Functional Encryption Without Obfuscation

Sanjam Garg!®™) | Craig Gentry?, Shai Halevi?, and Mark Zhandry?

1 UC Berkeley, Berkeley, USA
sanjamg@berkeley.edu
2 IBM Research, New York, USA
craigbgentryQgmail.com, shaih@alum.mit.edu
3 MIT, Cambridge, USA
mzhandry@gmail.com

Abstract. Previously known functional encryption (FE) schemes for
general circuits relied on indistinguishability obfuscation, which in turn
either relies on an exponential number of assumptions (basically, one per
circuit), or a polynomial set of assumptions, but with an exponential loss
in the security reduction. Additionally most of these schemes are proved
in the weaker selective security model, where the adversary is forced to
specify its target before seeing the public parameters. For these construc-
tions, full security can be obtained but at the cost of an exponential loss
in the security reduction.

In this work, we overcome the above limitations and realize an adap-
tively secure functional encryption scheme without using indistinguisha-
bility obfuscation. Specifically the security of our scheme relies only on
the polynomial hardness of simple assumptions on composite order mul-
tilinear maps. Though we do not currently have secure instantiations
for these assumptions, we expect that multilinear maps supporting these
assumptions will discovered in the future. Alternatively, follow up results
may yield constructions which can be securely instantiated.

As a separate technical contribution of independent interest, we show
how to add to existing graded encoding schemes a new extension func-
tion, that can be thought of as dynamically introducing new encoding
levels.

1 Introduction

In traditional encryption schemes, decryption control is all or nothing: the sender
encrypts its message under a particular key, and anyone with the correspond-
ing secret key can recover the message. In contrast, functional encryption (FE)
schemes [BSW11,0’N10] allow the sender to embed sophisticated functions into

S. Garg—Work supported in part from a DARPA/ARL SAFEWARE award, AFOSR
Award FA9550-15-1-0274, and NSF CRII Award 1464397. The views expressed are
those of the authors and do not reflect the official policy or position of the Depart-
ment of Defense, the National Science Foundation, or the U.S. Government.
M. Zhandry—Work done while the author was a graduate student at Stanford Uni-
versity. Supported by the DARPA PROCEED program.

© International Association for Cryptologic Research 2016

E. Kushilevitz and T. Malkin (Eds.): TCC 2016-A, Part II, LNCS 9563, pp. 480-511, 2016.
DOI: 10.1007/978-3-662-49099-0_18

Functional Encryption Without Obfuscation 481

secret keys. More specifically, an FE scheme includes an authority, which holds
a master secret key and publishes public system parameters. The sender uses
the public parameters to encrypt its message m to obtain a ciphertext ct. A
user may obtain a secret key sky for the function f from the authority (if the
authority deems that the user is entitled). This key sk; can be used to decrypt
ct to recover f(m); and nothing more. In a recent result, Garg et al. constructed
the first FE scheme for general circuits using indistinguishability obfuscation
(i0) [GGH+13b].

While tremendous progress has been made on justifying the security of i{O
[BR14,BGK+14,PST14, GLW14, GLSW14], ultimately the security of the result-
ing constructions still either relies on an exponential number of assump-
tions [BR14,BGK+14,PST14] (basically, one per circuit), or a polynomial set
of assumptions, but with an exponential loss in the security reduction [GLW14,
GLSW14]. For example, the recent i©O scheme based on the MSE assumption
[GLSW14] crucially uses complexity leveraging in its proof — specifically, the
number of hybrids in the proof is proportional to 2/*l where z is the input, and
each hybrid “examines” a particular input = and implicitly “verifies” that the
circuits Cp, C in question satisfy Co(z) = C1(z). Garg et al. [GGSW13] pro-
vide an intuitive argument suggesting that either of these shortcoming might be
inherent when realizing indistinguishability obfuscation,' though this argument
is not applicable to FE schemes. In this work we ask the following fundamental
question:

Can we construct a functional encryption scheme for general circuits assuming
only polynomial hardness of simple computational assumptions?

Another limitation of the Garg et al. [GGH+13b] scheme is that it is only
selectively secure — that is, they have been proved secure only in a weaker model
in which the adversary is required to specify the message m for its challenge
ciphertext before it sees the public parameters of the FE scheme. We would like
FE for circuits that is fully secure — i.e., that allows the adversary to choose m*
adaptively after seeing the public parameters and even responses to some of its
private key queries. In general, one can trivially reduce full security to selectively
security via complexity leveraging — essentially the reduction tries to guess the
adversary’s chosen m, and succeeds with probability 27" — but complexity
leveraging loses a 2™l factor in the reduction to the underlying hard problem
that we would like to avoid.

Can we construct a fully secure functional encryption scheme for general
circuits without an exponential loss in the security reduction?

Achieving full security without the lossiness of complexity leveraging is just
as important for FE for circuits as it was for identity-based encryption (IBE)
ten years ago [Wat05, Gen06, Wat09], for both efficiency and conceptual reasons.

! Garg et al. [GGSW13] only provide the intuition for witness encryption but it extends
to 0.

482 S. Garg et al.

1.1 Our Results

In this work, we give positive answers to both questions above. Specifi-
cally we construct the first fully secure FE scheme for circuits without using
indistinguishability obfuscation or any exponential loss in security reductions.
Our scheme uses composite order multilinear maps in the asymmetric set-
tings [BS02, GGH13a,CLT13,CLT15a] and security is based on polynomial hard-
ness of fixed, relatively simple assumptions on a variant of the new CLT [CLT15a]
maps.

We extend the existing graded encoding schemes [GGH13a,CLT13,CLT15a]
with a new extension function that serves as a crucial ingredient in our con-
struction. This extension function serves a role similar to that of the straddling
set systems of [BGK+14], binding various encodings so that only certain subsets
can be paired together. The important difference is that the extension function
allows the binding to happen dynamically and publicly. This allows, for exam-
ple, an encrypter to bind ciphertext encodings together so that encodings from
different ciphertexts cannot be “mixed and matched.” We believe that this new
technique will be useful in other contexts as well. We provide details on this in
the full version [GGHZ14b)].

Theorem 1 (informal). Assuming (1) simple polynomial assumptions on
extendable composite order graded encodings and (2) the existence of PRF's that
are both puncturable (in the sense of [BW13, BGI14, KPTZ13]) and can be eval-
uated in NC', then fully secure functional encryption for all polynomial-sized
circuits exists.

An immediate consequence of our scheme is a traitor tracing scheme where
ciphertexts, secret keys, and public keys are short, namely logarithmic in the
number of users. Previous such schemes [GGH+13b,BZ14] all relied on ¢O. Our
scheme is therefore the first traitor tracing scheme with small parameters whose
security does not rely on 7O or an exponential loss in the security reductions.

As an important intermediate step in our construction, we introduce the
notion of slotted functional encryption, which allows for multiple independent
execution paths, or slots, in functional encryption. We believe slotted FE may
be of independent interest; in particular, several recent works [BS15,ABSV14]
implicitly construct variations of slotted FE as an intermediate step.

1.2 Overview of Our Techniques

In this section we describe the high-level ideas behind our construction. We start
by providing general intuition on how we avoid obfuscation. Subsequently, we
will elaborate on our methodology and the intermediate abstraction of slotted
FE that we use.

Though the final aim of this work is to avoid the use of obfuscation in real-
izing functional encryption, we build upon techniques that have previously been
used to realize indistinguishability obfuscation. We start by recalling some of
these tools. An indistinguishability obfuscator i@ guarantees that given two

Functional Encryption Without Obfuscation 483

functionally equivalent circuits C; and Cj, i.e. for every input = we require that
Cy(z) = Cz(x), the two distributions of obfuscations iO(Cy) and iO(Cs) are
computationally indistinguishable. Known constructions of obfuscation build on
the information theoretic argument of Kilian [Kil88] which provides security
only when evaluation on a single input is allowed. In more detail, consider a
circuit C' that takes n bits as input. Kilian provides a mechanism for garbling C'
into garbled components {éi,b}ie[n],be{Ql}v such that access to the components
{C’i,m}ie[n] allow computation of C(x) while simultaneously preserving perfect
secrecy of the circuit C. Note that here for each ¢ € [n] only one of the two
values C~’1-70 and C~’i71 is disclosed. This is similar to Yao’s [Yao82] garbled circuits
construction except that Kilian’s construction is limited to log depth circuits but
achieves a stronger information theoretic security. However, obfuscation schemes
need to enable secure evaluation on potentially any input and not just on one
pre-specified input. All known constructions of obfuscation achieve this addi-
tional functionality as follows: the obfuscation of a circuit C consists of the
terms {éi,b}ie[n],be{o,l} where all these values are simultaneous disclosed. Just

like Kilian, terms {C} 4, }ic[n) allow for evaluation of C(z). This new garbling

method, denoted by notation C, has the additional property that it hides the
circuit C in the sense of indistinguishability obfuscation.

Intuition behind previous constructions of Functional Encryption. Typical obfus-
cation based functional encryption schemes are constructed as follows. The setup
procedure of the functional encryption scheme generates a public-secret key pair
(pk, sk) of a public key encryption scheme and sets the public parameters for
the functional encryption scheme to be pk. A message m is encrypted under the
functional encryption scheme by just encrypting it to pk. Finally a private key
for a function f is set to be the obfuscation of a circuit that outputs the eval-
uation of the function f on the message obtained by decrypting the ciphertext
provided to it as input. The secret key sk is embedded inside this circuit for
enabling decryption.

Our Starting Idea. Our starting idea in trying to avoid the use of obfuscation
in realizing functional encryption is that even though a private key (which is an
obfuscation) should work for arbitrary ciphertexts, the security requirement is
much weaker — specifically, security is required only for the challenge ciphertext.
We build on this observation; isolating the specific input for which security is
desired and using the Kilian’s information theoretic argument just for this input.
Doing this isolation and enabling the Kilian’s information theoretic argument
is technically quiet challenging and requires us to build new techniques. We
elaborate on this next.

