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Abstract. In this work, we construct an adaptively secure functional
encryption for Turing machines scheme, based on indistinguishability
obfuscation for circuits. Our work places no restrictions on the types of
Turing machines that can be associated with each secret key, in the sense
that the Turing machines can accept inputs of unbounded length, and
there is no limit to the description size or the space complexity of the
Turing machines.

Prior to our work, only special cases of this result were known,
or stronger assumptions were required. More specifically, previous work
(implicitly) achieved selectively secure FE for Turing machines with a-
priori bounded input based on indistinguishability obfuscation (STOC
2015), or achieved FE for general Turing machines only based on
knowledge-type assumptions such as public-coin differing-inputs obfus-
cation (TCC 2015).

A consequence of our result is the first constructions of succinct adap-
tively secure garbling schemes (even for circuits) in the standard model.
Prior succinct garbling schemes (even for circuits) were only known to
be adaptively secure in the random oracle model.

1 Introduction

Contemporary cloud-based computing systems demand encryption schemes
that go far beyond the traditional goal of merely securing a communication
channel. The notion of functional encryption, first conceived under the name
of Attribute-Based Encryption in [SW05] and formalized later in the works
of [BSW11,O’N10], has emerged as a powerful form of encryption well-suited
to many contemporary applications (see [BSW11,BSW12] for further discussion
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of application scenarios for functional encryption). A functional encryption
(FE) scheme allows a user possessing a key associated with a function f to
recover the output f(x), given an encryption of x. The intuitive security guar-
antee of a FE scheme dictates that the only information about x revealed to
the user is f(x). Furthermore, if the user obtains keys for many functions
f1, . . . fk, then the user should only learn f1(x), . . . , fk(x) and nothing more.
It turns out that formalizing security using a simulation-based definition leads
to impossibility results [BSW11,AGVW13]; however, there are sound adap-
tive indistinguishability-based formulations [BSW11] that also imply simulation-
based security in restricted settings [CIJ+13]. Following most recent work on
FE [GGH+13,Wat15,GGHZ14,ABSV15], we will focus on achieving this strong
indistinguishability-based notion of security here.

In this work, we address the following basic question:

“Is FE possible for functions described by arbitrary Turing machines?”

Previous Work and Its Limitations. There have been many works on func-
tional encryption over the past few years but a satisfying answer to this question
has remained elusive.

The first constructions of FE considered only limited functions, such as inner
product [KSW08]. The first constructions of FE that allowed for more general
functions considered the setting where the adversary can just request a single
(or a bounded number of) key queries [SS10,GVW12], but only for functions
represented by circuits. A major advance occurred in the work of [GGH+13],
which constructed an FE scheme allowing for functions specified by arbitrary
circuits, with no bound on key queries, based on indistinguishability obfuscation
(iO) for circuits. Since this work, the assumption of iO for circuits has become
the staple assumption in this area.

However, [GGH+13] and other FE results deal with functionalities repre-
sented by circuits – and representing functions as circuits gives rise to two
major drawbacks. The first drawback is that a circuit representation takes the
worst case running time on every input. Research to deal with this issue was
initiated by Goldwasser et al. [GKP+13], and there have been several recent
works [BGL+15,CHJV15,KLW15,CCC+15], that (implicitly or explicitly) give
rise to FE schemes with input-specific runtimes based on iO for circuits.

The second drawback is that the input length of the function is a-priori
bounded. In many scenarios, especially involving large datasets, having an a-priori
bound is clearly unreasonable. For example, if functional encryption is used for
allowing a researcher to perform some data analysis on hospital records, then hav-
ing a bound on input length would require that there be an a-priori bound, at
the time of setting up the encryption scheme, on the length of encrypted hospi-
tal records, which seems quite unreasonable. In general, we would like to repre-
sent the function being computed as a Turing Machine, that can accept inputs
of arbitrary length. The problem of constructing FE schemes which can handle
messages of unbounded length has remained largely open: the recent works of
[BGL+15,CHJV15,KLW15] construct iO for Turing Machines only with bounded
input length, where the bound must be specified at the time of obfuscating
the Turing Machine. If this iO method is combined, for example, with the FE
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construction recipe of [GGH+13], then this would only yield FE for functions with
a bound on input length specified at the time of setting up the FE scheme.

There have been works [BCP14,IPS15] on overcoming the issue of a priori
bounded input lengths but these are based on strong knowledge-type assump-
tions called differing inputs obfuscation [BGI+12,BCP14,ABG+13] or more
recently public-coin differing inputs obfuscation [IPS15]. Our main contribu-
tion is developing new technical approaches that allow us to remove the need for
such assumptions, and use only iO for circuits1.

Results and Technical Overview. We prove the following informal theorem.

Theorem 1 (Informal). There exists a public-key FE scheme, assuming the

existence of indistinguishability obfuscation and one-way functions, that satisfies

the following properties:

1. There is no a priori bound on the number of functional keys issued.

2. The secret keys correspond to Turing machines.

3. It achieves adaptive security.

4. There is no a priori bound on length of the plaintext and the size of the Turing

machine.

5. The running time of encryption is independent of the Turing machine size.

The running time of the key generation is independent of the plaintext size.

A corollary of the above theorem is the first construction of succinct adaptively
secure garbling schemes for TMs (with indistinguishability-based security) in
the standard model. By succinctness, we mean that the size of the input encod-
ing is independent of the function (circuit or TM) size. Prior solutions were
either shown in the random oracle model [BHR12,AIKW15] or under restricted
settings [BGG+14].

We now give a roadmap for the overall approach and the techniques we use to
achieve our result. To gather some ideas towards achieving our goal of adaptive
FE for TMs, we first focus on the simplest possible scenario of FE for Turing
machines: adversary can make only a single ciphertext query and a function
query, and furthermore we work in the secret-key setting. We call a FE scheme
satisfying this security notion to be 1-CT 1-Key Private-key FE.

Initial Goal: Adaptive 1-CT 1-Key Private-key FE for TMs. To build
an adaptive 1-CT 1-key private-key FE for TMs scheme, we first take inspiration
from the corresponding FE for circuits constructions known in the literature to
see what tools might be helpful here. Sahai and Seyalioglu [SS10] and Gorbunov
et al. [GVW12] give constructions using the tool of randomized encodings (RE)
of computation. A randomized encoding is a representation of a function along
with an input that is simpler to compute than the function itself. Further this
representation reveals only the output of the function and nothing else. In
other words, given functions f1, f2 and inputs x1, x2 such that f1(x1) = f2(x2),

1 We stress that despite recent cryptanalytic progress, iO candidates such as
[BGK+14] remain beyond the reach of any known cryptanalytic technique.
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it should be the case that the encoding of (f1, x1) should be computationally
indistinguishable from an encoding of (f2, x2). Such randomized encodings for
TMs were recently constructed in [BGL+15,CHJV15,KLW15], based on iO for
circuits.

The essential difference between a randomized encoding and what we need
for a 1-CT 1-key FE scheme concerns two additional features that we would need
from the randomized encoding:

– First, we need the randomized encoding to be computable separately for the
function and the input. That is, given only f , it should be possible to compute
an encoding f̂ ; and given only x, it should be possible to compute an encoding
x̂; such that (f̂ , x̂) constitute a randomized encoding of (f, x). We need this
because the ciphertext will be akin to the encoding of the input, whereas the
private key will be akin to the encoding of the function. This is essentially the
notion of a decomposable randomized encoding [AIK06].

– Then, more crucially, we also need to strengthen our notion of security:
In a standard randomized encoding scheme, the adversary needs to declare
f1, f2, x1, x2 all at the beginning, and then we have the guarantee that (f̂1, x̂1)

is computationally indistinguishable to (f̂2, x̂2). However, for an FE scheme,
even with just “selective” security, the adversary is given the power to adap-
tively specify at least f1, f2 after it has seen the encodings x̂1 and x̂2. More gen-
erally, we would like to have security where the adversary can choose whether
it would like to specify f1, f2 first or x1, x2 first.

It turns out that achieving these two properties is relatively straightforward
when dealing with randomized encodings of circuits using Yao’s garbled cir-
cuits [Yao86]. It is not so straightforward for us in the context of TMs and
adaptive security, as we explain below.

