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Abstract: Endophytes, which are widely found in host plants and have no harmful effects, are a
vital biological resource. Plant endophytes promote plant growth and enhance plants’ resistance to
diseases, pests, and environmental stresses. In addition, they enhance the synthesis of important
secondary metabolites in plants and improve the potential applicability of plants in agriculture,
medicine, food, and horticulture. In this review, we summarize the recent progress in understanding
the interaction between endophytes and plants and summarize the construction of synthetic microbial
communities (SynComs) and metaomics analysis of the interaction between endophytes and plants.
The application and development prospects of endophytes in agriculture, medicine, and other
industries are also discussed to provide a reference for further study of the interaction between
endophytes and plants and further development and utilization of endophytes.
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1. Introduction

Endophytes are diverse and valuable resources in nature with the potential for hu-
man exploitation. In the early stage of endophyte discovery, the soil microbiota was the
main seed bank for bioactive compounds [1,2]. In recent years, the search for microbial
candidate sources with high application potential has become an area of increasing focus,
as the repeated discovery of known metabolites from soil microorganisms has become
more frequent. There is a great deal of interest in the potential of microorganisms from
poorly studied environments, including plant-related microorganisms such as endophytes.
Undoubtedly, as essential components of the plant microecosystem, endophytes have a
profound influence on the synthesis and accumulation of various secondary metabolites
in the host plant. To date, active substances with significant therapeutic effects, such as
anticancer drugs, antibiotics, antiviral drugs, antidiabetic drugs, and immunosuppres-
sive compounds, have been isolated from poorly studied endophytes interacting with
plants [3–6]. Despite some advances, the molecular mechanisms by which endophytes
influence the occurrence of metabolic substances in plants are still unknown. Fortunately,
further analysis of the biological features, structure–activity relationships, and modes of
action between endophytes and plants can aid in the further investigation of their in-
terrelationships. This will facilitate the exploration of the molecular mechanisms and
related signaling pathways via which endophytes affect the generation of plant secondary
metabolites [7].

Secondary metabolites (SMs) are the products formed by interactions with the envi-
ronment during plant growth and development. SMs mainly include alkaloids, flavonoids,
terpenoids, peptides, phenols, sterols, and additional minor molecular organic com-
pounds [8,9]. As essential substances used by plants for self-protection to cope with
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their environment, SMs have various physiological functions, such as regulating plant
growth and biological defense, and they are also involved in the plant response abiotic
stresses, such as drought, low temperature, salinity, and metals [10–13]. In recent years,
research on plant SMs has developed rapidly, especially in of the fields of human health
and agricultural production [14]. However, the yield of SMs from plants is very limited
and is far from meeting the growing market demand. Therefore, it is imperative to find
ways to improve the biosynthesis of SMs in plants.

To date, several reviews on plant SMs have been published [15–17], but there are
few systematic reviews on how endophytes affect the synthesis of plant SMs [18–20].
In this review, we have summarized the development of endophyte–plant interactions
and the molecular mechanisms of endophyte–plant SM interactions, and we have pre-
sented a platform for endophyte–plant interactions. Furthermore, the possible role of
endophyte-promoted plant SMs in plant growth induction, structure–activity relation-
ships, mechanisms of action of SMs in plants, and practical applications in human life are
discussed.

2. Basis of the Interaction between Endophytes and Plants

Endophytes play a significant role in promoting the growth of host plants, and con-
versely, plant bodies are also crucial for the adaptation of endophytes to complex environ-
ments [21]. An essential manifestation of the host plant’s influence on endophytes is that it
provides an environment with sufficient water and nutrients for endophyte colonization,
either inside or on its surface, and forms certain special structures [22]. Endophytes are
frequently observed in plants in the form of multicellular aggregate communities, which
have attracted significant attention in recent years because they can be regarded as a special
“microecological” system formed by endophytes and host plants [23–25]. In this system, a
series of distinct interactions occur between endophytes and plants. These interactions help
endophytes resist environmental changes more effectively and assist plants in producing
biological products conducive to their growth.

2.1. Evolution of Interactions between Endophytes and Groups of Plants

Endophytes interact with plants over extended periods of time. In nature, the ocean
is the cradle of life, with algae and bacteria being the main remaining members from
the early ocean. They produce oxygen during metabolism to support life and promote
the switch from aquatic to terrestrial life [26,27]. Two significant factors influence the
transition from aquatic to terrestrial life in plants (Figure 1). In the absence of chlorophyll
molecules, plants can survive on land by reducing their light-catching surface, which
is also suitable for the dark habitat of early terrestrial bryophytes [28]. In addition, the
early interaction with soil microorganisms enabled moss to survive on land for a long
time, which was the beginning of the interaction between plants and microorganisms in
evolutionary terms [29]. Fossil evidence from 400 million years ago strongly suggests that
plants engaged in symbiotic associations with mycorrhizal fungi [30], and the adaptive
value of this ability has been preserved throughout plant evolutionary history. However,
reliable evidence of interactions between plants and microorganisms found in modern
studies came from the 1930s: when livestock ate endophytic fungus-infected herbage, great
losses occurred in the animal husbandry industry, leading to the initial understanding of
endophytic bacteria in plants [31].