As described earlier obfuscation of a circuit C consists of {C‘i7b}ie[n},be{071}
and knowledge of {CA’wi}ie[n] allow for evaluation of C(x). The starting point
for our new functional encryption scheme is to split these components of garbled
C being generated as part of the obfuscation between the ciphertext and the

484 S. Garg et al.

private key. In other words the ciphertext and secret key provide parts of the
obfuscation, that when put together allow for computation.

We interpret the input = to consist of two parts m and f and the circuit
C' to be universal circuit that evaluates and outputs f(m). Here m is the mes-
sage being encrypted and the encrypter is expected to provide the components
corresponding to these parts. The components for the private key are provided
by the trusted authority. More concretely, denoting I,,, = {0,1,...,|m|—1} and
Iy ={m,m+1,...,|m|+|f|—1}, the public key consists of {éi,b}ielm,be{o,l}- In
order to encrypt a message m the encrypter chooses the components {C’mm Yier,,
and further randomizes and bundles them (using an extension function that is
explained later) to obtain the ciphertext {C; ., }icr,,. The trusted authority
generates the private keys analogously by randomizing and bundling together
appropriate components, namely {éz f. yier, and obtaining {C;. fiyier, as the
secret key. Additional private keys can be generated in an analogous manner.
Note that {Cim,}tier,, and {Ciy,}ier, together form a whole program that is
executable on one input alone, bringing us closer to Kilian for arguing security.

Making this idea work involves a careful hybrid argument, isolating one secret
key and a ciphertext at a time in order to apply Kilian’s information theoretic
argument. We specifically achieve this via a primitive that we call slotted FE:

Slotted FE. In a slotted FE scheme, ciphertexts and secret keys contain multiple
slots, and each slot i can either be “active” (i.e., contain an actual message or
function) or “inactive” (empty). Decryption is defined by taking all slots that
are active in both the ciphertext and secret key, and computing f;(m;) for those
slots. If all slots agree on the result, that result is the output of decryption. If
the slots do not agree, the output is unspecified. Ciphertexts and secret keys are
generated by the following procedures:

— Slotted encryption is a procedure requiring the master secret, and it can
produce an arbitrary ciphertext, containing any number of active slots with
any messages in those slots.

— Unslotted encryption is a public procedure that can produce a ciphertext
where a special slot 0 contains an arbitrary message, and the rest of the slots
are inactive.

— Slotted key generation is a procedure requiring the master secret, and it
can produce an arbitrary secret key containing any number of active slots
with any functions in those slots.

— Unslotted key generation is a convenient shorthand for the special case of
slotted key generation, producing a secret key with active slot 0 and the rest
of the slots inactive.

Clearly, slotted FE is a strict generalization of standard FE, we can recover the
standard notion by only using slot 0 and the unslotted procedures. However the
new primitive lets us consider more refined security properties. Specifically, we
define a small set of “local security properties” that can be mapped to simple
assumptions on the underlying graded-encoding scheme, and prove that they

Functional Encryption Without Obfuscation 485

imply our desired security notion for the induced FE scheme. Importantly, these
properties should be strong enough to yield adaptive security, but not too strong
so as to imply function-hiding (and thus obfuscation). This is somewhat similar
on a high level to the approach from [GLW14,GLSW14] (e.g., the notion of
“tribes schemes”), but the technical details are very different.

Our security properties for slotted FE are defined in Sects. 4.1 and 4.2. They
all follow the standard indistinguishability game between the FE adversary and
a challenger, but limit the types of queries that the adversary can use. For
example, one such notion requires indistinguishability only when each key-pair-
query that the adversary makes contains two identical sets of slots, the two
challenge plaintexts only differ in a single pair of slots in which one plaintext has
(z*, 1) and the other has (L, z*), and moreover all the secret-key queries have
the same function between these two slots. (We call this property “Ciphertext
moving,” see Sect. 4.1.)

Another advantage of using slotted FE is that it allows us to “bootstrap” the
construction from NC? to all circuits. Our basic slotted FE scheme in Sect. 5
can only handle log-depth circuits (NC?'), and unfortunately it was previously
unknown how to securely boost FE for NC* into FE for all circuits in a black-
box way without requiring function hiding (and thus obfuscation)?. However,
we show that the “local properties” of our slotted FE can be used for this
“bootstrapping” transformation. In this sense, slotted FE seems to be “the right
level of abstraction” for this construction.

Our Slotted FE for NC*. Our slotted FE for NC! is related to current construc-
tions of iO for NC! [GGH+13b,BR14,BGK+14,PST14, GLSW14]. Roughly, we
choose a universal NC? circuit U(f, m) = f(m), and convert U into a branching
program BP. We then randomize B P using Kilian randomization, and place the
resulting matrices “in the exponent” of an asymmetric graded encoding roughly
as follows:

— In order to implement slots, we use a composite-order graded encoding, where
each slot corresponds to a subgroup.

— The setup procedure generates the public parameters by taking the matrices
corresponding to the m input, projecting them down into the first subgroup
(corresponding to slot 0), and publishing encodings of these matrices in the
appropriate levels.

— The key generation procedure takes as input a vector (fo,..., fn—1), where
some of the f; = L. For all f; # 1, it selects the matrices corresponding to
fi, and projects them down to the ith subgroup, and encodes these matrices
in the appropriate levels. Then it adds the encodings for different f; together,

2 We note that Gorbunov et al. [GVW12] show a general transformation from NC* to
poly-size circuits, but the security proof relies on the underlying FE scheme being
simulation secure. Such security is impossible in the setting where the number of
secret key queries in unbounded [AGVW13], which is the setting studied in this
work. Subsequent to our work, Ananth et al. [ABSV14] show that FE for NC' can
be boosted to FE for all circuit.

486 S. Garg et al.

and outputs the resulting encodings. By the Chinese Remainder Theorem, the
1th subgroup of the resulting encoding will contain the matrices for function
fi. The result is that the secret key encodes function f; in slot 4.

— The slotted encryption procedure is analogous to the slotted key generation
procedure, except that it operates on the matrices corresponding to the mes-
sage input.

— The unslotted encryption procedure on input m takes the public parameters,
selects the matrices corresponding to m, and re-randomizes and outputs those
matrices.

— Finally, the decryption procedure multiplies the matrices for a secret key and
ciphertext together, and then performs a zero test on one entry of the resulting
matrix. Each of the subgroups act independently, and the result of multipli-
cation will be a matrix where subgroup ¢ contains the matrix corresponding
to fi(m;) (or the subgroup is empty if either ciphertext or secret key are inac-
tive). If all of the f;(m;) = 0, the zero test gives 0. If all of the f;(m;) = 1,
then the zero test gives 1.

Using subgroup-decision assumptions on multilinear graded encodings, we are
able to prove various security properties for our scheme, such as the “ciphertext
moving” property mentioned above. These properties allow us to move messages
and secret keys between slots. However, for the application to (un-slotted) func-
tional encryption, we actually want the ability to change the values of messages.
To accomplish this, we first use the existing properties to isolate the cipher-
text and one secret key in their own slot. At this point, we can invoke Kilian’s
information-theoretic argument in the corresponding subgroup, since the matri-
ces given out all correspond to a single input. We prove a new property called
“single-use hiding” which allows us to arbitrarily change the ciphertext and
secret key in this slot, provided decryption is unaffected. By carefully repeating
this process for each secret key, we are ultimately able to change the message
encrypted, thus proving the security of the derived un-slotted functional encryp-
tion scheme.

Ezxtending graded encodings. A major issue with the above sketch is that matrices
from different ciphertexts can be “mixed and matched” (in particular, a target
matrix can be mixed with a ciphertext generated from the public parameters)
which may allow the adversary to learn more than he should. Different secret
keys can be mixed and matched as well. Similar problems arose in the obfus-
cation setting, and one way it was solved was by using so-called straddling set
systems [BGK+14].

In our setting, this would involve assigning a different set of levels to each
ciphertext, and requiring that the levels assigned to two different ciphertext are
incompatible. However, ciphertext generation is a public procedure, meaning the
public parameters must include enough information to encrypt into any possible
level that a ciphertext component will be in. But then the adversary can always
generate a ciphertext in levels matching the target ciphertext, which then allows
mixing the ciphertexts together. Roughly, the problem is that access control to

Functional Encryption Without Obfuscation 487

levels is all or nothing: either anyone can generate encodings in a level, or no
one except the master party can.

We solve this problem by developing a new extension procedure on graded
encodings, which lets any user extend the graded encoding by generating new
levels. The user that ran the extension procedure will have to ability to map
components from existing levels to the new level, but other users will not. If we
apply the procedure to ciphertext components, the components will effectively
be bound together in the new extended levels, since the adversary cannot move
other ciphertexts into these levels.

In order to allow decryption, the new levels need to be mapped back to the
original set of levels. However, the extension procedure publishes just enough
information to map back to the original levels only after all the ciphertext com-
ponents have been combined. Once the ciphertext components are all combined,
it is impossible to mix the ciphertext with another ciphertext.

While the extension procedure falls outside of the traditional graded encod-
ing abstraction, we point out that most graded encoding candidates [GGH13a,
CLT13,CLT15b] support this procedure. We provide details in the full ver-
sion [GGHZ14b].

Using our new notion of extendable graded encodings, we prove the following:

Lemma 1 (informal). Assuming simple polynomial assumptions on extendable
graded encodings, then fully secure slotted functional encryption exists for NC*
circuits.

Boosting to FE for all circuits. In order to boost to functional encryption for
all circuits, we proceed in two steps.

— We first build functional encryption for NC' randomized functionalities from
our slotted functional encryption scheme. This is accomplished by including a
secret key k for a PRF in the ciphertext, and generating the randomness for
the functionality by applying the PRF to a seed s contained in the secret key.
In order to prove security, we will need to puncture the key k at s, so we need
puncturable PRFs that can be evaluated in NC' [BLMR13]3. The conversion
is very similar to the bootstapping technique of Gorbunov et al. [GVW12],
but we need the slotted property of our FE scheme in order to prove security
in our setting.