To see why our situation is nontrivial and to get intuition about the obstacles
we must overcome, let us first consider a failed attempt to achieve these properties
by trying to apply the generic transformation, which was formalized in the work
of Bellare et al. [BHR12], to achieve adaptive security: in this attempt, the
new input encoding and new function encoding will now be (x̂ ⊕ R, S) and

(R, f̂ ⊕S), respectively, where R and S are random strings. The idea behind this
transformation is as follows: no matter what the adversary queries for (input or
function) in the beginning, it is just given two random strings (R, S). When the
adversary makes the other query, the simulator would know at this point both
the input and the function. Hence, it would obtain the corresponding encodings
f̂ and x̂ from the ordinary security of the randomized encoding scheme. Now,
the simulator would respond to the adversary by giving (x̂ ⊕ R, f̂ ⊕ S) thus
successfully simulating the game. The problem with this solution for us lies in
the sizes of the encodings. If we look at the strings R and S, they are as long
as the length of x̂ and f̂ respectively. This would mean that the size of the new
input encoding (resp., new function encoding) depends on the function length
(resp., input length) – which violates our main goal of achieving FE without
restrictions on input length!
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Revisiting the KLW Randomized Encoding. In order to achieve our goal,
we will need to look at the specifics of the decomposable RE for TMs construction
in [KLW15]. We then develop new ideas specific to the construction that help
us achieve adaptive security. Before we do that, we revisit the KLW randomized
encoding at a high level, sufficient for us to explain the new ideas in our work.
The encoding procedure of a Turing machine M and input x consists of the
following two main steps:

1. The storage tape of the TM is initialized with the encryption of x. It then
builds an accumulator storage tree on the ciphertext. The accumulator storage
tree resembles a Merkle hash tree with the additional property that this tree
is unconditionally sound for a select portion of the storage. The root of the
tree is then authenticated.

2. A program that computes the next step function of the Turing machine M is
then designed. This program enables computation of M one step at a time.
This program has secrets that enable decrypting encrypted tape symbols and
also to perform some checks on the input encrypted symbol. To hide the
secrets, this program is obfuscated.

The decoding just involves running the next message function repeatedly on the
computation obtained so far until the Turing Machine terminates. At this point,
the decode algorithm will output whatever the Turing Machine outputs.

First Step Towards Adaptivity: 3-Stage KLW. The main issue with trying
to use the random masking technique was that we were trying to use randomness
to mask the entire input encoding or the function encoding, which could be of
unbounded length. So our main goal will be to find a way to achieve adaptivity
where randomness need only be used to mask bounded portions of the encoding.

As a first step towards achieving this, we want to symmetrize how we treat
the input x and the function f . We do this by treating both x and f as being
inputs to a Universal Turing Machine U , where U is both of bounded size and
is entirely known a-priori, such that U(f, x) = f(x).

That is, we have three algorithms2: InpEnc outputs an encoding of input x,
FnEnc outputs an encoding of f , and UTMEnc outputs a TM encoding of UTM.

A natural approach would be to try to use the KLW scheme sketched above to
achieve the goal. The only difference is that, unlike the original KLW scheme, in
the 3-stage KLW scheme, the input encoding is split into two encodings (InpEnc

and FnEnc) and so there must be a way to stitch the input encodings into one.
We develop a mechanism, called combiner, to achieve this goal. A combiner
is an algorithm that combines two input encodings into one input encoding.
Furthermore, the combiner algorithm we develop is succinct; it only takes a
portion of the two encodings (of say, x and f) and spits out an element that
together with the encodings of x and f represent x||f . Note, however, that the
combiner algorithm needs secret information in order to perform its combining

2 The actual algorithms as presented in the technical section is slightly different. We
chose to present it this way in the introduction for intuitive clarity.
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role correctly. The key to constructing this combiner is the accumulator storage
scheme of KLW. Recall that the accumulator storage on (x||f) was essentially a
binary tree on x||f . We modify this accumulator storage such that the storage
tree on (x||f) can be built by first building a storage tree on x, then building a
separate independent storage tree on f , and then joining both these two trees
by making them children of a root node. Once we have this tool, developing our
combiner algorithm is easy: the input encoding of x consists of a storage tree on
an encryption of x, encoding of f consists of a storage tree on the encryption
of f . The combine algorithm then takes only the root nodes of both these two
trees and creates a new root node which is the parent of these two root nodes.
The combiner then signs on the root node as a means of authenticating the fact
that this new root node was created legally.

We are almost ready to now apply the random masking technique to achieve
adaptive security by masking our new succinct representations. However, there
is a problem: the combiner algorithm. In 3-stage KLW, once we have encodings
of x and f , before we can have a randomized encoding, these two encodings need
to be combined using secret information. This is not allowed in a randomized
encoding, where the decode algorithm must be public.

Getting rid of combiner: 2-ary FE for TMs (1-CT 1-Key Setting). Since
we need to eliminate the need for the combiner algorithm, we start by trying
to delegate the combine operation to the decoder. We can attempt to do so by
including an obfuscated version of the combiner program as part of the encoding
itself, where obfuscation is needed since the combiner procedure contains some
secret values that have to be hidden. By itself, however, this approach does not
work, because the adversary who now possesses the obfuscated combine program
can now illegally combine different storages (other than those corresponding to
x and f) – we term this type of attack as a mixed storage attack.

To prevent mixed storage attacks, we use splittable signatures: the challenger
can sign the root of the storage of x as well as the root of the storage of f . The
obfuscated program now only outputs the combined value if the signatures can
be verified correctly. By using splittable signatures, we can argue that the adver-
sary is prevented from mixed storage attacks relying only on indistinguishability
obfuscation for circuits.

Once we have the obfuscated combiner program, the next issue is whether the
obfuscated combiner should be included as part of InpEnc or FnEnc. Including
it in either of them will cause problems because the simulator needs to simulate
the appropriate parameters in the combiner algorithm and it can do that only
after looking at both the InpEnc and FnEnc queries. Here we can (finally!) apply
the random masking technique since the size of the combiner is independent of
the size of the input as well as the function and thus the length of the random
mask needed is small. The resulting scheme that we get is a 2-ary FE [GGG+14]
for TMs, where the adversary can only make a single message and key query –
note that it is essentially the same as 3-stage KLW scheme except that it does
not have the combiner algorithm.
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Using some additional but similar ideas, we can show that the algorithms
FnEnc and UTMEnc can be combined into one encoding. The result is a scheme
with an input encoding, function encoding and a decode algorithm with the
security guarantee that the input query and the function query can be made
adaptively, which is precisely the goal we had started off with.

Boosting Mechanism: 1-Key 1-CT (Private-Key) FE to Many-Key
(Public-Key) FE. Now that we have achieved the goal of single-ciphertext
single-key private key FE for TMs, the next direction is to explore whether there
is any way to combine this with other known tools to obtain a public-key FE with
unbounded number of function queries. We give a mechanism of combining the
1-Key 1-CT FE scheme with other FE schemes that are defined for circuits to
obtain a public-key FE scheme for Turing machines. Further, our resulting FE
scheme is such that it is adaptively secure assuming only that the 1-Key 1-CT
FE scheme is adaptively secure. The high level approach is that the ciphertexts
and the functional keys are designed such that every ciphertext-functional key pair
gives rise to a unique instantiation of single-ciphertext single-key private FE. This
is reminiscent of the approach of Waters [Wat15], later revisited by [ABSV15], in
the context of constructing adaptively secure FE for circuits.

Our boosting mechanism, however, diverges in several ways from the previous
works of [Wat15,ABSV15]. First, we note that just syntactically, our boosting
mechanism is the first such mechanism that uses only 1-Key 1-CT FE as a
building block; in contrast, for example, [ABSV15] needed many-Key 1-CT FE
as a building block.

Zooming in on the main new idea we develop for our boosting mechanism,
we find that it is used exactly to deal with the fact that unbounded inputs that
must be embedded in ciphertexts. Note that all previous FE schemes placed an a-
priori bound on the inputs to be encrypted in ciphertexts. Therefore, to build our
encryption mechanism, we cannot use previous FE encryption to encode inputs.
We also cannot directly use the 1-Key 1-CT FE, since this scheme can only sup-
port a single key and a single ciphertext. To resolve this dilemma, we note that
even though previous FE schemes could not handle inputs of unbounded length,
previous FE schemes can handle keys corresponding to arbitrary-length circuits.
Therefore, crucially in our boosting procedure, when encrypting an input x, we
actually prepare a circuit Hx that has x built into it, and then use an existing FE
scheme to prepare a key corresponding to Hx. Here we make use of the Brakerski-
Segev [BS14] transformation to guarantee that the key for Hx does not leak x.
We utilize a new layer of indirection, where this circuit Hx expects to receive
as input the master secret key of a 1-Key 1-CT FE scheme, and then uses this
master secret key to create a 1-Key 1-CT encryption of x. In this way, the final
FE scheme that we construct inherits the security of the 1-Key 1-CT encryp-
tion scheme, but a fresh and independent instance of the 1-Key 1-CT scheme is
created for each pair of (input, function) that is ever considered within our final
FE scheme.

