-

ture work should extend the application of this interven-

tion to the hand and wrist. As the movement complexity

increases, there is more emphasis on model-based

approaches to provide optimal performance which maxi-

mises effectiveness of therapy, and work by the authors is

underway to address these issues.

Current findings were also in line with those of the pre-

vious study, in which ILC mediated ES was used to assist

stroke participants in planar reaching movements [24].

Specifically, Hughes et al. [24] found an increase in track-

ing performance, a reduction in applied ES, and a mar-

ginal improvement in F-M scores (although

improvements were less than 10%). The observed

improvements in the F-M scores were greater in the

current compared to the previous study (mean difference

of 9.3 vs. 2.5; see [24]). Furthermore, the observed F-M

improvement was greater than 10% (although not signifi-

cantly so), indicating a trend towards clinical relevance

[34]. One possible reason for the difference in results is

that the current SAIL intervention trained two muscles in

3D space, whereas the previous intervention trained only

triceps in 2D space. Alternatively, participants in the

current study had higher initial F-M scores than those

reported by Hughes et al. [24] and this may have contribu-

ted to the differences found.

Figure 6 Panel a) and b) show tracking performance in the assisted tasks over sessions for the elbow and the shoulder respectively;

Panel c) and d) show the percentage maximum stimulation applied to the triceps and anterior deltoid respectively, over sessions. Best-

fitting regression slopes were calculated for each combination of participant and muscle, with mean slopes (across participants) shown.
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As with any study, there were limitations. For example,

due to the 3D element to the task and the complexity of

shoulder movements, there was more variability in partici-

pants’ movement. This made it difficult to get consistent

responses in each of the intervention sessions, especially

for the shoulder. In addition, the sample size was small

and there was no control condition. Therefore, caution

must be taken when generalising the results, as possible

confounding effects such as age or spasticity were not

considered and it is difficult to determine whether the

effects found were due to the unique ILC component, or

were simply due to practice. In addition, although signifi-

cantly different from 0, the mean values for Performance/

ES shown in Table 2 are small. This is mainly due to the

difference in axes units used, but the small sample size

means that caution should be taken regarding clinical sig-

nificance. It is important to note, however, that the focus

of this study was to demonstrate feasibility of this tech-

nique, and our main findings do confirm the concept of

minimising support from ES using ILC algorithms. To

verify and extend these results, future work should test

the intervention in a larger scale project, including more

participants and a control condition in which ES is used

without ILC.

Conclusions
In summary, this feasibility study has demonstrated the po-

tential impact for the technology used in SAIL. The tech-

nology provides rehabilitation that is tailored to an

individual’s need and can be easily transferred between dif-

ferent rehabilitation platforms, which could be used to in-

crease the intensity of practice and stimulate muscles in

the whole arm. In this way, with further development to a

portable device, SAIL may be viable for use in home set-

tings. The technology employed by SAIL was designed to

help stroke patients train their upper limb muscles during

reaching tasks, to improve motor control. The results from

this study demonstrate the feasibility of using ILC to medi-

ate ES to assist precise upper limb movements. Three key

findings confirmed this: There were significant improve-

ments in F-M scores and tracking performance, and a re-

duction in the amount of ES required for accurate assisted

tracking. In conclusion, SAIL can assist upper limb move-

ment training in chronic stroke participants, minimizing

ES support whilst maintaining accurate movements. The

positive results indicate that the application of SAIL tech-

nology may be clinically relevant for chronic stroke re-

habilitation and are promising with respect to reducing

upper limb impairment.
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