— Next, we boost to FE for all circuits. Basically, a secret key for a function

f will output not f(m), but instead a randomized encoding [IK00] f(m),
from which f(m) can be computed, but m itself is hidden. Notably, f(m) can
be computed in log-depth, so our randomized functional encryption for NC*

suffices.

3 This observation that [BLMR13] is puncturable appears in the full version of the
paper: http://theory.stanford.edu/~klewi/papers/homprf-full.pdf. It is also folklore
that the Naor-Reingold PRF is puncturable while maintaining NC* evaluation.

http://theory.stanford.edu/~klewi/papers/homprf-full.pdf

488 S. Garg et al.

Lemma 2 (informal). Assuming fully secure slotted functional encryption for
NC*' and PRFs that are both puncturable and can be evaluated in NC', then
fully secure functional encryption for all polynomial-sized circuits exists.

1.3 Instantiating Our Assumptions

Unfortunately, several recent attacks on multilinear maps [CHL+15,BWZ14,
CGH+15] have broken many assumptions on known multilinear maps; the
assumptions broken include our own, as well as all simple assumptions that have
been used to build obfuscation. Nonetheless, constructing functional encryption
from simple assumptions, without obfuscation, and without complexity lever-
aging remains an important problem. Fortunately, our assumptions are generic
in the sense that they can be instantiated on any expressive-enough multilinear
maps. It seems plausible that candidates satisfying these assumptions will be
found in the future, either by modifying current candidates or by completely dif-
ferent means. Our work shows that any multilinear map supporting our assump-
tions and functionality requirements yields secure functional encryption, thereby
motivating the search for and study of such maps.

1.4 Independent Work

In a very recent independent work, Waters [Watld] constructs a fully
secure functional encryption (FE) scheme using indistinguishability obfuscation
(10) [GGH+13b] and one-way functions. Water’s result has the advantage of
being generic: any indistinguishability obfuscator or one-way function will suffice
for his construction, whereas we require multilinear maps with specific proper-
ties. However, the focus of this work is to avoid indistinguishability obfuscation
altogether and to build fully secure functional encryption using simpler, though
less generic tools (multilinear maps and simple assumptions involving them).

One may try to combine Waters [Wat14] fully secure FE scheme with the
indistinguishability obfuscator of Gentry et al. [GLSW14], whose security is
based on simple assumptions on multilinear maps. The result would be a fully
secure functional encryption scheme whose security is based on simple assump-
tions on multilinear maps. However, the reduction in [GLSW14] involves an
exponential loss of security, meaning complexity leveraging is required and
the assumptions on multilinear maps must be assumed secure against sub-
exponential time adversaries. In this setting, static security and full adaptive
security are equivalent, and so a fully secure scheme can be obtained by com-
bining [GLSW14] with any selectively secure FE scheme, such as the original
scheme of Garg et al. [GGH+13b).

In contrast, all reductions for our scheme are polynomial, meaning we only
require polynomial hardness of the underlying multilinear map assumptions.
Ours is the first scheme to obtain security in this setting, even among selectively
secure schemes.

Functional Encryption Without Obfuscation 489

1.5 Subsequent Work

Subsequent to our work, there have been several developments regarding func-
tional encryption. First, a few works [BV15,AJ15] show how to build obfusca-
tion from sub-exponentially secure functional encryption, thus showing that in
some sense obfuscation and functional encryption are equivalent. However, these
results require complexity leveraging, and therefore only apply in the setting of
sub-exponential hardness assumptions and exponential reductions. They do not
apply to the polynomial security setting, which is the focus of this work. More-
over, their results require compact FE. Our construction is not compact, and it
is currently still unknown how to obtain compact functional encryption without
using obfuscation.

Second, Ananth et al. [ABSV14] show how to both obtain adaptive security
from selective security for functional encryption, and also “bootstrap” functional
encryption for NC' to functional encryption to all circuits. Their conversions
need only regular functional encryption, whereas our bootstrapping requires the
seemingly stronger notion of slotted functional encryption. While their tech-
niques are quite different than ours, at a high level their proof can be seen as (1)
implicitly showing how to add slots to regular (unslotted) functional encryption,
and then (2) using slotted functional encryption for bootstrapping. This shows
that our notion of slotted functional encryption serves as a useful abstraction in
the context of functional encryption.

2 Preliminaries: Graded Encoding Schemes

In Sect. 3, we recall the basic definitions of functional encryption and branching
programs. Here we describe the graded encoding scheme abstraction that will be
needed in our context, mostly following [GGH13a, CLT13, GLW14]. To instanti-
ate the abstraction, we can use Gentry et al.’s variant [GLW14] of the Coron-
Lepoint-Tibouchi (CLT) graded encodings [CLT13]. This variant is designed
to emulate multilinear groups of composite order, and to allow assumptions
regarding subgroups of the multilinear groups. One key difference in our abstrac-
tion is a new extension function that we add to the GGH graded encoding
abstraction. This new functionality will be crucial in our scheme. In the full
version [GGHZ14b], we briefly recall the CLT graded encodings and show how
they can be adapted to also support this extension functionality.*

Definition 1 (U-Graded Encoding System). A U-Graded Encoding System
consists of a ring R and a system of sets S = {S:(Fa) c{0,1}* ;€ R, T C U},
with the following properties:

1. For every fized set T, the sets {Sq(wa) s € R} are disjoint (hence they form a
partition of St def Ua S;a)).

* We note that the GGH encodings can also be extended to deal with this functionality
as well but here we provide this only for the CLT encodings.

490 S. Garg et al.

2. There is an associative binary operation 4+’ and a self-inverse unary operation
‘—7 (on {0,1}*) such that for every aq,as € R, every set T C U, and every
uy € Séfxl) and uy € Sj(fw), it holds that uy +ug € S}al-’_aﬂ and —uq € Sj(q_al)
where a1 + s and —ay are addition and negation in R.

3. There is an associative binary operation ‘<’ (on {0,1}*) such that for every

ay, 0o € R, every Ty, Ty with Ty UTy, C U, and every u; € S%l) and ug €

S(TZ2), it holds that u; X ug € S(T?L';f). Here oy - ag is multiplication in R,
and T1 UTs is set union.

CLT (and GGH) encodings do not quite meet the definition of graded encod-
ing systems above, since the homomorphisms required in the definition eventually
fail when the “noise” in the encodings becomes too large, analogously to how the
homomorphisms may eventually fail in lattice-based homomorphic encryption.
However, these noise issues are relatively straightforward (though tedious) to
deal with.

Now, we define some procedures for graded encoding schemes. We start with
the procedures standard in the graded encoding literature [GGH13a,CLT13].

Instance Generation. The randomized InstGen(1*,U,r) takes as inputs the
parameters A, U, r, and outputs params, where params is a description of a
U-Graded Encoding System as above for a ring R = Ry X...xR,.. We assume
fR is chosen such that the density of zero divisors in each fR; is negligible.
Note that setting » = 1 corresponds to the prime order setting, while r > 1
corresponds to the composite-order setting.

Ring Sampler. The randomized samp(params) outputs a “level-zero encoding”
a € Séa) for a nearly uniform element o € g R. (Note that we require that the
“plaintext” « € R is nearly uniform, but not that the encoding a is uniform
in Séa).)

Encoding. The (possibly randomized) enc(params,T,a) takes a “level-zero”
encoding a € Séa) for some a € R and index T C U, and outputs the

“level-T” encoding u € S(TO‘) for the same a.

Re-Randomization. The randomized reRand(params,T,u) re-randomizes
encodings relative to the same index. Specifically, for an index 7" C U and
encoding u € Séﬂa), it outputs another encoding u' € Sgpa). Moreover for

any two uj,us € S(TOL)7 the output distributions of reRand(params, T, u;) and
reRand(params, T, ug) are statistically indistinguishable.
Addition and negation. Given params and two encodings relative to the

same index, u; € Sq(qal) and us € S}az), we have an addition function
artaz)

add(params, T, uj,us) = u1 + ug € S(T , and a negation function
neg(params, T,u1) = —u; € Srf,fal).

Multiplication. For u; € S(Ti”), Uy € S(Tiz) such that Ty UT, C U and 17 N
Ty = (0, we have a multiplication function mul(params, T}, u1, Ts, us) = u3 X

(a1-a2)
U € ST1UT2 .

Functional Encryption Without Obfuscation 491

Zero-test. The procedure isZero(params, u) outputs 1 if u € S,%O) and 0 other-
wise. Note that in conjunction with the subtraction procedure, this lets us
test if w1, us € Sy encode the same element « € fR.

Next, we define two new extension procedures on graded encodings that we
will use. Informally, these procedures allow the creation of new levels, using
only the public parameters of the graded encoding. In particular, they take as
input a subset of levels V of the universe U, and create a new “clone” V' of the
levels in V that is disjoint from U. Since the levels lie outside U, they cannot
be zero-tested. Instead, the procedures output a function fy/_y which maps
the level V' back to V, but does not allow mapping levels corresponding to any
subsets of V'. Thus, the entire set V' must be “filled out” before zero testing
can happen. In particular, it is impossible to multiply an element encoded at
a subset of V' with an element encoded at a subset of V and still be able to
perform zero-testing. In effect, this binds the encodings in V' together, similar
to how straddling sets [BGK+14] where used in obfuscation.

Extension. This procedure allows extending the graded encoding system by

fresh asymmetric levels. Specifically, extend(params,V,{e;};) takes as input

a set V C U and a sequence of encodings e; each at level v; C V and outputs

a new set V' where V' N U = () and encodings e} each at level v] C V' along
with a public transformation function fy_ vy such that:-

— Addition and multiplication procedures from above can be applied to

encodings at these new levels as well. Thus, given u; € S(Tal) and

ug € S(TQQ) where T C (U \ V) UV’, we have add(params, T, uy,u2) =

up + ug € S(Ta1+a2)’ and neg(params,T,u;) = —u; € S(Tfal). Similarly,

given u; € Sq(ffl) and uy € S,EFZZ) such that Ty UT, C (U\ V) UV’ and
T1NTy = 0, we have a multiplication function mul(params, 71, uy, To, ug) =
Uy X Ug € S(Tol‘b';‘;). Notice that we do not need to support adding or mul-
tiplying elements if the final level is some W such that both WN'V # (
and WNV’ £ 0.