A major problem facing humanity in the 21st century is the lack of plant resources [32],
a challenge further exacerbated by human population growth, soil degradation, and pol-
lution from various environmental factors, including floods, droughts [33], salinity [34],
temperature (extreme heat and cold) [35], and heavy metals [36]. Plants are saprobic, but
they have evolved defense mechanisms for sensing and adapting to stressful environments
over long periods of evolution. Some common and extensively used methods include
osmotic agent production, altered water movement, and scavenging of reactive oxygen
species [32]. Endophytes, as an essential link in the adaptation of plants to environmental
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changes, undoubtedly play an essential role. Indeed, as endophytes are being intensively
studied, their interaction with plants has great potential value for effectively addressing
the current shortage of plant resources. Therefore, it is essential to explore the evolution of
endophyte–plant interactions.
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Figure 1. Model diagram of endophytes promoting the evolution of lower plants from aquatic to
terrestrial conditions. In the ocean, the evolution of chlorophyll-a made it possible for lower algae
to obtain O2 by forming interactions with nitrogen-fixing bacteria and then migrate onto land. On
land, nitrifying bacteria and other beneficial microorganisms can obtain O2 and nutrients needed to
maintain their own growth, resist environmental stress, and evolve into shade-loving mosses. Finally,
organic acids produced by mosses digest stones and fertilize the soil.

2.2. Changes in the Genetic Material of Endophytes Interacting with Plants

Plant genes are fundamental to cellular processes and defense mechanisms in general.
However, long ago, plants actively evolved genetic modules to support symbiosis and
benefit from the presence of microorganisms. This represented an essential genetic shift in
plants from aquatic to terrestrial life and formed a strong basis for active genetic innovation
in plants. Despite the risk of invasion by pathogens, these modules are still retained
in plants and support the interaction between plants and endophytes [37]. Currently,
the mechanisms by which plants respond to invading microorganisms by symbiosis or
immune response are unknown, but some exciting discoveries have been made (Figure 2).
An intriguing example involves a LysM receptor involved in mycorrhizal interactions.
Nearly all terrestrial plants have LysM receptors that ensure the detection of various
microbial signals. LysM receptors have a variety of minor molecular phantom structures
on their surface that can bind to different proteins to form specific receptors. Chitin on the
surface of pathogens or symbiotic signaling molecules (Nod factor, Myc factor) produced
by beneficial microorganisms can be efficiently recognized, and the output of signals for
the antimicrobial defense of plants against pathogens or the symbiotic reaction between
microbes and plants can be controlled [38,39]. During this process, intense calcium ion
shock events occur in the nucleus in response to the incoming symbiotic signal. In addition,
during mycorrhizal symbiosis, OsMYR1, as a fungal receptor, can accurately identify the
differences in chitin between fungi and recruit beneficial endophytic fungi [40].
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Figure 2. Patterns of molecular mechanisms underlying the initiation of symbiotic or immune
responses of plants to signaling molecules during mycorrhizal interactions. LysM1 receptor modules
interact with different proteins to form unique-acting receptors on plant cell membrane surfaces
(NFR1, LYK3, CERK6, OsMYR1-OsCERK1, OsMYR1-OsCEBIP et al.), and some receptors antagonize
each other, such as the OsMYR1-OsCERK1 receptor and the OsMYR1-OsCEBIP receptor. When
mycorrhizal interactions occur, extracellular signal molecules (Nod factor, Myc factor, chitin et al.)
with these particular receptor combinations form defense or symbiotic signals in the cytoplasm, which
initiate the plant cell’s internal defense or the expression of related genes. In addition, symbiosis
and defense reactions in the process of symbiosis are accompanied by strong calcium oscillation in
the nuclei. In calcium excitation, the symbiotic signal activates DMI2 protein under the action of
related receptors, and the related channel proteins DMI1 and CNGC15s on the nuclear membrane
are activated through the signal cascade reaction. The electrochemical signal in the nucleus changes
dramatically, resulting in the movement of Ca2+ between the inner and outer membrane of the
nucleus and the perinuclear lumen.