Subsequent Work. Recently, Nimishaki, Wichs and, Zhandry [NWZ15] con-
struct a traitor tracing scheme which allows for embedding user information in
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the issued keys. One of the main tools used to construct this primitive is an
adaptively secure FE scheme. As a first step, they show how to achieve a trai-
tor tracing scheme from a private linear broadcast encryption (PLBE) scheme
defined for a large identity space. In the next step, they show how to design a
PLBE scheme from adaptive FE.

2 Preliminaries

We denote λ to be the security parameter. We say that a function μ(λ) is neg-
ligible if for any polynomial p(λ) it holds that μ(λ) < 1/p(λ) for all sufficiently
large λ ∈ N. We use the notation negl to denote a negligible function.

We assume that the reader is familiar with the notion of Turing machines,
standard cryptographic notions of pseudorandom functions and symmetric
encryption schemes. We use the convention that a Turing machine also out-
puts the time it takes to execute. As a consequence, if we have M0(x) = M1(x)
then it means that not only are the outputs same but even the running times
are the same.

2.1 Functional Encryption for Turing Machines

We now define the notion of functional encryption (FE) for Turing machines.
This notion differs from the traditional notion of FE for circuits (to be defined
later) in that the functional keys are associated to Turing machines as against
circuits. Further, the functional keys can be used to decrypt ciphertexts of mes-
sages of arbitrary length and the decryption time depends only the running time
of the Turing machine on the message.

A public-key functional encryption scheme, defined for a message space
M and a class of Turing machines F , consists of four PPT algorithms FE =
(Setup,KeyGen,Enc,Dec) described as follows.

– Setup(1λ): The setup algorithm takes as input the security parameter λ in
unary and outputs a public key-secret key pair (PK,MSK).

– KeyGen(MSK, f ∈ F): The key generation algorithm takes as input the master
secret key MSK, a Turing machine f ∈ F3, and outputs a functional key skf .

– Enc(PK, m ∈ M): The encryption algorithm takes as input the public key PK,
a message m ∈ M and outputs a ciphertext CT.

– Dec(skf ,CT): The decryption algorithm takes as input the functional key skf ,
a ciphertext CT and outputs m̂.

The FE scheme defined above, in addition to correctness and security, needs to
satisfy the efficiency property. All these properties are defined below.

Correctness. The correctness notion of a FE scheme dictates that there exists
a negligible function negl(λ) such that for all sufficiently large λ ∈ N,

3 We use the same notation to denote the function as well as the Turing machine
representing the function f .
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for every message m ∈ M, and for every Turing machine f ∈ F it
holds that Pr [f(m) ← Dec(KeyGen(MSK, f),Enc(PK, m))] ≥ 1 − negl(λ), where
(PK,MSK) ← Setup(1λ), and the probability is taken over the random choices
of all algorithms.

Efficiency. The efficiency property of a public-key FE scheme says that the algo-
rithm Setup on input 1λ should run in time polynomial in λ, KeyGen on input the
Turing machine f (along with master secret key) should run in time polynomial
in (λ, |f |), Enc on input a message m (along with the public key) should run in
time polynomial in (λ, |m|). Finally, Dec on input a functional key of f and an
encryption of m should run in time polynomial in (λ, |f |, |m|, timeTM(f, m))).

Security. The security notion we define is identical to the indistinguishability-
based security notion defined for circuits.

Definition 1. A public-key functional encryption scheme FE = (Setup, KeyGen,
Enc, Dec) over a class of Turing machines F and a message space M is adap-

tively secure if for any PPT adversary A there exists a negligible function μ(λ)
such that for all sufficiently large λ ∈ N, the advantage of A is defined to be

AdvFE
A =

∣∣∣Prob[ExptFE
A (1λ, 0) = 1] − Prob[ExptFE

A (1λ, 1) = 1]
∣∣∣ ≤ μ(λ),

where for each b ∈ {0, 1} and λ ∈ N the experiment ExptFE
A (1λ, b), modeled as a

game between the challenger and the adversary A, is defined as follows:

1. The challenger first executes Setup(1λ) to obtain (PK,MSK). It then sends

PK to the adversary.

2. Query Phase I: The adversary submits a Turing machine query f to the

challenger. The challenger sends back skf to the adversary, where skf is the

output of KeyGen(MSK, f).
3. Challenge Phase: The adversary submits a message-pair (m0, m1) to the

challenger. The challenger checks whether f(m0) = f(m1) for all Turing

machine queries f made so far. If this is not the case, the challenger aborts.

Otherwise, the challenger sends back CT = Enc(MSK, mb).
4. Query Phase II: The adversary submits a Turing machine query f to

the challenger. The challenger generates skf , where skf is the output of

KeyGen(MSK, f). It sends skf to the adversary only if f(m0) = f(m1), oth-

erwise it aborts.

5. The output of the experiment is b′, where b′ is the output of A.

We can also consider a weaker notion, termed as selective security, where the
adversary has to submit the challenge message pair at the beginning of the game
itself even before it receives the public parameters and such a FE scheme is said
to be selectively secure.

Private Key Setting. We can analogously define the notion of FE for TMs in
the private-key setting. The difference between the public-key setting and the
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private-key setting is that in the private-key setting, the encryptor needs to know
the master secret key to encrypt the messages. We provide the formal definition
of private-key FE for TMs in the full version [AS15].

2.2 (Compact) FE for Circuits

Public-Key FE. One of the building blocks in our construction of FE for TMs
is a public-key FE for circuits (i.e., the functions are represented as circuits).
We now recall its definition from [BSW11,O’N10].

A public-key functional encryption (FE) scheme PubFE, defined for a class
of functions F = {Fλ}λ∈N and message space M = {Mλ}λ∈N, is represented
by four PPT algorithms, namely (Setup, KeyGen, Enc, Dec). The input length of
any f ∈ Fλ is the same as the length of any m ∈ Mλ. The description of these
four algorithms is given below.

– Setup(1λ): It takes as input a security parameter λ in unary and outputs a
public key-secret key pair (PK,MSK).

– KeyGen(MSK, f ∈ Fλ): It takes as input a secret key MSK, a function f ∈ Fλ

and outputs a functional key skf .
– Enc(PK, m ∈ Mλ): It takes as input a public key PK, a message m ∈ Mλ and

outputs an encryption of m.
– Dec(skf ,CT): It takes as input a functional key skf , a ciphertext CT and

outputs m̂.

We require the FE scheme to satisfy the efficiency property in addition to the
traditional properties of correctness and security.

Correctness. The correctness property says that there exists a negligible function
negl(λ) such that for all sufficiently large λ ∈ N, for every message m ∈ Mλ,
and for every function f ∈ Fλ it holds that Pr[f(m) ← Dec(KeyGen(MSK, f),
Enc(PK, m))] ≥ 1 − negl(λ), where (PK,MSK) ← Setup(1λ), and the probability
is taken over the random choices of all algorithms.

Efficiency. At a high level, the efficiency property says that the setup and the
encryption algorithm is independent of the size of the circuits for which func-
tional keys are produced. More formally, the running time of the setup algorithm,
Setup(1λ) is a polynomial in just the security parameter λ and the encryption
algorithm, Enc(PK, m) is a polynomial in only the security parameter λ and
length of the message, |m|.

An FE scheme that satisfies the above efficiency property is termed as com-
pact FE. It was shown by [AJ15,BV15] that iO is implied by (sub-exponentially
hard) compact FE. However, we don’t place any sub exponential hardness
requirement on compact FE in our work.

Remark 1. We note that the definitions of FE for circuits commonly used in the
literature do not have the above efficiency property.