— The new levels v, are obtained by mapping the old levels v; into the clone
V. Specifically, let V = {j1,...5:} and V' = {j1,...J;}. For each i we
have that if v; = {jk,, ...k, } then v} = {j. ,...j},}

— fur—v(e, W) takes as input a set W' such that V. C W C (U \ V) U
V' and an element ¢/ € S, Tt outputs an encoding e € S“%)(W,\V,)

obtained by mapping each element in V' back to V. Specifically, if W' =
XU {jp,,---J,t where j; € V' as above and X C U \ V, then the output
will be an element e encoded relative to set W = XU {jx,,...,Jr, t C U,
which will be in the original universe U.

Extension’. This function extend’ is the same as the previous function
extend(params, V, {e;};) except that it also outputs additionally randomiz-

ers (encodings of 0) for each level it outputs an encoding at.

In the full version [GGHZ14b], we demonstrate how to obtain the above
extension procedures from the new CLT encodings. We stress that, except for

492 S. Garg et al.

the new extension procedures, all the procedures above are exactly the same
as an optimized variant in [CLT15b]. The extension functions are built on top
of the underlying graded encoding without any modifications to the existing
procedures — in particular, no extra terms are needed in the public parameters.
The extension functions can also be applied to any multilinear map that has a
similar form to the GGH or CLT maps. For that reason, while the complexity
assumptions we will be making currently do not hold on any multilinear map
candidate, it is very likely that future maps which may support our assumptions
will also support this extension procedure.

In order to simplify notation, we will denote encodings as [a]} where T
denotes the level of the encoding, and ¢ denotes that only the $R; component of
a is preserved and the $R; components for j # ¢ are zeroed out. Similarly, we
use [04]?”42”‘3 to denote that the MR;; x R;, X R;, component is preserved and all
other components are zeroed out. This notation is due to [GGHZ14a).

Our complexity assumptions. We now describe the complexity assumptions we
will be making in this work. Fix a universe U, a dimension d, and a partition of
U into subsets V, W. For the assumptions below we will assume that randomizers
(encodings of zero) are provided for each index in U.

For our first assumption, the adversary is given elements in every level and in
every subring except subring Rg. The adversary is additionally given challenge
elements in every level that either lie in the subring R;, or lie in the subring
R X Ry, and is asked to distinguish the two cases. Using only multilinear oper-
ations, distinguishing those cases is impossible: pairing either challenge element
with anything in fR; results in an element in Ry, while pairing either with any-
thing in fR; for ¢ > 1 results in 0. Thus, only pairing with an element in Rq will
allow for distinguishing the two cases, and such elements are not given to the
adversary.

Definition 2 (Assumption 1). The following distributions are indistinguish-
able:

(i) 000)) 0 (() ().,)

In our second assumption, the universe U is split into two disjoint sets: V and
W. For levels in V, the adversary is given elements encoded in each fR; for i > 1,
as well as elements in Ry X R1. No elements are provided in V that are encoded in
Ro but not R, or vice versa. For levels in W, the adversary is given elements in
all of the subrings. Additionally, a clone set of levels W’ is created disjoint from
U using the extension function. The adversary is given the function fy_w, also
outputted by the extension procedure, which allows him to translate elements
from the entire W into W. For each level in W', the adversary is given encodings
in R; for i > 1, as well as challenge encodings that are either all in %Ry or all in
R1. The adversary is then asked to distinguish the two cases. To distinguish the
two cases, the adversary has to first “fill up” the set W’ so that it can be mapped
back into the universe U. If he pairs a challenge element with any non-challenge

Functional Encryption Without Obfuscation 493

element in W', the result will always be an encoding of zero since the challenge
elements and non-challenge elements in W’ lie in different subrings. Therefore,
his only choice it to pair all of the challenge elements together and map back to
U, obtaining an element at level W encoded in either subring PRg or R;. At this
point, he can only pair with elements in V, and crucially, all the elements in V
are either encoded in Ry x Ry, or are disjoint from PRy and R;. Therefore, there
is no way to distinguish the two cases using only the multilinear operations.
In the following, let [d] denote the set {0,1,...,d — 1}.

Definition 3 (Assumption 2). The following two distributions are indistin-
guishable:

(<[Si’j}j{-i})¢evj>1 ' ([Si]j{-i})iew,jdd] ’ ([ti]?;l}%ev’

extend! (params,W7{([ui,j]j{'i}%ew,pf([vi]({)i})iew}) > and

< ([si’j]j{.i}>ievﬁj>1 ’ <[Si]j{'i}>i€W,je[d] ’ ([ti]?ﬁ>ie\/’

extend’ <params,W, { ([ui’j]]{i})iew,bl ’ OmH{i}LEW} > >

3 Additional Background

In this section, we start by providing the definition of adaptively secure FE for
general circuits. Then we recall the notions of branching programs and develop
notation that will be needed in our context.

3.1 Adaptively Secure FE

A functional encryption system consists of four algorithms:
Setup, KeyGen, Encrypt, and Decrypt.

- Setup(A): The setup algorithm takes in the security parameter \ as input and
outputs the public parameters M PK and a master secret key M SK.

- KeyGen(MSK,y): The key generation algorithm takes in the master secret
key MSK, and an attribute string y as input. It outputs a private key SK,
for y. y is included as part of the secret key.

- Encrypt(M PK,z): The encryption algorithm takes the public parameters
MPK and a message x as input. It outputs a ciphertext C.

- Decrypt(SK,,C): The decryption algorithm takes a private key SK, for
attribute string y and a ciphertext C' (encrypting say the message x) as input
and outputs the value C(z,y), where C is a fixed universal circuit.

494 S. Garg et al.

Correctness of the scheme requires that for correctly generated private keys
for y and correctly generated ciphertexts encrypting x, decryption yields C(z, y)
except with negligible probability.

We will now give the security definition for adaptive FE. This is described by
a security game between a challenger and an attacker that proceeds as follows.

- Setup: The challenger runs the Setup algorithm and gives the public parame-
ters M PK to the attacker.

- Query Phase I: The attacker queries the challenger for private keys corre-
sponding to attribute strings y1,...,¥q,, which the challenger provides.

- Challenge: The attacker declares two messages xg, 1. We require that Vi €
[¢1] we have that C(z1,y;) = C(xo,y;). The challenger flips a random coin 3 €
{0,1} and runs C «— Encrypt(MPK, xzg). The challenger gives the ciphertext
C to the adversary.

- Query Phase II: The attacker queries the challenger for private keys corre-
sponding to the attribute strings v4,+1,...,¥q, with the added restriction that
Vi e {q,...,q} we have C(z1,y;) = Clxo, y;).

- Guess: The attacker outputs a guess 3 for S.

The advantage of an attacker in this game is defined to be Pr[8 = 3] — %

3.2 Branching Programs

A branching program consists of a sequence of steps, where each step is defined
by a pair of permutations. In each step the program examines one input bit,
and depending on its value the program chooses one of the permutations. The
program outputs 1 if and only if the multiplications of the permutations chosen
in all steps is the identity permutation. In our setting, just like in previous work
it will be easier to work with matrix branching programs that we define next.

Definition 4 (Matrix Branching Program). A branching program of width
w and length £ on n-bit inputs is given by two 0/1 permutation matrices
My, My € {0,1}*>** My # My and by a sequence:
L ¢
BP = (inp(i), Bi,o, Bi1),_;
where each B,y is a permutation matriz in {0,1}*", and inp(i) € [n] is the
input bit position examined in step i. We require that, for all inputs x € {0,1}",

4
H Bi,ﬂﬂxnp(i) € {MOa Ml}

i=1

Let (a, 8) be a position where M|, 3] = 1 and M|, 5] = 0. Call (o,)
a distinguishing coordinate. The output of the branching program on input x €
{0,1}™ is as follows:

4
Bp(l‘) = <H Bivxinp(i)> [O‘7ﬁ]

i=1

Functional Encryption Without Obfuscation 495

Theorem 2 [Bar86]. For any depth-d fan-in-2 boolean circuit C, there exists an
oblivious branching program of width 5 and length at most 4% that computes the
same function as the circuit C.

Remark 1. In our functional encryption construction we do not require that the
branching program is of constant width. In particular we can use any reductions
that result in a polynomial size branching program.

For simplicity of notation, it will be convenient to consider two-input branch-
ing programs.® Here, the input = € {0,1}?" is split into two inputs (z[0], z[1]).
We then split inp into two functions:

— inp" : [{] — {0,1} where inp’(i) = [inp(i)/n] — 1. Basically, inp’ chooses which
of the inputs x[0] and x[1] inp points to.

— bit : [¢{] — [n] where bit(¢) = inp(¢) mod n. Basically, bit chooses which bit of
x[b] inp points to, where b is the bit chosen by inp’.

Then we can write the branching program evaluation as

14
BP(:L‘) = (H Bi,x[inp’(i)]b;t(i)> [Oé,/@]
=1

Remark 2. Tt is also straightforward to consider two-input branching programs
where z[0] and z[1] have different sizes. We treat them as the same size for
convenience.

Kilian Randomization of Branching Programs. Let BP be a branching program
as above. Fix a ring R. Choose random invertible matrices Ry,...,Ry_1, and
define a new branching program BP’ which is identical to BP, except that
the matrices B;; are replaced with Bi,b = Ri_1- By - Ri_l, where we take
Ry = Ry = I,,. We observe that

4

4
H Bivxinp(i) = H Bivxinp(i)
i=1

i=1

so that for every z we have that BP'(x) = BP(x). Moreover, we have the
following:

Theorem 3 [Kil88]. Fir any input x € {0,1}*, and let b = BP(x) = BP'(z).
Then the set of matrices multiplied together to evaluate BP'(x), namely the set

B,)

are distributed as uniform random w X w invertible matrices over R, conditioned
on their product being My .