Changes in genetic material are important for plant evolution and the core factor
affecting endophyte–plant interactions. The interactions of early microbes depended
only on the shallow surface area or on free space in the plant body [29,41], and these
interactions did not lead to the formation of a symbiotic association in the traditional
sense. Deep symbiosis later resulted from horizontal gene transfer (HGT) between species.
Compared with vertical gene transfer (VGT), the greatest innovation of HGT is that it
disrupts the reproductive isolation between species and makes the communication of
genetic material between various organisms in nature more complex and diverse [42,43].
At present, HGT is known to commonly occur in prokaryotes and unicellular eukaryotes,
but in multicellular eukaryotes, HGT is often considered to occur less frequently [44]. As
observed in plants with endogenous bacteria, gene transfer in multicellular eukaryotes is
a landmark event. On the one hand, these transfer events increase the genetic diversity
of organisms, expanding the horizons of scientific research. On the other hand, they give
plants and endogenous bacteria the ability to adapt to their changing environment, as
plant–endophyte interactions are very important for genetic stability [45]. Therefore, the
identification of changes in genetic material between plants and endophytes may allow us
to quickly reveal the mechanisms related to microecological system balance and function
during interactions between plants and endophytes.
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2.3. Progress in Research on Endogenous Microecosystems

Plants actively seek the help of microbes to survive stressful situations. Over the past
decade, there has been a paradigm shift in plant science, with the discovery of microbial
functions and community composition increasingly being seen as drivers for improving the
functioning of plant hosts. The endophytic microbiome can expand the plant genome and
metabolic capacity to provide or promote a range of functions that help plants maintain
basic life activities, including nutrient acquisition, immune regulation, and biological
stress tolerance. Although endophytic microbial communities have been proposed as the
next platform for the Green Revolution, basic research on the mechanisms of microbial
community assembly and activity is still in its infancy [46]. Fortunately, in recent years,
some progress has been made in the construction of a microecological balance between
endophytes and plant hosts. Based on these findings, it is possible to decipher the functional
diversity and complexity of the spatiotemporal dynamics of plant microbial communities
and explore the balance of the endophyte microecological system [47].

Few topics in plant biology have aroused as much interest and controversy as endophyte–
plant microecosystems. However, although the phenomenon of endophyte–plant microe-
cosystems is now widely accepted, there are still various questions about how and why
endophytes develop, how they maintain balance, and how they affect the growth processes
of plants [25]. Numerous research results show that when plants recruit beneficial microbes,
the symbiotic effects can increase the release of key molecular compounds during endo-
phyte colonization [48,49]. Some plants can even regulate the absorption of nutrients and
the expression of related genes at different stages of successful endophytic colonization. En-
dophytes that successfully colonize plants quickly use plant bodies to obtain the nutrients
they need and rapidly form a stable collection of microbial communities, also known as the
microbiome [50]. The microbiome is present in all parts and tissues of plants, forming a
microecosystem with comprehensive linkages that can help all organisms cope with the
overall impact of environmental conditions on the microecosystem and provide benefits to
both microbial communities and plants.

To date, many unique metabolic substances have been discovered in plant–endophyte
microecosystems. These substances provide a reference for successfully revealing the
types of interactions in endophyte–plant microecosystems. For example, microorganisms
can stimulate plant growth by metabolizing tryptophan and other small molecules in
plant secretions and producing plant hormones, including coenzymes, gibberellic acid
(GA), cytokinin (CTK), and plant hormone analogues [51]. Coenzymes can also induce
the transcription of 1-aminocyclopropane-1-carboxylate (ACC) synthetase and catalyze
the formation of ACC. As the direct precursor of ethylene, ACC can be metabolized by
endophytes through ACC deaminase to ameliorate abiotic stress [52]. Plant-associated
microbiome members also produce a series of enzymes that detoxify reactive oxygen
species (ROS), thereby minimizing plant-induced stress. In addition, the plant-associated
microbiome protects plants from pathogens by producing antibiotics, lyases, and volatiles.
Various microbial structures, such as secretory systems, flagella, and cilia, and proteins,
including effector proteins, indirectly contribute to plant defense responses by triggering the
induced systemic resistance response (ISR) [53]. At the same time, the microbial populations
involved in the interactions within and between species also maintain a balance in the
ecosystem to protect plants from pathogens, and the core endogenous bacteria can also
amplify signals from the host, promoting microbiome restructuring to form the appropriate
community structure in time and space under dynamic conditions to provide benefits
to the plant [54]. Endophytes can alter the formation of secondary metabolites in plants,
and they also produce many unique metabolites to enrich the resource pool of plants.
In general, the stable formation of endophytes and plant microecosystems improves the
growth performance and health status of plants and plays an increasingly important role in
the process of plant growth and development (Figure 3).
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Figure 3. Plants recruit beneficial microorganisms to colonize and maintain the stability of the
microecological system. As the plant grows, soil microorganisms are enriched, forming soil microbial
communities at the roots. On the one hand, the interaction of microorganisms is used to improve the
living environment, and on the other hand, inorganic elements in the soil (C, P, K, et al.) are enriched
to provide nutrients needed for growth and development. In this process, plants release special
substances that attract certain microorganisms from the environment and direct the colonization of
beneficial microbes, triggering a range of physiological and biochemical reactions.