Security. The security definition is modeled as a game between the challenger
and the adversary as before.
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Definition 2. A public-key functional encryption scheme FE = (Setup, KeyGen,
Enc, Dec) over a function space F = {Fλ}λ∈N and a message space M =
{Mλ}λ∈N is an adaptively-secure public-key functional encryption

scheme if for any PPT adversary A there exists a negligible function μ(λ) such

that for all sufficiently large λ ∈ N, the advantage of A is defined to be

AdvFE
A =

∣∣∣Prob[ExptFE
A (1λ, 0) = 1] − Prob[ExptFE

A (1λ, 1) = 1]
∣∣∣ ≤ μ(λ),

where for each b ∈ {0, 1} and λ ∈ N the experiment ExptFE
A (1λ, b), modeled as a

game between the challenger and the adversary A, is defined as follows:

1. The challenger first executes Setup(1λ) to obtain (PK,MSK). It then sends

PK to the adversary.
2. Query Phase I: The adversary submits a function query f to the challenger.

The challenger sends back skf to the adversary, where skf is the output of

KeyGen(MSK, f).
3. Challenge Phase: The adversary submits a message-pair (m0, m1) to the

challenger. The challenger checks whether f(m0) = f(m1) for all function

queries f made so far. If this is not the case, the challenger aborts. Otherwise,

the challenger sends back CT = Enc(MSK, mb).
4. Query Phase II: The adversary submits a function query f to the

challenger. The challenger generates skf , where skf is the output of

KeyGen(MSK, f). It sends skf to the adversary only if f(m0) = f(m1), oth-

erwise it aborts.
5. The output of the experiment is b′, where b′ is the output of A.

We define the FE scheme to be selectively secure if the adversary has to declare
the challenge message pair even before it receives the public parameters.

Function-Private Private Key FE. We now give an analogous definition of
FE for circuits in the private-key setting. In particular, we focus on the private-
key FE that is function-private.

A function-private private-key functional encryption (FE) scheme PrivFE,
defined for a class of functions F = {Fλ}λ∈N and message space M = {Mλ}λ∈N,
is represented by four PPT algorithms, namely (PrivFE.Setup, PrivFE.KeyGen,
PrivFE.Enc, PrivFE.Dec). The input length of any f ∈ Fλ is the same as the
length of any m ∈ Mλ.

We give the description of the four algorithms below.

– PrivFE.Setup(1λ): It takes as input a security parameter λ in unary and out-
puts a secret key PrivFE.MSK.

– PrivFE.KeyGen(PrivFE.MSK, f ∈ Fλ): It takes as input a secret key
PrivFE.MSK, a function f ∈ Fλ and outputs a functional key PrivFE.skf .

– PrivFE.Enc(PrivFE.MSK, m ∈ Mλ): It takes as input a secret key PrivFE.MSK,
a message m ∈ Mλ and outputs an encryption of m.

– PrivFE.Dec(PrivFE.skf ,CT): It takes as input a functional key PrivFE.skf , a
ciphertext CT and outputs m̂.

We require the above function-private private key FE scheme to satisfy the cor-
rectness, efficiency and the function privacy properties of the above FE scheme.
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Correctness. The correctness notion of a function-private private-key FE scheme
dictates that there exists a negligible function negl(λ) such that for all suf-
ficiently large λ ∈ N, for every message m ∈ Mλ, and for every func-
tion f ∈ Fλ it holds that Pr[f(m) ← PrivFE.Dec(PrivFE.KeyGen(PrivFE.MSK,
f),PrivFE.Enc(PrivFE.MSK, m))] ≥ 1 − negl(λ), where PrivFE.MSK ←
PrivFE.Setup(1λ), and the probability is taken over the random choices of all
algorithms.

Efficiency. At a high level, the efficiency property says that the setup algo-
rithm and the encryption algorithm is independent of the size of the cir-
cuits for which functional keys are produced. More formally, the running time
of PrivFE.Setup(1λ) is just a polynomial in the security parameter λ, and
PrivFE.Enc(PrivFE.MSK, m) is a polynomial in only the security parameter λ
and length of the message, |m|.

Function Privacy. We now recall the definition of function privacy in private key
FE as defined by Brakerski, and Segev [BS14]. Note that the function privacy
property below subsumes the usual notion of security (when only one function
is submitted).

Definition 3. A private-key functional encryption scheme PrivFE =
(PrivFE.Setup, PrivFE.KeyGen, PrivFE.Enc, PrivFE.Dec) over a function space F =
{Fλ}λ∈N and amessage spaceM = {Mλ}λ∈N is a function-privateadaptively-

secure private-key FE scheme if for any PPT adversary A there exists a negli-

gible function μ(λ) such that for all sufficiently large λ ∈ N, the advantage of A is

defined to be

AdvPrivFE
A =

∣∣∣Prob[ExptPrivFE
A (1λ, 0) = 1] − Prob[ExptPrivFE

A (1λ, 1) = 1]
∣∣∣ ≤ μ(λ),

where for each b ∈ {0, 1} and λ ∈ N the experiment ExptPrivFE
A (1λ, b), modeled as

a game between the challenger and the adversary A, is defined as follows:

1. The challenger first executes PrivFE.MSK ← PrivFE.Setup(1λ). The adver-

sary then makes the following message queries and function queries in no

particular order.
– Message queries: The adversary submits a message-pair (m0, m1)

to the challenger. In return, the challenger sends back CT =
PrivFE.Enc(PrivFE.MSK, mb).

– Function queries: The adversary then makes functional key queries. For

every function-pair query (f0, f1), the challenger sends PrivFE.skfb
to the

adversary, where PrivFE.skfb
is the output of PrivFE.KeyGen(PrivFE.MSK,

fb) only if f0(m0) = f1(m1), for all message-pair queries (m0, m1). Other-

wise, it aborts.
2. The output of the experiment is b′, where b′ is the output of A.

We define a function-private private key FE to be selectively secure if the adver-
sary has to declare all the challenge message pairs at the beginning of the security
game.
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Remark 2. We note that we can define a private-key FE scheme without the
function privacy property, analogous to the public-key FE.

Single-Key Setting. A single-key function-private functional encryption scheme
(in the private-key setting) is a functional encryption scheme, where the adver-
sary in the security game (either selective or adaptive) is allowed to query for only
one function. There are several known constructions [SS10,GVW12,GKP+12]
but none of them satisfy the efficiency property of our FE definition – in par-
ticular, the size of the ciphertexts in these constructions grow with the circuit
size (for which functional keys are computed). We later describe how to obtain
a single-key scheme that indeed satisfies the efficiency property.

3 Adaptive 1-Key 1-Ciphertext FE for TMs

One of the main tools in our constructions is a single-key single-ciphertext FE
for TMs in the private key setting. In the security game, the adversary only
gets to make a single message and function query. Since we are interested in
adaptive security, the message and the function query can be made in any order.
In the language of randomized encodings (RE), this primitive is nothing but
an adaptively secure succinct decomposable RE. The formal definition of single-
ciphertext single-key FE for TMs is provided in the full version [AS15].

In the adaptive security game of single-ciphertext single-key FE, the adver-
sary can only make a single function query and a single challenge message query.
We define this notion for the case when the functions are represented by Turing
machines.

As before, we can define a single-ciphertext single-key private-key FE to be
selectively-secure if the adversary has to declare the challenge message pair even
before he submits the function query.

We now proceed to build this tool based on iO and one-way functions.
Towards this end, we first consider the notion of private key multi-ary func-
tional encryption (FE) [GGG+14] for TMs. Multi-ary FE is a generalization of
FE where the functions can take more than one input. We are interested in the
restricted setting when the adversary only makes a single function and message
query. Moreover, we restrict ourselves to the 2-ary setting, i.e., the arity of the
functions is 2. We refer to this notion as 2-ary FE for TMs. We describe this
notion formally in Sect. 3.1. Prior to this work, we knew how to construct this
only based on (public coins) differing inputs obfuscation. Later we show how to
construct this primitive assuming just iO for circuits and one-way functions.

3.1 Semi-Adaptive 2-Ary FE for TMs: 1-Key 1-Ciphertext Setting

The formal description of the 2-ary FE for TMs is given below. A 2-ary FE
for a class of Turing machines F consists of four PPT algorithms, 2FE =
(2FE.Setup, 2FE.Enc, 2FE.KeyGen, 2FE.Dec), as described below.
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– 2FE.Setup(1λ): On input the security parameter λ, the algorithm 2FE.Setup

outputs a master secret key 2FE.MSK.
– 2FE.KeyGen(2FE.MSK, M): On input the master secret key 2FE.MSK and Tur-

ing machine M ∈ F , it outputs the key 2FE.skM .
– 2FE.Enc(2FE.MSK, x, b): On input the master secret key 2FE.MSK, message

x ∈ {0, 1}∗ and position b ∈ {0, 1}, it outputs 2FE.CTx.
– 2FE.Dec(2FE.skM , 2FE.CTx, 2FE.CTy): On input the functional key 2FE.skM

and ciphertexts 2FE.CTx and 2FE.CTy, it outputs the value z.