5 Not to be confused with dual-input branching programs from [BGK+14].

496 S. Garg et al.

4 Slotted Functional Encryption

In this section, we define the notion of slotted functional encryption. Later we will
show how this scheme can be used to realize a functional encryption scheme for
general circuits. A slotted functional encryption scheme, is roughly a functional
encryption with multiple “slots,” where each slot roughly serves as an indepen-
dent copy of the functional encryption scheme. For any ciphertext or secret key,
each slot is either active or inactive, and active slots will contain some bit string
that potentially varies from slot to slot. Decryption is well-defined only if all slots
that are active in both the ciphertext and the secret key agree on the output,
in which case the result of decryption is the agreed-upon output. Otherwise, the
output is undefined. Slot 0 is a special slot and where the public parameters rest.
This is the slot that anyone can encrypt a message to; all the other slots require
secret parameters.

- Setup(A, d, C): The setup algorithm takes in the security parameter A\, a num-
ber d of slots, and a fixed universal circuit description C as inputs and outputs
the public parameters M PK and a master secret key MSK.

- KeyGeng(MSK,y): The slotted key generation algorithm takes in the master
secret key M SK, and a vector of attribute strings y € {{0,1}" UL} as input.
It outputs a private key SK for y.

- KeyGen(MSK,y): The unslotted version of the key generation is just a con-
venient shorthand, it runs KeyGen(MSK,y) where y = (y, L,...).

- Encryptg(MSK, x): A private slotted encryption algorithm takes in the secret
parameters M SK, and a vector of messages x € {{0,1}" U L}¢ as input. It
outputs a ciphertext C.

- Encrypt(M PK, x): a public unslotted encryption algorithm takes in the pub-
lic parameters M PK, and a single message x € {0,1}" as input. It outputs
an encryption of the message vector (x, L, 1,...)

- Decrypt(SK,C): The decryption algorithm takes a private key SK for
attribute string y and a ciphertext C (encrypting say the messages x). Let
S C [d] be the set of active indices, namely those i € [d] where z[j] # L and
ylj] # L. I C(z[y], y[j]) = b for all active indices i € S, it outputs b. Otherwise,
the output is undefined.

We note that a slotted functional encryption scheme yields in particular
a functional encryption using only the unslotted versions of the KeyGen and
Encrypt procedures. Our goal will be to prove security of the derived (unslotted)
functional encryption scheme, using various security properties of the full slotted
scheme.

For security of slotted FE, consider the following general security game, para-
meterized by a predicate P (which encodes the security property that we want
to capture).

- Setup: The challenger runs the Setup algorithm and gives the public parame-
ters M PK to the attacker. The challenger also flips a random coin 8 € {0, 1},
which it keeps secret.

Functional Encryption Without Obfuscation 497

- Query Phase I: The attacker adaptively queries the challenger for private
keys corresponding to attribute vectors pairs ygo),ygl) € {{0,1}" U 1L}9 for
i =1,...,q1. The challenger responds with the secret keys for ygﬁ).

- Challenge: The attacker declares two message s vector x(@,x(1) ¢
{{0,1} U L}?. The challenger responds with the ciphertext C «
Encryptg(MSK,x®).

- Query Phase II: The attacker continues to adaptively queries the challenger
for private keys corresponding to attribute vectors pairs ygo), yz(l) e {{o0,1}"u
1} for i = q; +1,...,q. The challenger responds with the secret keys for ygﬁ).

- Guess: The attacker outputs a guess 3’ for 3.

- Check: The challenger evaluates a predicate P on the secret-key and challenge
queries: ¢ = P({ygb)}ie[q]ﬁe{o)l}, x(© x() If the predicate holds (¢ = 1) then
the challenger outputs 8” = ’. Otherwise the challenger outputs a random
independent bit 3”.

The advantage of an attacker in this game is defined to be Pr[3 = 8”] — 1 (and
note that if ¢ = 0 then the advantage is 0). The scheme is secure relative to the
given predicate if feasible adversaries can only have a negligible advantage.

The predicate P. The security game varies depending on the predicate P, with
more permissive predicates yielding stronger notions of security. At a minimum,
we need P to exclude queries that let the adversary trivially distinguish the
left and right sides by applying the decryption procedure on the secret keys and
ciphertext received. Similarly, P must also exclude queries that let the adversary
distinguish the left and right sides by generating its own ciphertexts.

However, it is not hard to see that using a permissive predicate P that only
excludes these trivial attacks results in a security notion that is too strong: such
permissive P would allow arbitrary secret-key queries (y,y’) so long as C(z,y) =
C(z,y’) for all z € {0,1}"™, which means that we directly get indistinguishability
obfuscation. Specifically, for a universal circuit U, we obfuscate a function f(z) =
U(f,z) by publishing the FE secret key SK . This lets anyone evaluate f(z) for
any x by encrypting = under the scheme, and then using SK; to decrypt f(z),
and the security notion would say that any two functionally equivalent f and f’
are indistinguishable.

Next, we therefore describe some simple predicates which are more restrictive,
and hence they correspond to weaker notions of security (which are still strong
enough for our purposes). Very roughly speaking, they all require that most of
the time we have yl(o) = ygl) and/or x(©) = x(M) | and they differ only in a handful
of slots and/or a handful of queries.

4.1 Core Predicates

We begin by describing some simple core predicates that our slotted FE scheme
should satisfy. In the next section we show that the corresponding security prop-
erties imply also stronger properties, including adaptively security of the induced
unslotted FE scheme.

498 S. Garg et al.

0. Slot Symmetry. P checks that there are two distinct non-special slots
a # B, a, B # 0 such that:
~ x© x(M are equal in all the slots other than «,, and they swap the
content of these two slots. Namely x(©)[j] = x([j] := x[j] for all j ¢
{a, B}, and x®)[a] = x1=D[g] := 2*) for b= 0, 1.

— Similarly for all ¢ ygo), y(l)

; ~ are equal in all the slots other than «, 3, and

they swap the content of these two slots. Namely ygo) [1] = ygl)[j] =yilj]

for all j ¢ {«, 8}, and y(b)[= yl(l*b) (0] = yi(b*) for b=0, 1.

b=0 b=1
xO[]y:”[f] x[j] %1
j=a | 20 y,go*) j=oa | () 7/7 1)
j=08 |09 [y j=8 20 [y
J# o, B x[j] | yili] J# o, B| x[j] | yilJ]

Intuitively, this allows us to permute the contents of different slots without
the adversary’s notice.

1. Single-Use Message and Function Hiding. P checks that there is a non-
special slot a # 0 and a secret key query « € [¢] such that:

— All key-queries other than 7 contain two identical functions, yl() = ygl)

yi Vi # .
— Key-query v has two keys that differ only in slot «, y

yoli] Vi # o
- The challenge query has two plaintexts that differ only in slot a, x(©) [1] =

x([j] = x[j] ¥j # o
~ We have either the same functionality C(x@[a],y\”"[a]) = C(xM]al,
0

D1 = vV =

yMa]), or the two plaintext slots are inactive x(V[a] = xM[a] = L,
or the two key slots are inactive y()[| = E,l)[]= L.
b=0 b=1
(OIF @y
x| i Ul x| Yi Ul
T=y|i#Ey i=iFy
j=al 2" [y]y,[d] j=al 2" [y]y,[a]
j#a X[l | yilj] j#af x[jl | yilj]
Requirements:

C(x(o*),y(o*)) =
C(m(l*),y(l*)) or

(0% = 2(1%) = | or

y(O*) — y(l*) - |

This allows us to argue both message and function hiding for one slot in one
query, as long as that slot is not the special slot that the public parameters
can encrypt to.

2. Slot Duplication. P checks that there are distinct slots a # 8 with 8 # 0
such that:

Functional Encryption Without Obfuscation 499

— All the slots other than 3 are the same between left and right, x(©[j] =
xMW[j] := x[j] for all j # B, and y'”[j] = yV[4] := ys[j] for all i and all
J# 0.

— Slots 3 on the left are inactive, x(9[g] = L and ygo) [B] = L for all ¢

— Slots 8 on the right are either inactive or equal to slots o, x(V[g] €
{x[a], L} and ygo) (8] € {yila], L} for all 4.

b=0 b=1
xO[j]ly{"] <[] | 1]
i—a| o | j—a| & | &
j=p0 1 1 j=p0 |z*or L|yS or L
J# o8] x[j] | yilJ] J#a B x[j] | yilj]

We stress that slot duplication can duplicate the slots of the ciphertext and

secret keys simultaneously. We can choose to duplicate the slots of all keys

and the ciphertext, or any subset of them.

. Ciphertext Moving. P checks that there are two distinct slots a # § such

that:
— For each secret key, all slots (including o and 3) are the same on the left

and right: ygo) 7] = ygl)[j} :=y;[j] for all 7 and j.

— For each secret key, slot « is identical to slot 3 on both the left and right:
vile]l =y:[0] :=y! (y! is potentially).

— For the challenge ciphertext, all slots other than «,(are the same
between left and right: x(O)[j] = x(W[j] := x[4] for all j ¢ {a, 5}

— For the challenge ciphertext, slot 8 on the left and slot a on the right
are inactive: x(0[3] = x(M[a] = L.

— For the challenge ciphertext, slot « on the left is equal to slot 3 on the
right: x(©[a] = x(M[F] = x*.

b=0 b=1
xO]]y] xO[ly]
J=a | " | y; Jj=a | L |y
j=81 L yi j=p81 " yi
J# o, B x[j] | yili] j#a,B] x[j] | yilJ]

This lets us rearrange the slots of the challenge ciphertext, as long as each
secret keys is identical among the affected slots. We stress that ciphertext
moving allows one of the slots being rearranged to be the special slot.
. Weak key moving. P checks that there are two distinct non-special slots
a # B, a, B # 0 and secret-key query ~ such that:
— For the challenge ciphertext, all slots (including « and) are the same
between left and right: x(9[j] = x(W[j] := x[j] for all j.
— For the challenge ciphertext, slot « is identical to slot 5 on both the left
and right: x[a] = x[8] := z*
— For each secret key query other than +, all slots (including o and j3) are
the same on the left and right: ygo) [j] = ygl)[j] :=y;[j] for all ¢ # v and
all j.

