Functional Encryption for Regular Languages

Brent Waters
the university of
$\frac{T E \times A S}{\text { AT AUSTIN*}}$

Public Key Encryption [DH76,M78,RSA78,GM84]

Avoid Prior Secret Exchange

Functional Encryption [swo5.]

Functionality: $f(\phi, \phi)$

Key: y $2\{0,1\}^{*}$
$C T: \times 2\{0,1\}^{*}$
Public Params Security: "Can only learn $f(x, y)$ " पण्ण

"Key Policy" ABE [gpswob]

Key: $y=\phi \longleftarrow$ Boolean Formula (or circuit)
CT: $\quad x=\left(m, \vec{X} \in\{0,1\}^{n}\right) \longleftarrow$ Variables
$f(x=(m, \vec{X}), y) \rightarrow m, \vec{X}$ if $\phi(\vec{X})=$ true

Functionality: Evaluate formula, if true give message

Limitations

Key is a single formula/circuit

Operates over fixed sized input

Fixed Size:

Image

Arbitrary Length:

Video

Goal: Functional Enc. for arbitrary length inputs

Regular Languages

Language is regular iff
strings accepted some Deterministic Finite Automata (DFA)

Applications
Search <[^>]*>

Firewall Rules
$(? \mathrm{i})^{\wedge}([\wedge . /]+\backslash .)^{*}($ grooveshark $\backslash . c o m \mid g s-c d n \backslash . n e t)(?![\wedge /])$

Determinstic Finite Automata (DFA)

$M=\left(Q, \Sigma, \delta, q_{0}, F\right)$

Q	Set of states	$q_{0} \in Q$	Start state
Σ	Alphabet	$F \in Q$	Accept states
$\delta: Q \times \Sigma \rightarrow Q$	Transition		

Note: Some Regular Expressions not efficiently expressible as DFAs.

A Simple Example

Language $=$ "Begins with 1 and has even parity"

DFA-Based F.E. System

Key: $M=\left(Q, \Sigma, \delta, q_{0}, F\right) \longleftarrow$ DFA
CT: $\quad x=\left(m, w \in \Sigma^{*}\right) \quad$ Arbitrary length string
$f(x=(m, \vec{X}), M) \rightarrow m, w$ if $\operatorname{Accept}(M, w)$
"Public Index" $\quad w$ if $\operatorname{Reject}(M, w)$

Functionality: Evaluate DFA M on w, if accepts give message

System Overview

Setting: Bilinear group G of order p
Key: $|Q|$ states, $D_{0}, \ldots, D_{|Q|-1} \stackrel{R}{\leftarrow} G$
CT: w: ℓ-symbol string, $s_{0}, \ldots, s_{\ell} \stackrel{R}{\leftarrow} \mathbb{Z}_{p}$
Decrypt: $e\left(g, D_{x}\right)^{s_{j}} \longleftarrow$ At state \times after j symbols
Three Mechanisms
Initialization: Compute $e\left(g, D_{0}\right)^{s_{0}}$
Transition: $e\left(g, D_{x}\right)^{s_{j}} \rightarrow e\left(g, D_{y}\right)^{s_{j+1}}$ if $\delta\left(x, w_{j}\right)=y$
Completion: Recover message using $e\left(g, D_{x}\right)^{s_{\ell}}$ if $q_{x} \in F$

Setup

Input: Σ

1) Choose Bilinear group G of order p
2) $\alpha \stackrel{R}{\leftarrow} \mathbb{Z}_{p} \quad g, z, h_{\text {start }}, h_{\text {end }}, \forall_{\sigma \in \Sigma} h_{\sigma} \stackrel{R}{\leftarrow} G$

Public Parameters: $e(g, g)^{\alpha}, g, z, h_{\text {start }}, h_{\mathrm{end}}, \forall_{\sigma \in \Sigma} h_{\sigma}$
Master Secret: g^{α}

Encryption

Input: Message $m, w: \ell$-symbol string

$$
\begin{aligned}
& s_{0}, \ldots, s \ell \stackrel{R}{R}_{\leftarrow}^{\mathbb{Z}_{p}} \\
& \text { For } i=1 \text { to } \ell \quad C_{i, 1}=g^{s_{i}}, \quad C_{i, 2}=\left(h_{w_{i}}{ }_{\text {"Linking" }}^{s_{i} z^{z_{i-1}}}\right.
\end{aligned}
$$

Note: Only showing components for transition mechanism!

Key Generation

Input: $\quad M=\left(Q, \delta, q_{0}, F\right)$
Define $(x, y, \sigma) \in \mathcal{T}$ if $\delta(x, \sigma)=y$
$D_{0}, \ldots, D_{|Q|-1} \stackrel{R}{\leftarrow} G \quad \forall t \in \mathcal{T} r_{t} \stackrel{R}{\leftarrow} \mathbb{Z}_{p}$
$\forall t=(x, y, \sigma) \in \mathcal{T}$
$K_{t, 1}=D_{x}^{-1} z^{r_{t}}, K_{t, 2}=g^{r_{t}}, K_{t, 3}=D_{y}\left(h_{\sigma}\right)^{r_{t}}$

Note: Only showing components for transition mechanism!

Transition Mechanism (of decryption)

Suppose $t=(x, y, \sigma) \in \mathcal{T}$ and $w_{i}=\sigma$
Compute:

$$
\begin{aligned}
& e\left(C_{i-1,1}, K_{t, 1}\right) e\left(C_{i, 2}, K_{t, 2}\right)^{-1} e\left(C_{i, 1}, K_{t, 3}\right) \\
& =e\left(g^{s_{i-1}}, D_{x}^{-1} z^{r_{t}}\right) e\left(\left(h_{w_{i}}\right)^{s_{i}} z^{s_{i-1}}, g^{r_{t}}\right)^{-1} e\left(g^{s_{i}}, D_{y}\left(h_{\sigma}\right)^{r_{t}}\right) \\
& =e\left(g, D_{y}\right)^{s_{i}} e\left(g, D_{x}\right)^{s_{i-1}}
\end{aligned}
$$

Transition: $e\left(g, D_{x}\right)^{s_{i-1}}$ to $e\left(g, D_{y}\right)^{s_{i}}$

Summary \& Three Problems

Functional Enc. for arbitrary length inputs: Achieved DFAs
Problems
(1) Support Non-deterministic Finite Automata (NFA)
(2) Climb the Chomsky Hierarchy

(3) Move past public index model

Thank you