Remark 3. The bit b essentially indicates the position with respect to which
the message needs to be encrypted. For convenience sake, we refer to the first
position as the 0th position and the second position as the 1st position.

For the above notion to be interesting, a 2-ary FE for TMs scheme is required
to satisfy the following correctness, efficiency and security properties.

Correctness: This property ensures that the output of 2FE.Dec(2FE.skM ,
2FE.CTx, 2FE.CTy) is always M(x, y) where (i) 2FE.MSK ← 2FE.Setup(1λ),
(ii) 2FE.skM ← 2FE.KeyGen(2FE.MSK, M), (iii) 2FE.CTx ← 2FE.Enc(2FE.MSK,
x, 0) and (iv) 2FE.CTy ← 2FE.Enc(2FE.MSK, y, 1).

Efficiency: This property says that the size of the ciphertexts (resp., func-
tional key) depend solely on the size of the message (resp., machine) and
the security parameter. That is, the complexity of 2FE.Enc(2FE.MSK, x, b)
is a polynomial in (λ, |x|) and the complexity of 2FE.KeyGen(2FE.MSK, M)
is a polynomial in (λ, |M |). Furthermore, we require that the complexity of
2FE.Dec(2FE.skM , 2FE.CTx, 2FE.CTy) is just a polynomial in (λ, |x|, |y|, |M |, t),
where t is the time taken by M to execute on the input (x, y).

Semi-Adaptive Security: The security guarantee states that the adversary
cannot distinguish joint ciphertexts of (x0, y0) from the joint ciphertexts of
(x1, y1) given the functional key of M , as long as M(x0, y0) = M(x1, y1). Note
that we adopt the convention that the Turing machine also outputs its running
time and thus this alone ensures that the execution time of M(x0, y0) is the
same as the execution time of M(x1, y1). Depending on the order of the message
and the Turing machine queries the adversary can make, there are many ways
to model the security of a 2-ary FE scheme. We adopt the notion where the
adversary can make the message queries corresponding to 0th and 1st position
in an adaptive manner but the TM query should be made only after both the

message queries. We term this notion semi-adaptive security.
Suppose A be any PPT adversary. We define an experiment ExptASemiAd below.

ExptSemiAd
A (1λ):

1. The challenger first executes 2FE.Setup(1λ) to obtain 2FE.MSK. It then
chooses a bit b at random.

2. The following two bullets are executed in an arbitrary order (depending on
the choice of the adversary).



Functional Encryption for Turing Machines 139

– The adversary submits the message query (x0, x1), corresponding to 0th

position, to the challenger. The challenger responds with 2FE.CTx ←
2FE.Enc(2FE.MSK, x0, 0) if b = 0 else it responds with 2FE.CTx ←
2FE.Enc(2FE.MSK, x1, 0).

– The adversary submits the message query (y0, y1), corresponding to 1st

position, to the challenger. The challenger responds with 2FE.CTy ←
2FE.Enc(2FE.MSK, y0, 1) if b = 0 else it responds with 2FE.CTy ←
2FE.Enc(2FE.MSK, y1, 1).

3. After both the message queries, the adversary then submits a Turing machine
M to the challenger. The challenger aborts if either (i) M(x0, y0) �= M(x1, y1)
or (ii) |x0| �= |x1| or (iii) |y0| �= |y1|. If it has not aborted, it executes
2FE.skM ← 2FE.KeyGen(2FE.MSK, M). It then sends 2FE.skM to the adver-
sary.

4. The adversary outputs b′.

The experiment outputs 1 if b = b′, otherwise it outputs 0.
We now define the semi-adaptive security notion.

Definition 4. A 2-ary FE scheme is semi-adaptive secure if for any PPT adver-

sary A, we have that the probability that the output of the experiment ExptSemiAd
A

is 1 is at most 1/2 + negl(λ), for any negligible function negl.

3.2 Adaptive FE from Semi-adaptive 2-Ary FE for TMs

We now show how to achieve adaptively secure single-ciphertext single-key FE
starting from a semi-adaptively secure 2-ary FE for TMs. Recall that in the semi-
adaptive security game of 2-ary FE, the key query can be made only after the
message queries but however, the message queries corresponding to the first and
the second position can be made in an adaptive manner. This leads to the main
idea behind our construction – symmetrization of the input and the TM. That
is, the adaptive FE functional key of a machine M is the 2-ary FE encryption
of M w.r.t the 1st position and the adaptive FE encryption of a message m
is essentially the 2-ary FE encryption of m w.r.t the 0th position. This takes
care of the adaptivity issue. To facilitate the execution of M on m, a 2-ary
FE key of a universal TM (UTM) is also provided. The question is whether we
include the 2-ary FE key of UTM in the ciphertext or the functional key. This
is crucial because the UTM key can only be provided by the challenger after
seeing the queries corresponding to both the 0th and 1st position. To solve this
issue, we additively secret share the UTM key across both the ciphertext and the
functional key. This gives the challenger leeway to provide a random string as
part of the response to the first query and by providing the appropriate secret
share in the second response it can reveal the UTM key – at this point the
challenger has seen both m and M . The formal scheme is described next.

Consider a 2-ary FE for TMs, denoted by 2FE = (2FE.Setup, 2FE.KeyGen,
2FE.Enc, 2FE.Dec), for a class of Turing machines F . We construct a single-
ciphertext single-key FE, OneCTKey, for the same class F .
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Denote by UTM = UTMλ, the universal Turing machine, that takes as input
a Turing machine M , message m and outputs M(m) if it halts within 2λ steps
else it outputs ⊥. Further, we denote by ℓUTM to be the length of the output of
a 2FE key of UTM.

OneCTKey.Setup(1λ): On input the security parameter λ, it first executes

2FE.Setup(1λ) to obtain the master secret key 2FE.MSK. It also picks a random
string R in {0, 1}ℓUTM . It outputs the secret key OneCTKey.MSK = (2FE.MSK, R)
as the master secret key.

OneCTKey.KeyGen(OneCTKey.MSK, M ∈ F): On input the master secret key
OneCTKey.MSK = (2FE.MSK, R), and a Turing machine M ∈ F , it exe-
cutes 2-ary FE encryption of M w.r.t 0th position, 2FE.Enc(2FE.MSK, M, 0),
to obtain 2FE.CTM . It then computes a 2-ary FE key of UTM by generating
2FE.skUTM ← 2FE.KeyGen(2FE.MSK,UTMλ). Finally, it outputs the functional
key OneCTKey.skM = (2FE.CTM , 2FE.skUTM ⊕ R).

OneCTKey.Enc(OneCTKey.MSK, m): On input the master secret key
OneCTKey.MSK = (2FE.MSK, R), and message m, it generates a 2-ary FE
encryption of m by executing 2FE.CTm ← 2FE.Enc(2FE.MSK, m, 1). It outputs
the ciphertext OneCTKey.CT = (2FE.CTm, R).

OneCTKey.Dec(OneCTKey.skM ,OneCTKey.CT): On input the functional key
OneCTKey.skM = (2FE.CTM , S) and ciphertext OneCTKey.CT = (2FE.CTm, R).
It computes S ⊕ R to obtain 2FE.skUTM. It then executes 2FE.Dec(2FE.skUTM,
2FE.CTM , 2FE.CTm) to obtain z. Finally, it outputs z.

We prove the following theorem. The proof of the theorem is available in the
full version [AS15].

Theorem 2. The scheme OneCTKey satisfies correctness, efficiency and adap-

tive security properties.

3.3 Constructing Semi-adaptive 2-Ary FE for TMs: Overview

Lets begin with the following simple idea: the 2-ary FE encryption of x w.r.t 0th

position will just be a standard public key encryption of x0. Since this encryp-
tion should not be malleable, we provide an authentication of the ciphertext.
Similarly, the 2-ary FE encryption of y w.r.t 1st position is also a public key
encryption of y along with its authentication. The functional key of M is an
obfuscated program that takes as input an encrypted tape symbol; decrypts
it; executes the next message function and then outputs an encryption of the
new symbol. The evaluation is performed by executing next message function
one step at a time while updating the storage tape which is initialized to the
encryptions of x and y along with their respective authentications.