500 S. Garg et al.

— For secret key query =, all slots other than «, 3 are the same on the left
and right: y%o) 7] = yg,l)[j] =y,lj] for all j ¢ {a, B}

— For secret key query -, slot 8 on the left and slot « on the right are
; e v O3] — My
inactive: y~ ' [8] =y~ '[o] = L.

— For secret key query 7, slot « on the left is identical to slot 8 on the right:

vl =18 = v =y

b=0 b=1
(O T
. y; 7] . i 7]
X(O)mizvi#w X(l)[]}izvi#’y
j=aof z* | y" j=al z* 1
j=06] = | L lyilj] J=0 = | vy |yl
J # o x[j] |y,l] j #a| x[5] |y,lJ]

This is the secret key version of ciphertext moving, allowing us to rearrange
the slots of a secret key, as long as the challenge ciphertext is identical among
the affected slots. The main difference from ciphertext moving is that weak
key moving does not allow us to modify the special slot 0.

We observe that the above properties, even in combination, will never allow
the changing of a secret key in slot 0. Thus, we will not be able to obtain any
form of function hiding for the derived unslotted functional encryption scheme
just from the properties above. This serves as a sanity check that the above
properties are not too strong, and might be obtainable from simple assumptions,
and indeed we give a construction meeting these in Sect. 5.

In the following sections, we present several other more complex predicates,
and show that security relative to the complex predicates is implied by the
security relative only to the predicates above. The proofs “consume” some slots,
so extra slots are needed to obtain security for the more complex predicates.

One of the predicates we prove security for corresponds exactly to regular
functional encryption. The total number of slots consumed in the proof from the
basic predicates is 3. Combining with our slotted FE construction in Sect. 5 for 4
slots, we obtain adaptively secure functional encryption for NC! functionalities.

In the full version [GGHZ14b], we show how to use our predicates, together
with puncturable PRFs and randomized encodings (defined in Sect. 3) to obtain
functional encryption for all circuits. The total number of slots consumed is 5,
meaning we need a 6-slotted FE. In particular, the number of slots is constant,
which translates to a constant number (namely 6) of subgroups in the underlying
composite-order multilinear maps.

4.2 Additional Derivable Predicates

Now we describe several additional properties that can be derived from the core
properties above, potentially “using up” several additional slots.

5. New Slot. P checks that there are distinct slots a # § with « not being the
special 0 slot (but 8 may be), such that:

Functional Encryption Without Obfuscation 501

For each secret key, all slots (including « and 3) are the same on the left
and right: ygo) 7] = ygl)[j] for all ¢ and j.

For each secret key, slot « is inactive on both the left and the right:
y§°) [a] = ygl)[a] = 1 for all 4

For the challenge ciphertext, all slots other than slot a are the same on
the left and right: x(9[j] = x(W[j] for all j # o

For the challenge ciphertext, slot § is active on both the left and the right:
xO[g] =xM[5] # L.

For the challenge ciphertext, slot « is inactive on the left: x(9[a] = L

=0 b=1

xO] [y) x5 [y
j=a 1 1 j=« x* 1
i=0 Bl #£L| . j=0 XBI#L ..
FFo Bl 0 17| TEas o |0V

Notice that there is no restriction to the value in slot « of the ciphertext on
the right. Thus, the allows us to take a slot that is inactive for all secret keys
and the challenge ciphertext, and place an arbitrary value in the slot for the
ciphertext.

. Strong key moving. P checks that there are distinct non-special slots « # 3,
a, B # 0, and secret key query « such that:

For the challenge ciphertext, all slots (including « and) are the same
between left and right: x(9[j] = xW[j] := x[j] for all j.

For each secret key query other than +, all slots (including « and 3) are
the same on the left and right: y§0> 7] = ygl)[j] = y;[j] for all ¢ # v and
all j.

For secret key query -, all slots other than «, 3 are the same on the left

and right: y\[j] = y§"[j] := y,[j] for all j ¢ {a, 8}.

For secret key query <, slot 0 on the left and slot « on the right are
inactive: yfyo) 8] = y,(yl)[oz} =1

For secret key query -, slot a on the left is identical to slot 3 on the right:
v lo) =y V8] = 7.

When decrypting the challenge with secret key ~, slot a on the left and
slot 8 on the right give the same result. In other words, C(x[a],y}) =

Cx[A],¥3)

b=0 b=1
07, I
xO[3] 3’5)-[J] x(M[j] 3’5).[J] Requirements:
=iy P=AEY) =
j=a x; y* j=a| x 1 O’C(:c* y*)
J=8 =i | L |yilil| [i=8] =1 [v |vili] a
J# o x[j] |y4l] J# o x[j] |y4l]

This is a stronger form of secret key moving where we can actually rearrange
secret key slots even if the challenge ciphertext differs in those slots, as long
as decryption is unaffected.

502 S. Garg et al.

7. Weak ciphertext indistinguishability. P checks that there is a non-

special slot a # 0 such that:
— For each secret key, all slots (including slot «) are the same on the left

and right: ygo) 7] = ygl)[j] :=y;[j] for all ¢ and j.

— For the challenge ciphertext, all slots except slot o are the same on the
left and right: xl(.o) 7] = xgl)[j] = x[j] for all j # a.

— For the challenge ciphertext, slot a decrypts to the same result for each
secret key query: C(x(V[a], y;[a]) = C(xMa], yila]).

b=0 b=0

xO[]ly 1] xO[]ly D] Requirements:
j=a| v j=a| 3 v Clz,y;) = Cla7,y;)Vi
J 7o x[5] | yilj] J#af x[j] | yilj]

In other words, we can change the value of the ciphertext in any slot other
than the special 0 slot as long as decryption is unaffected. This almost gives
us functional encryption, except for the requirement that the slot is not the
special slot.

8. Strong ciphertext indistinguishability. Same as above, except « can
be 0.

4.3 Reductions

Now we describe several reductions showing that core properties described above
are sufficient for obtaining the additional derivable properties also described
above, at the cost of “using up” several additional slots. We note that in all of
the reductions below, any existing property, whether core or derived, is preserved
in the reduction.

Lemma 3. (1) Single-use hiding and (2) slot duplication imply (5) new slot.

Proof. Use slot duplication to duplicate contents of the 3 slot into the originally
empty « slot of the ciphertext (don’t duplicate the secret keys), and then use
single-use message and function hiding to change the message to z*, which is
possible since there are no secret keys components in the « slot.

Lemma 4. (1) Single-use hiding, (2) slot duplication, (3) and weak key moving
for d+ 1 slots implies (6) strong key moving for d slots (all existing properties
being preserved).

Proof. We prove for a = 1,3 = 2, the other cases being identical. We will move
secret key v € [q]. Let slot d+1 be a “scratch” slot, that is unused by the normal
scheme. We will use slot d+ 1 in the security proof. Below is the table of hybrids.
For secret keys i € [g],7 # 7 not included in the table, slot d + 1 is inactive,
and the rest of the slots remain the same throughout all hybrids. Similarly, slots
j #1,2,d+ 1 remain the same for the ciphertext and the ~th secret key.

Functional Encryption Without Obfuscation 503

. B4V Y~ 1J
Hybndj:lj:g]j:dJrlj:1j:72[;':d+1 comments

Hy xy | xI 1 y* 1 L

H, xg | xT x4 y* 1L L Slot duplication

H> xo | x] 0 L 1 y* Weak secret key moving
Hs xo | xI x] 1 i y* Single-use message hiding
H, xg | xT] 1 y* 1L Weak secret key moving
Hs xo | x] 1 € y* 1 Slot duplication

Lemma 5. (0) Slot symmetry, (5) new slot, and (6) strong key moving for d+1
slots implies weak (7) weak ciphertext indistinguishability for d slots (all existing
properties being preserved).

Proof. We prove for a = 1, the other cases being identical. The slot d+ 1 will be
the “scratch” slot, that is unused by the normal scheme but used in the security
proof. In the hybrids below we will use the strong key moving property. Note
that the strong key moving only allows for changing one key at a time, while
in the hybrids below we will need to change all the keys. This can be done by
changing one key at a time.

: zj] vy € lal, y4]
Hybndjzlj:d—f—lj:lj:d—i—l comments
Hy x5 1 y* 1
H,y x4 x] y* 1 New slot
Hy xg x3 1 y* Strong key moving (Xgq)
Hs € a7 € y* New slot
H,] L y* Slot Symmetry

Lemma 6. (2) Slot duplication, (3) weak ciphertext moving, and (7) weak
ciphertext indistinguishability for d + 1 slots implies (8) strong ciphertext indis-
tinguishability for d slots (all existing properties preserved).

Proof. Only need to add the case for slot 0. Just as before, the slot d+ 1 will be
the “scratch” slot, that is unused by the normal scheme but used in the security
proof.

:] yi[J]
Hybl"ldj,:()],:d_~_1J.:()].:d_~_1 Comments
Hy x5 1L yi il
H, 6 1 yi o Slot duplication
H> 1 o yi yi Weak ciphertext moving
Hs €] yi Y Weak ciphertext indistinguishability
Hy x] L Yi Yi Weak ciphertext moving
Hs] 1 yi 1 Slot duplication

504 S. Garg et al.

5 Slotted Functional Encryption for NC*

We now give our slotted FE scheme for NC!. We will describe our scheme in
terms of matrix branching programs, using Barrington’s Theorem (Theorem 2)
to realize slotted FE for NC' circuits. We describe our scheme for single bit
outputs — it can easily be extended to multi-bit outputs by running multiple
instances of the scheme in parallel.

Setup(\, BP,d): Given a universal 2-input matrix branching program

BP — (bit, inp, (Bi,b)ie[£]7be{0,1})
run params « InstGen(1*, {1,...,¢},d). Then, choose random matrices R; € R
for i € [(— 1], as well as random «; ; for i € [(],b € {0,1}. Let B, p = v p- Ri—1-
Bi,b-Ri_l fori e [2,5—1], and Bl,b = Oq,b'Bl,b-Rl_l and B&b = Oég,b-Rg_l -Bg,b6.
Compute Az’b = [Bgi}b]%i} for j € [d]. (Here Ry and Ry are set to identity.)

Let V be the subset of [¢] that corresponds to the secret key: V = {i €
[4] : inp(i) = 0}, and W be the subset of [¢] that corresponds to the ciphertext:
W = {i € [{] : inp(¢) = 1}. Then the universe U=V UW.

The master public key is M PK = (params, (A?,b)z‘ewbe{o,l})

The master secret key consists of the Ag,b fori e VUW.

KeyGeng(MSK,y): Given an attribute y € {{0,1}" U 1}4, choose random
B € RforieV,be {0,1}, and output the secret key

_ . J
SK, = extend | params,V, | 3; Z Ai7y[j]bit<i)
Jylil#L =%

Encrypts(MSK,x): Given an attribute z € {{0,1}" U 1}4, choose random
B; € R for i € W,b € {0,1}, and output the ciphertext

C = extend | params, W, | 3; - Z Al

1,2 []bit(e)
Jizl[jl#L iEeW

Encrypt(MPK,m): Given a message m € {0,1}", choose random ; € R for
i € W, and output the ciphertext

C = extend (params, W, (ﬁl . A?mb. _))
) it () ieW

6 Using current graded encodings, it is not possible to publicly compute matrix inverses
since users do not have direct access to the underlying ring. However, the setup pro-
cedure would know a trapdoor for the graded encodings that does allow computing
the matrix inverse. Alternatively, we can replace R, ! with the adjugate matrix R?dj ,
encodings of which can be computed publicly. The adjugate and matrix inverse
only differ by a scalar multiple (namely, the determinant), and since we multiply
everything by a random scalar anyway, the distributions of encodings obtained are
identical in both approaches.

Functional Encryption Without Obfuscation 505

Remark 3. Note that all the encodings given out in the ciphertext can be re-
randomized (to noise ¢’) using the randomizer provided in the public parame-
ters. We do not mention the re-randomization above explicitly, for the sake of
simplicity of notation.

Decrypt(MPK, SK,C): Given a secret key SK = fy/ v, (K;);ey and a cipher-
K, ifie \%4
C; ifie W’

D = fyv (fw'—»w <H Di))
iev

Then run the zero-test procedure on a distinguishing coordinate of D.

text C = fw—w, (Ci)icw, let D; = { and compute the product

Correctness. Evaluation is carried out slot by slot. In slot j, if either K
or C is inactive, then the corresponding ring will be empty. Therefore,
the result of the computation is Oin slot j. In a slot j where K and C
are both zictive, then write K;[j] = [/Biaivy[.ﬂbit(i)Biﬁybit(i)]ii’} and C;[j] =
[ﬁiai;mbit(i)Biambit(i)]ii’} for some index elements i’ to be the components of
K,C in the ring R;. Let d[j] = (y[j],m[j]) € {0,1}*". Then we can write
Dl[]] = [ﬂiai,d[j]inp(i),bit(i)Bi,d[j]inp(i),bit(i)]z[i}'
Therefore, the product D'[j] = [[,cy Dilj] is equal to

J
D/[j} = [H <ﬁiai7d[j]inp(i),bit(i)> H Bivd[j]inp(z’),bit(i)‘|

ieU i€elU U’
J
= H <6iai7d[j]inp(i),bic(i)) H Bivd[j]inp(i),bit(i)‘|
€U €U U’

where U’ =V UW'’. Applying fw_w to this encoding gives an encoding of the
same product, but relative to the set V/UW, and then applying fv/_v gives the
encoding relative to U. Therefore, D = fy/ v (fw _w(D’)) satisfies

J
[H (ﬁiai7d[j]inp(i),bit(i)> H Bi;d[j]'np(i),bit(i)]

D[j] =
i€l i€U U
J
= [H (ﬁi%du]inpm,bitm) MBP(dUD]
icU U

We only care about ciphertexts and secret keys where the branching program
evaluates the same in every slot, so BP(d[j]) is the same for all active slots j;
call the result b. Define 7[j] = ﬁiai>d[j]inp(i),bit(i) projected down to ring R;, and
v = > ,es 7lj] where S is the set of active slots. Note that we only care about

506 S. Garg et al.

secret keys and ciphertext where there is at least one active slot. Therefore with
overwhelming probability v # 0.

We can now write D = [yM]y;. Then when we zero test a distinguishing
coordinate of D, with overwhelming probability, the result will match b.

5.1 Security Proof

Theorem 4. Assuming Assumptions 1 and 2, the scheme described above sat-
isfies the core properties of the slotted FE scheme.

Slot Symmetry. Our scheme satisfies perfect slot symmetry, where the advantage
of an even infinitely powerful adversary is 0. This follows from the fact that slots
correspond to sub-rings in our scheme, and our subrings are generated in a totally
symmetric manner.

Single-use Message and Function hiding. In our scheme, the matrices are just the
matrices from Kilian-randomized branching programs, where the randomization
in each sub-ring is independent. In the single slot j where changes are made,
only the ciphertext and a single public key are active. Let z = (xq,yo) be the
ciphertext and secret key values active on the left side, and 2z’ = (x1,y;) be the
values on the right side. Then on the left side, only the matrices Bz‘,z[inp(i)]bitm are
handed out in ring fR;, and by Theorem 3, these matrices are uniform random
matrices subject to their product being Mc (4, .y,)- Similarly, on the left size, the
matrices handed out are uniform random matrices subject their product being
Mc(z, y,)- Since C(zo,y0) = C(z1,y1), these distributions are identical, so our
scheme satisfies perfect single use hiding.

Slot duplication. We will prove slot duplication from Assumption 1. Let « € [d]
and 8 # «a,0. Obtain the challenge for assumption 1, and re-order the rings

so that the challenge has the form (Si,j = [s”]j{l}) (1) ey where T; =

1€U,j#pB
[til{;y or Ti = [tz]if . We now simulate the view of the adversary as follows.
Given a 0/1 matrix B and an encoding e, let e - B be the matrix of encodings,
where e - B has e in any position where B has a 1, and an encoding of 0in any
position where B has a 0 (note that we will be multipling e - B by other matrices
of encodings, so the encodings of 0 do not actually have to be computed, but
merely serve as placeholders in the computation).

Choose random matrices R; € R for i € [{ — 1], as well as random o,
and set Ag’b = ;- Rim1 - (Sij - Bip) - Ri_l for j # 37. This formally sets
gy = a;’bsm' in ring M;, which leaves a;; in ring S undetermined. Define
D], =a},-Ri1-(T;-Bip)- R .

7 We actually cannot compute the quantities R;l since we do not have access to the
trapdoor for the encodings. Therefore, we must actually compute R?dj instead of
R !, However, since we multiply by a random scalar anyway, the distribution of
encodings is exactly the same as if we had computed the matrix inverse.

Functional Encryption Without Obfuscation 507

Using the Ag’b, we can simulate the public paramters as in the scheme. To
answer the challenge ciphertext query, there are two cases. If slot 3 is empty,
then we can answer the challenge ciphertext query as in the slotted FE scheme
with the Aib (since [is empty, we do not need Aﬁb). If slot 3 is not a copy
of slot « on either side of the challenge, then we answer the challenge query by
choosing a random 3, € R for i € W,b € {0,1}, and output the ciphertext

C = extend [params, W, | 3} - Z Al + DI

g 4,2 F]bit(s) i,z [pit(i)
Jix[jl# L, j¢{a,6} ieW

If the T; are only encodings in ring R, then this correctly simulates the
ciphertext when slot 3 empty, formally setting 3; = 3; in rings other that R, Rz,
and setting 3; = fjt; in rings R, R (the value in Ry is irrelevant in this case).
If the T; are encodings in R, X Rp, then this correctly simulates the ciphertext
when slot 8 is a copy of slot «, with the same formal settings of variables as
before.

We can perform a similar procedure to simulate the secret key queries. In the
end, if T; are only encodings in R, then this correctly simulates the left side in
slot duplication, where slot 3 is empty. If T; are encodings in R, x Rg, then this
correctly simulates the right side of slot duplication, where slot (§ is sometimes a
copy of slot «. Thus, if Assumption 1 holds, the two cases are indistinguishable.

Ciphertext moving. We will prove ciphertext moving from Assumption 2. Let
«a # 3, where « is the slot the ciphertext is in, and [is the slot we wish to move
the ciphertext to. Obtain the challenge for assumption 2, and re-order the rings
so that the challenge has the form

(Si’j - [Si’j]{i}>iev,j¢{aﬁ} ’ <Si’j B [Si’j]]{li}%ew,je[d} 7 <E - [ti]({l{}ﬁ)iev’

E = extend' <paramS,W, {(Ui,j = [ui’j]ii})iEWj>1 5 (Vi = [’Ui]’gi})iEW} >

where 7y = « or v = (.

We now simulate the view of the adversary. Choose random matrices R; € R
for i € [¢ — 1], random o ;, and set A], = aj, - Ri—1- (Sij - Bip) - R; ! for
ieV,j¢{ap),andalli € W, j € [d]. This formally sets o = i,
in ring M;, which leaves a; 3 in rings o and # undetermined for i € V. Define
A;fb—kAf,b = Oég,b'Rz’—l (T;-Bip) -Ri_l for i € V, which formally sets «; ;, = ag,bTi
in rings R, and Rg.