This however suffers from consistency issues. An adversary could re-use
encrypted storage tape values of the current tape in the future steps. It would
seem that using signatures to bind the time step to the tape symbol should
solve this problem. In fact, if we had virtual black box obfuscation this idea
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would work. However, we are stuck with indistinguishability obfuscation and it
is not clear how to make this work – signatures in general aren’t compatible with
iO because signatures guarantee computational soundness whereas iO demands
information theoretic soundness. Looking back at the literature, we notice that
Koppula-Lewko-Waters had to deal with similar issues in their recent work on
randomized encodings (RE)4 for TMs [KLW15]. The template of their construc-
tion comprises of two components as described below. The actual construction
of KLW has more intricate details involved from what is presented below but to
keep the discussion at an intuitive level, we choose to describe it this way.

Let M and x be the input to the encoding procedure.

– Storage tree: Encrypt x using a public key encryption scheme. Initialize the
work tape with this ciphertext. Compute a storage tree on this ciphertext.
The root of the storage tree along with the current time step (which is ini-
tially 0) is then signed using a signature scheme. This signature serves as an
authentication of the work tape and the current time step.

– Obfuscated next message program: The obfuscated program takes as
input an encrypted tape symbol (leaf node), its path to the root of the storage
tree and the signature on the root. It performs few checks to test whether the
encrypted tape symbol is valid. It then decrypts the encrypted tape symbol,
computes the next message function of the TM M and then re-encrypts the
output tape symbol. Finally, it computes the new root of the storage tree (this
can be done by just having the appropriate path from the new tape symbol
leading up to the root) and signs it.

There are two main hurdles in using the above template for our construction of
2-ary FE for TMs: (i) the TM only takes a single input in the above template
whereas in our setting the TM takes two inputs. Moreover, we require that the
TM and the inputs are encoded separately and, (ii) the security notion considered
by KLW is weak-selective – the adversary is required to declare both the TM
and the input at the beginning of the game. On the other hand the security
notion we consider is stronger. Because of these two main reasons, we employ
new techniques to achieve our construction.

Ciphertext Combiner Mechanism. As remarked earlier, we require that the TM
and the inputs are encoded separately. We exploit the fact that inherently KLW
has two components – storage tree and obfuscated next message program – that
depend upon the input and the TM separately. But note that we have two
inputs and so we need to further split the storage tree component. The tree
structure automatically allows for such a decomposition. We compute a storage
tree on the (encrypted) 0th position input and another tree on the (encrypted)
1st position input. We can then combine the roots of both the trees, during the
decryption phase, to obtain a new root. But the root of the new tree needs to

4 A randomized encoding of a machine M and input x is an encoding of M(x) that
takes much less time to compute than M(x). Furthermore, the encoding should only
reveal M(x) and nothing more.
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be authenticated and this operation needs to be public. We could provide the
decryptor the signing key but then we end up sacrificing security!

To overcome this problem, we provide a combiner program, as part of one
of the ciphertexts, that takes as input two nodes in the tree and outputs a new
node along with a signature. This signature is signed using a signing key which
is part of the combiner program. Of course the combiner program needs to be
obfuscated to hide the signing key. As we will see later in the actual construction,
we require “iO-compatible” signatures a.k.a splittable signatures scheme of KLW
to make this idea work.

While using combiner seems to solve the problem, the next question is in
which ciphertext do we include the combiner? We will see next that this becomes
crucial for our proof of security.

Ensuring Semi-adaptivity. Suppose we decide to include the combiner as part
of the 0th ciphertext. In line with the techniques used in proving the security
using iO, we require that in the proof of security we hardwire the resulting
(combined) root node in the combiner. But this is not possible if the 0th position
challenge message is requested before the 1st position challenge message. The
same problem occurs if we include the combiner as part of the 1st position
ciphertext – the adversary can now query for the 1st position challenge ciphertext
first and then query the 0th position challenge message.

This conundrum can be tackled by using deniable encryption. We can com-
pute a deniable encryption of combiner in one ciphertext and in the other cipher-
text we open the deniable ciphertext. This gives us the flexibility to open the
ciphertext to whatever message we want depending on the adversary’s queries.
While this solves the problem, we can replace deniable encryption with a much
simpler tool – one-time pad! We compute a one-time pad of the combiner with
randomness R in one ciphertext and the other ciphertext contains just R. This
solves our problem just like the case of deniable encryption.

We present a high level and a simplified description of the 2-ary FE scheme
below. The formal description is more involved and is presented in full ver-
sion [AS15] where we present the construction in a modular fashion by first
describing an intermediate primitive that we call 3-stage KLW.

1. Setup: Generate a master signing key-verification key pair (SK, V K). Also
generate two auxiliary signature key-verification key pairs (SKx, V Kx) and
(SKy, V Ky). Generate the public parameters PP of the storage tree. Compute
a random string R of appropriate length. The public key is PP while the
master secret key is (SKx, SKy, V Kx, V Ky, SK, V K, R).

2. Key generation of M : Generate an obfuscated next message program of
M whose functionality is as in the above high level description. The pair
(SK, V K) is hardwired inside the obfuscated program.

3. Encryption of x w.r.t 0th position: Compute a storage tree on x. Sign
the root of the tree rtx using SKx to obtain σx. Compute the obfuscated
combiner program S = Comb⊕R whose description is as given above. Output
(rtx, σx, S).
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4. Encryption of y w.r.t 1st position: Compute a storage tree on y. Sign the
root of the tree rty using SKy to obtain σy. Output (rty, σy, R).

5. Decryption: First, compute S ⊕ R to recover Comb. Then execute Comb

on inputs ((rtx, σx) , (rty, σy)) to obtain the joint root rt accompanied by the
signature σ computed using SK. Once this is done, using the joint tree and
obfuscated next message program of M , execute the decode procedure of
KLW to recover the answer.

4 Adaptive FE for TMs

We show how to obtain an adaptively secure public key functional encryption
scheme for Turing machines. To achieve this, we use a public key FE scheme for
circuits, single-key FE scheme for circuits and single-key single-ciphertext FE
for Turing machines.

Tools. We use the following tools to achieve the transformation.

– (Compact) Public key FE scheme for circuits, denoted by PubFE =
(PubFE.Setup,PubFE.KeyGen,PubFE.Enc,PubFE.Dec). It suffices for us that
PubFE is selectively secure.

– (Compact) Function-private Single-key FE scheme for circuits, denoted by
OneKey = (OneKey.Setup,OneKey.KeyGen,OneKey.Enc, OneKey.Dec). It suf-
fices for us that OneKey is selectively secure.

– Single-key single-ciphertext FE scheme for Turing machines, denoted
by OneCTKey = (OneCTKey.Setup,OneCTKey.KeyGen,OneCTKey.Enc,
OneCTKey.Dec). We require that OneCTKey is adaptively secure.

– Psuedorandom function family, F.
– Symmetric encryption scheme with pseudorandom ciphertexts, denoted by

Sym = (Sym.Setup,Sym.Enc,Sym.Dec).

Instantiations of the Tools. We gave an construction of single-key single-
ciphertext FE for Turing machines satisfying adaptive security in Sect. 3. We
can instantiate the compact public-key FE scheme using the construction
of [GGH+13,Wat15] (here, we refer to the post-challenge FE construction of
[Wat15]). This construction can be based on indistinguishability obfuscation and
other standard assumptions. Lastly, we can instantiate a function-private single
key FE by, first, applying the function-privacy transformation by Brakerski-
Segev [BS14] on the public-key FE5. The resulting FE is a private-key FE which
is also function-private. And, a function-private single-key FE in the private key
setting is a special case of function-private private key FE. Note that this instan-
tiation can be based off the same assumptions as public-key FE (this is because,
[BS14] does not add any additional assumptions).

Intuition. We view our construction as a transformation from adaptively
secure 1-CT 1-key FE scheme into one that can handle unbounded collusions.

5 The function-privacy transformation was defined for private key FE but a public key
FE can be transformed into a private key FE in a straightforward way.
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Even though in general we don’t know any way of achieving this, we show that
by leveraging additional tools we can attain this goal. These additional tools, as
mentioned above, are multi-key FE schemes that are only selective secure.

The key idea is as follows: we give a mechanism to generate a unique key

corresponding to a pair of ciphertext (of m) and functional key (of f) in the
resulting adaptive multi-key FE scheme. This unique key would correspond to
the master secret key of the adaptive 1-CT 1-Key FE scheme. At this point,
we can generate functional keys of f and ciphertext of m w.r.t this unique key.
Implementing this mechanism using iO, in the context of FE for circuits, was
introduced by Waters [Wat15]. We show how to implement the same, in the more
general context of FE for TMs, but using just a multi-key FE. We highlight that
in general we don’t know how to replace the use of iO with multi-key FE since
FE does not offer function hiding.

At the high level, the construction proceeds as follows. A ciphertext of m
“communicates” a PRF key K to a functional key of f . This communication
is enabled by a multi-key FE scheme. The functional key using K and hard-
wired values, derives the master secret key OneCTKey.MSK of a 1-CT 1-Key FE
scheme. If then computes a functional key of f w.r.t OneCTKey.MSK. But the
ciphertext of m does not contain an encryption w.r.t OneCTKey.MSK! And so
this key has to be “communicated” from functional key back to the ciphertext.
To do this, we will use another instantiation of selectively secure FE scheme.
Here, we note that it suffices to consider just a single-key scheme and that too in
the private key setting. Once we have this instantiation, the functional key can
now generate a single-key FE encryption of OneCTKey.MSK. The single-key FE
functional key, which will now be part of the ciphertext, will take as input encryp-
tion of OneCTKey.MSK and outputs an encryption of m w.r.t OneCTKey.MSK.
Finally, we can just run the decryption algorithm of OneCTKey to obtain the
answer. We illustrate a simple example, when a single ciphertext and functional
key is released, in Fig. 1.

Our construction has more details that we present below.

Construction. We now describe the construction. We denote the FE for TMs
scheme, that we construct, to be FE = (Setup,KeyGen,Enc,Dec).

Setup(1λ): Execute PubFE.Setup(1λ) to obtain (PubFE.MSK,PubFE.PK). Output
the secret key-public key pair (MSK = PubFE.MSK,PK = PubFE.PK).

KeyGen(MSK = PubFE.MSK, f): Draw CE at random6. Denote τ to be
(τ0||τ1||τ2||τ3), where τi for i ∈ {0, 1, 2, 3} is picked at random. Execute

6 The length of CE is determined as follows. Denote by |f |, the size of the Turing
machine representing f . Denote by ℓOneCTKey, the length of the ciphertext obtained
by encrypting a message of length |f |, using OneCTKey.Enc. Denote by ℓOneKey, the
length of the ciphertext obtained by encrypting a message of length λ + 2, using
OneKey.Enc. Further, denote by ℓSym to be the length of the ciphertext obtained by
encrypting a message of length ℓOneCTKey + ℓOneKey, using Sym.Enc. We set the length
of CE to be ℓSym.
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Fig. 1. The ciphertext of m has two components – the first component is a single-
key FE (denoted by FE2) functional key and the second component is a multi-key FE
(denoted by FE1) encryption of a PRF key K. The function key of f is just a FE1

functional key of the program described in the figure. The arrows indicate the flow of
execution of decryption of the ciphertext of m using the functional key of f .

PubFE.KeyGen(PubFE.MSK, G[f, CE , τ ]), where G[f, CE , τ ] is described in Fig. 2,
to obtain PubFE.skG. Output skf = PubFE.skG.

Enc(PK = PubFE.PK, m):

– Draw a PRF key K at random from {0, 1}λ.
– Execute OneKey.Setup(1λ) to obtain OneKey.MSK.
– Execute OneKey.KeyGen(OneKey.MSK, H[m]) to obtain OneKey.skH , where

H[m] is defined in Fig. 3.
– Execute PubFE.Enc(PubFE.PK, (OneKey.MSK,K,⊥, 0)) to obtain PubFE.CT.

Finally, output CT = (OneKey.skH ,PubFE.CT).

Dec(skf = skG,CT = (OneKey.skH ,PubFE.CT)):

– Execute PubFE.Dec(PubFE.skG,PubFE.CT) to obtain (OneCTKey.skf ,
OneKey.CT).

– Execute OneKey.Dec(OneKey.skH ,OneKey.CT) to obtain OneCTKey.CT.
– Execute OneCTKey.Dec(OneCTKey.skf ,OneCTKey.CT) to obtain m̂.

Output m̂.
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Fig. 2. Description of function G.

Fig. 3. Description of function H.

We prove the following theorem that establishes the proof of security of the
above scheme.

Theorem 3. Assuming the selective security of PubFE,OneKey, adaptive secu-

rity of OneCTKey, security of F, Sym, we have that the scheme FE is adaptively

secure.

Since the proof is involved, we choose to first present the proof of selective
security of FE. We then point out the (minor) changes that need to be made to
prove the adaptive security of FE. We give a sketch of the proof of the above
scheme in Sect. 5 and the formal proof is provided in the full version [AS15]. We
also present the proof of correctness and efficiency in the full version.

5 Proof of Theorem 3: Overview

To explain the proof intuition, we restrict ourselves to the setting when the
adversary makes only a single message and key query.

In the first hybrid, the challenger uses a bit b picked at random, to gener-
ate the challenge ciphertext as in the (selective) security notion. By using the
security of many primitives (listed in the theorem statement), we then move
to a hybrid where the bit b is information-theoretically hidden from the adver-
sary. At this point, the probability that the adversary guesses the bit b is 1/2.
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And thus the probability that the adversary guesses b correctly in the first hybrid
is at most 1/2 + negl(λ).

Hybrid0: This corresponds to the real experiment when the challenger uses the bth

message in the challenge message pair query to compute the challenge ciphertext,
where the bit b is picked at random. The output of the hybrid is the same as the
output of the adversary.

Hybrid1: In this hybrid, the values corresponding to the challenge ciphertext are
hardwired in the “CE” component of all the functional keys.

That is, the challenger upon receiving a function query f , first sam-
ples a symmetric key Sym.k∗. It generates an encryption of the message
(OneCTKey.MSK, R2, 0) with respect to the single-key FE scheme. Call this
ciphertext, OneKey.CT. It then samples a functional key of f with respect to the
single-key single-ciphertext FE scheme. Call this functional key, OneCTKey.skf .
It is important to note here that, the (pseudo)randomness used in the gener-
ation of OneKey.CT and OneCTKeyf is as described in the scheme. Finally, it
computes a symmetric encryption of (OneKey.CT,OneCTKey.skf ) using the key
Sym.k. The resulting ciphertext will be assigned to CE and then the challenger
proceeds as in the previous hybrid.

The indistinguishability of Hybrid0 and Hybrid1 follows from the security of
symmetric encryption scheme.

Hybrid2: In this hybrid, the mode is switched from β = 0 to β = 1.
Upon receiving a challenge message query (m0, m1), the challenger computes

the challenge ciphertext as follows. Recall that there are two components in the
ciphertext – namely, the single-key FE functional key and the public-key FE
ciphertext. The challenger computes the single-key FE functional key as in the
previous hybrid. However, it generates the public-key FE cipehertext to be an
encryption of (⊥,⊥,Sym.k∗, 1) instead of (OneKey.MSK∗,K∗,⊥, 0), as in Hybrid1.
The rest of the hybrid is the same as the previous hybrid.

The indistinguishability of Hybrid1 and Hybrid2 follows from the security
of public-key FE scheme. This is because the output of G (Fig. 2) on input
(⊥,⊥,Sym.k∗, 1) is nothing but the decryption of CE . And by our choice of CE ,
this is the same as the output of G on input (OneKey.MSK∗,K∗,⊥, 0).

Hybrid3: The hardwired values in the “CE” components of all the functional keys
are now computed using randomness drawn from a uniform distribution. Recall
that in the previous hybrid, the single-key ciphertext and the single-key single-
ciphertext FE encrypted in CE were computed using pseudorandom values.

The indistinguishability of Hybrid2 and Hybrid3 follows from the security of
pseudorandom function family.

Hybrid4: A branch encrypting message m0 (the 0th message in the challenge
message query) is introduced in the function H.

The challenger upon receiving the challenge message query (m0, m1), first
computes a single-key FE functional key of the function H∗[m0, mb, v], as



148 P. Ananth and A. Sahai

Fig. 4. Description of hybrid function H*.

described in Fig. 4. Here, b is the challenge bit, picked at random by the chal-
lenger. The program H∗ is the same as H except that it contains an additional
branch. The rest of the hybrid is the same as Hybrid3.