Now using the A{’b values, we can simulate the public parameters (since we
have all the values for i € W, j = 0), as well as all the secret key queries (since all
the secret key queries are identical in slots o and (3, meaning we will always have

it A’g , together, neither being used separately). To generate the challenge
ciphertext, we use the result E of extension. Let Ui’,j be the components in F
corresponding to the U; ;, and V; the components corresponding to the V;. Then
the challenge ciphertext is set as

508 S. Garg et al.

C :fW'—>Wa

Bi- Riey- | (Vi Biay,,)+ > (Ui Bialjlu) | - B
jx[jl#L,j¢{a,B} i€W

Note that the randomization terms given in E must be used to randomize
the components above.

Where z* is the ciphertext term that is either in slot « or slot 5. It is
straightforward to show that if the V; are encodings in R, then this simulates
the challenge ciphertext with x* in slot «, and similarly if V; are encodings
in Mg, the challenge ciphertext has z* in slot 3. Therefore, the two cases are
indistinguishable and ciphertext moving follows.

Weak key moving. This is basically the same as ciphertext moving, except that we
swap the roles of W and V. The main difference is that, because now the public
parameters lie in V, and we are not given terms in V containing « separate from j3,
we must have «, 8 # 0 so that we can still generate the public parameters in Rg.

5.2 Adaptively Secure FE for NC*
Our slotted FE scheme easily gives adaptively secure FE for NC!:

Theorem 5. If assumptions 1 and 2 above hold, then adaptively secure FE for
NC*' exists.

Proof. Set d = 4 in our slotted FE scheme. Then Lemmas3,4,5, and 6 gives a
slotted scheme with d = 1 that satisfies strong ciphertext indistinguishability,
which implies adaptive FE security.

References

[ABSV14] Ananth, P., Brakerski, Z., Segev, G., Vaikuntanathan, V.: From selective
to adaptive security in functional encryption. Cryptology ePrint Archive,
Report 2014/917 (2014). http://eprint.iacr.org/2014/917
[AGVW13] Agrawal, S., Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional
encryption: new perspectives and lower bounds. In: Canetti, R., Garay,
J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 500-518.
Springer, Heidelberg (2013)

[AJ15] Ananth, P., Jain, A.: Indistinguishability obfuscation from compact func-
tional encryption. Cryptology ePrint Archive, Report 2015/173 (2015).
http://eprint.iacr.org/2015/173

[Bar86] Barrington, D.A.: Bounded-width polynomial-size branching programs
recognize exactly those languages in nci. In: STOC (1986)

[BGI14] Boyle, E., Goldwasser, S., Ivan, L.: Functional signatures and pseudoran-
dom functions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp.
501-519. Springer, Heidelberg (2014)

http://eprint.iacr.org/2014/917
http://eprint.iacr.org/2015/173

[BGK-+14]

[BLMR13]

[BR14]

[BS02]

[BS15]

[BSW11]

[BV15]

[BW13]

[BWZ14]

[BZ14]

[CGH+15]

[CHL415]

[CLT13]

[CLT15a]

[CLT15b)

[Gen06]

Functional Encryption Without Obfuscation 509

Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfusca-
tion against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EURO-
CRYPT 2014. LNCS, vol. 8441, pp. 221-238. Springer, Heidelberg (2014)
Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomor-
phic PRFs and their applications. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 410-428. Springer, Heidel-
berg (2013)

Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all cir-
cuits via generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS,
vol. 8349, pp. 1-25. Springer, Heidelberg (2014)

Boneh, D., Silverberg, A.: Applications of multilinear forms to cryptogra-
phy. Cryptology ePrint Archive, Report 2002/080 (2002). http://eprint.
iacr.org/2002/080

Brakerski, Z., Segev, G.: Function-private functional encryption in the
private-key setting. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II.
LNCS, vol. 9015, pp. 306-324. Springer, Heidelberg (2015)

Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and
challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253-273.
Springer, Heidelberg (2011)

Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from
functional encryption. Cryptology ePrint Archive, Report 2015/163
(2015). http://eprint.iacr.org/2015/163

Boneh, D., Waters, B.: Constrained pseudorandom functions and their
applications. In: Sako, K., Sarkar, P. (eds.) ASTACRYPT 2013, Part II
LNCS, vol. 8270, pp. 280-300. Springer, Heidelberg (2013)

Boneh, D., Wu, D.J., Zimmerman, J.: Immunizing multilinear maps
against zeroizing attacks. Cryptology ePrint Archive, Report 2014/930
(2014). http://eprint.iacr.org/2014,/930

Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing,
and more from indistinguishability obfuscation. In: Garay, J.A., Gennaro,
R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 480-499. Springer,
Heidelberg (2014)

Coron, J.-S., et al.: Zeroizing without low-level zeroes: New MMAP attacks
and their limitations. In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO
2015, Part I. LNCS, vol. 9215, pp. 247-266. Springer, Heidelberg (2015)

Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the
multilinear map over the integers. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. LNCS, vol. 9056, pp. 3-12. Springer, Heidelberg
(2015)

Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over
the integers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I.
LNCS, vol. 8042, pp. 476-493. Springer, Heidelberg (2013)

Coron, J.-S., Lepoint, T., Tibouchi, M.: New multilinear maps over the
integers. Cryptology ePrint Archive, Report 2015/162 (2015). http://
eprint.iacr.org/2015/162

Coron, J.-S., Lepoint, T., Tibouchi, M.: New multilinear maps over the
integers. In: Gennaro, R., Robshaw, J.B. (eds.) CRYPTO 2015, Part I.
LNCS, vol. 9215, pp. 267-286. Springer, Heidelberg (2015)

Gentry, C.: Practical identity-based encryption without random oracles.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445-464.
Springer, Heidelberg (2006)

http://eprint.iacr.org/2002/080
http://eprint.iacr.org/2002/080
http://eprint.iacr.org/2015/163
http://eprint.iacr.org/2014/930
http://eprint.iacr.org/2015/162
http://eprint.iacr.org/2015/162

510 S. Garg et al.

[GGH13a]

[GGH+13b)

[GGHZ14a]

[GGHZ14b)

[GGSW13]

[GLSW14]

[GLW14]

[GVW12]

[1K00]

[Kil8s]

[KPTZ13]

[0'N10]

[PST14]

[Wat05]

Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lat-
tices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS,
vol. 7881, pp. 1-17. Springer, Heidelberg (2013)

Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.:
Candidate indistinguishability obfuscation and functional encryption for
all circuits. In: 54th Annual Symposium on Foundations of Computer
Science, pp. 40-49. IEEE Computer Society Press, Berkeley, CA, USA,
26—29 October 2013

Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Fully secure attribute based
encryption from multilinear maps. Cryptology ePrint Archive, Report
2014/622 (2014). http://eprint.iacr.org/2014 /622

Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Fully secure func-
tional encryption without obfuscation. Cryptology ePrint Archive, Report
2014/666 (2014). http://eprint.iacr.org/2014/666

Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its
applications. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th
Annual ACM Symposium on Theory of Computing, pp. 467-476. ACM
Press, Palo Alto (2013)

Gentry, C., Lewko, A., Sahai, A., Waters, B.: Indistinguishability obfus-
cation from the multilinear subgroup elimination assumption. Cryptology
ePrint Archive, Report 2014/309 (2014). http://eprint.iacr.org/2014,/309
Gentry, C., Lewko, A., Waters, B.: Witness encryption from instance inde-
pendent assumptions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014,
Part I. LNCS, vol. 8616, pp. 426—443. Springer, Heidelberg (2014)
Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with
bounded collusions via multi-party computation. In: Safavi-Naini, R.,
Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 162-179. Springer,
Heidelberg (2012)

Ishai, Y., Kushilevitz, E.: Randomizing polynomials: a new representation
with applications to round-efficient secure computation. In: 41st Annual
Symposium on Foundations of Computer Science, pp. 294-304. IEEE
Computer Society Press, Redondo Beach, California, USA, 12-14 Novem-
ber 2000

Kilian, J.: Founding cryptography on oblivious transfer. In: 20th Annual
ACM Symposium on Theory of Computing, pp. 20-31. ACM Press,
Chicago, llinois, USA, 2—4 May 1988

Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegat-
able pseudorandom functions and applications. In: Sadeghi, A.-R., Gligor,
V.D., Yung, M. (eds.) ACM CCS 2013: 20th Conference on Computer and
Communications Security, pp. 669-684. ACM Press, Berlin, Germany, 4-8
November 2013

O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint
Archive, Report 2010/556 (2010). http://eprint.iacr.org/2010/556

Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation from
semantically-secure multilinear encodings. In: Garay, J.A., Gennaro, R.
(eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 500-517. Springer,
Heidelberg (2014)

Waters, B.: Efficient identity-based encryption without random oracles.
In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114-127.
Springer, Heidelberg (2005)

http://eprint.iacr.org/2014/622
http://eprint.iacr.org/2014/666
http://eprint.iacr.org/2014/309
http://eprint.iacr.org/2010/556

[Wat09]

[Wat14]

[Yao82]

Functional Encryption Without Obfuscation 511

Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE
under simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol.
5677, pp. 619-636. Springer, Heidelberg (2009)

Waters, B.: A punctured programming approach to adaptively secure func-
tional encryption. Cryptology ePrint Archive, Report 2014/588 (2014).
http://eprint.iacr.org/

Yao, A.C.-C.: Protocols for secure computations (extended abstract). In:
23rd Annual Symposium on Foundations of Computer Science, pp. 160—
164. IEEE Computer Society Press, Chicago, Illinois, 3-5 November 1982

http://eprint.iacr.org/

	Functional Encryption Without Obfuscation
	1 Introduction
	1.1 Our Results
	1.2 Overview of Our Techniques
	1.3 Instantiating Our Assumptions
	1.4 Independent Work
	1.5 Subsequent Work

	2 Preliminaries: Graded Encoding Schemes
	3 Additional Background
	3.1 Adaptively Secure FE
	3.2 Branching Programs

	4 Slotted Functional Encryption
	4.1 Core Predicates
	4.2 Additional Derivable Predicates
	4.3 Reductions

	5 Slotted Functional Encryption for NC1
	5.1 Security Proof
	5.2 Adaptively Secure FE for NC1

	References