The indistinguishability of Hybrid3 and Hybrid4 follows from the function-
privacy property of single-key FE scheme. To see why, let us look at the messages
that are encrypted under the single-key FE scheme (note that each encryption
is part of the “CE” component of some functional key). We observe that each
message is of the form (OneCTKey.MSK, R, 0). From the descriptions of H and
H∗, it follows that the output of H on (OneCTKey.MSK, R, 0) is the same as the
output of H∗ on (OneCTKey.MSK, R, 0).

Hybrid5: We switch the mode of α from 0 to 1 in the OneKey ciphertexts output
by all the functional keys.

The challenger, upon receiving a functional query f , first generates a
single-key FE ciphertext to be an encryption of (OneCTKey.MSK, R, 1), where
OneCTKey.MSK is as generated in the previous hybrids. The resulting ciphertext
along with the single-key single-ciphertext FE functional key is then encrypted,
using the symmetric key encryption, to obtain CE . The rest of the functional
key is then generated as previously.

The indistinguishability of Hybrid4 and Hybrid5 is more complex and involves
more intermediate hybrids and thus we defer the explanation.

Hybrid6: We change the α = 0 branch in the function H to encrypt the message
m0 instead of mb.

The challenger upon receiving a message query (m0, m1), first generates a
single-key FE functional key of H∗[m0, m0, v]. It then generates the public key
FE encryption as in previous hybrids. The rest of the hybrid is as in Hybrid5.

The indistinguishability of Hybrid5 and Hybrid6 follows from the function
privacy property of single-key FE scheme. To see why, we look at the messages
encrypted in the single-key FE ciphertexts. We first note all these ciphertexts
are part of “CE” component of some functional key. Further, each message is of
the form (OneCTKey.MSK, R, 1). Thus, the output of H∗[mb, m0, v] is the same
as the output of H∗[m0, m0, v].

Observe that the challenge bit b is no longer used. This combined with the
indistinguishability of consecutive hybrids proves that the probability that A
wins in Hybrid1 is at most 1/2 + negl(λ). This proves the security of FE.
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6 Future Directions

The works of [AJ15,BV15,AJS15] show the equivalence of (sub-exponentially
secure) FE and iO for the case of circuits. It would be interesting to explore
the possibility of the equivalence of FE for Turing machines and iO for Turing
machines (with no restriction on the input length). One direct consequence of a
feasibility result in this direction is establishing the existence of iO for Turing
machines based on iO for circuits. The current feasibility results on iO for Turing
machines are based on knowledge assumptions.
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A Tools Used in [KLW15]

We recall the key tools, namely, positional accumulators, iterators and splittable
signatures, used in the work of Koppula et al. [KLW15].

We now describe the syntax of the tools below. We refer the reader
to [KLW15] for the correctness and the security definitions.

A.1 Positional Accumulators

The notion of positional accumulators is defined below. A positional accumulator
for message space Msgλ consists of the following algorithms.

SetupAcc(1λ, T ) → PPAcc, w0, store0 The setup algorithm takes as input a secu-
rity parameter λ in unary and an integer T in binary representing the maxi-
mum number of values that can stored. It outputs public parameters PPAcc,
an initial accumulator value w0, and an initial storage value store0.

EnforceRead(1λ, T, (m1, INDEX1), . . . , (mk, INDEXk), INDEX∗) → (PPAcc, w0,
store0). The setup enforce read algorithm takes as input a security parameter
λ in unary, an integer T in binary representing the maximum number of
values that can be stored, and a sequence of symbol, index pairs, where each
index is between 0 and T −1, and an additional INDEX∗ also between 0 and
T − 1. It outputs public parameters PPAcc, an initial accumulator value w0,
and an initial storage value store0.

EnforceWrite(1λ, T, (m1, INDEX1), . . . , (mk, INDEXk)) → PPAcc, w0, store0 The
setup enforce write algorithm takes as input a security parameter λ in unary,
an integer T in binary representing the maximum number of values that can
be stored, and a sequence of symbol, index pairs, where each index is between
0 and T −1. It outputs public parameters PPAcc, an initial accumulator value
w0, and an initial storage value store0.



150 P. Ananth and A. Sahai

PrepRead(PPAcc, storein, INDEX) → m, π The prep-read algorithm takes as
input the public parameters PPAcc, a storage value storeIn, and an index
between 0 and T − 1. It outputs a symbol m (that can be ǫ) and a value π.

PrepWrite(PPAcc, storein, INDEX) → aux The prep-write algorithm takes as
input the public parameters PPAcc, a storage value storeIn, and an index
between 0 and T − 1. It outputs an auxiliary value aux.

VerifyRead(PPAcc, win, mread, INDEX, π) → {True, False} The verify-read algo-
rithm takes as input the public parameters PPAcc, an accumulator value win,
a symbol, mread, an index between 0 and T − 1, and a value π. It outputs
True or False.

WriteStore(PPAcc, storein, INDEX, m) → storeOut The write-store algorithm
takes in the public parameters, a storage value storein, an index between
0 and T − 1, and a symbol m. It outputs a storage value storeout.

Update(PPAcc, win, mwrite, INDEX, aux) → wOut or Reject The update algo-
rithm takes in the public parameters PPAcc, an accumulator value win, a
symbol mwrite, and index between 0 and T − 1, and an auxiliary value aux.
It outputs an accumulator value wout or Reject.

A.2 Iterators

In this subsection, we now describe the notion of cryptographic iterators. As
remarked earlier, iterators essentially consist of states that are updated on the
basis of the messages received. We describe its syntax below.

Syntax. Let ℓ be any polynomial. An iterator PPItr with message space Msgλ =
{0, 1}ℓ(λ) and state space SplSchemeλ consists of three algorithms - SetupItr,
ItrEnforce and Iterate defined below.

SetupItr(1λ, T ) The setup algorithm takes as input the security parameter λ (in
unary), and an integer bound T (in binary) on the number of iterations. It
outputs public parameters PPItr and an initial state v0 ∈ SplSchemeλ.

ItrEnforce(1λ, T,m = (m1, . . . , mk)) The enforced setup algorithm takes as input
the security parameter λ (in unary), an integer bound T (in binary) and k
messages (m1, . . . , mk), where each mi ∈ {0, 1}ℓ(λ) and k is some polynomial
in λ. It outputs public parameters PPItr and a state v0 ∈ SplScheme.

Iterate(PPItr, vin, m) The iterate algorithm takes as input the public parameters
PPItr, a state vin, and a message m ∈ {0, 1}ℓ(λ). It outputs a state vout ∈
SplSchemeλ.

For simplicity of notation, the dependence of ℓ on λ will not be explic-
itly mentioned. Also, for any integer k ≤ T , we will use the notation
Iteratek(PPItr, v0, (m1, . . . , mk)) to denote Iterate(PPItr, vk−1, mk), where vj =
Iterate(PPItr, vj−1, mj) for all 1 ≤ j ≤ k − 1.

A.3 Splittable Signatures

We describe the syntax of the splittable signatures scheme below.
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Syntax. A splittable signature scheme SplScheme for message space Msg consists
of the following algorithms:

SetupSpl(1λ) The setup algorithm is a randomized algorithm that takes as input
the security parameter λ and outputs a signing key SK, a verification key VK

and reject-verification key VKrej.
SignSpl(SK, m) The signing algorithm is a deterministic algorithm that takes as

input a signing key SK and a message m ∈ Msg. It outputs a signature σ.
VerSpl(VK, m, σ) The verification algorithm is a deterministic algorithm that

takes as input a verification key VK, signature σ and a message m. It outputs
either 0 or 1.

SplitSpl(SK, m∗) The splitting algorithm is randomized. It takes as input a
secret key SK and a message m∗ ∈ Msg. It outputs a signature σone =
SignSpl(SK, m∗), a one-message verification key VKone, an all-but-one signing
key SKabo and an all-but-one verification key VKabo.

SignSplAbo(SKabo, m) The all-but-one signing algorithm is deterministic. It takes
as input an all-but-one signing key SKabo and a message m, and outputs a
signature σ.

KLW described various security notions corresponding to the above splittable
signatures scheme. We describe only one of the properties that will be useful
for this work. This security notion is termed as VKone indistinguishability and
states that given a signature on a message m, an adversary should not be able
to distinguish the verification key VK from the split verification key VKone, that
is computed as a result of applying SplitSpl on the signing key and message m.
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