3. Molecular Mechanisms Affecting the Secondary Metabolites of Endophytes in
Plants

Endophyte action is a popular research topic in research on plant secondary metabolite
formation and its influencing factors. Previous studies have suggested that the synthesis of
diverse secondary metabolites in plants is related to the influence of various environmental
factors, such as temperature, light, and microorganisms. Endophytes, as important envi-
ronmental factors, play an important role in the formation and accumulation of secondary
metabolites in plants. There have been many studies on the mechanisms by which endo-
phytes promote the synthesis of secondary metabolites in plants, but there is no unified
view within the scientific community. At present, there are four main hypothesized mecha-
nisms: endophytes promote the accumulation of photosynthetic material in plants [55–58].
Endophytes regulate the expression of genes related to plant secondary metabolites [59–61].
The transfer of endophytes leads to the formation of compounds or alters the genetic mate-
rial within plants [62,63]. The synthesis of unique secondary metabolites by endophytes
affects plant material synthesis pathways [57,64].

3.1. Endophytes Promote the Accumulation of Photosynthetic Material in Plants

Endophytes promote the accumulation of photosynthesis-related substances, increase
plant nutrient intake, and induce the synthesis of secondary metabolites. More than 90%
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of plant dry matter comes from the carbon fixation reaction of photosynthesis, and the
organic matter assimilated by photosynthesis is the material basis for the formation of plant
metabolites. Therefore, improving the efficiency of the utilization of light energy by plants
is an important way to improve crop yield [65]. As reliable partners of plants, endophytes
play an important role in improving the photosynthetic efficiency of plants [66] (Table 1). It
was found that the water utilization rate of rice inoculated with endophytic fungi increased
significantly and was positively correlated with daylight integration [61]. In addition, when
nicotinamide adenine dinucleotide phosphate (NADPH)-dependent dehydrogenase was
introduced into cyanobacteria, cell growth was significantly accelerated, photosynthetic
efficiency was increased by approximately 50%, and cell activity increased. It was further
found that the light saturation point of the modified cyanobacteria doubled, indicating
that they could tolerate higher light intensity, which is important for adapting to drastic
changes in light intensity in nature [67]. Therefore, we speculate that when an endophyte
forms a symbiotic relationship with a plant, the endophyte changes the absorption of
external substances, such as water molecules and inorganic salts, by the plant. Additionally,
when the plant body is enriched with nutrients, the endophyte rapidly uses the required
substances to form a large amount of NADPH and adenosine triphosphate (ATP) to supply
photosynthetic material to the plant body, which improves the photosynthetic efficiency
of the plant body, accelerates the enrichment of nutrients needed for growth, and thus
improves the rapid accumulation of secondary metabolites.
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Table 1. Endophytes affect the accumulation of photosynthetic components in the host.

Microbial Classification Endophytic Strains Sources Changes in Matter Functions Reference

Endophytic fungi Cystobasidiales and,
Chaetothyriales Ulmus minor Mill. Antioxidant enzymes and Auxin

Promote the growth to rhizome and
adjust the resistance of Dutch elm
disease (DED) disease in Ulmus.

[68]

Saccharomyces cerevisiae,
Zygosaccharomyces bailii, and
Saccharomyces kudriavzevii.

Tobacco (3-indoleacetic acid) IAA, and
elevated chlorophyll levels.

Promote the growth and
development of tobacco and disease

resistance.
[69]

Alternaria sorghi and,
Penicillium commune Phaseolus vulgaris L.

Photosynthetic pigments,
carbohydrate, and protein

contents.

Promote the growth and biomass
accumulation of common legumes. [70]

Penicillium brevicompactum
and, P. chrysogenum

Tomato and
Lettuce

Nutrients and Na+ contents, net
photosynthesis, water use

efficiency.

Improve the survival rate and
material accumulation of plants

under adverse environment.
[71]

Arbuscular mycorrhizal fungi
and Dark septate endophytes

(DSE)
Reed Antioxidant enzymes

Improve the growth, nutrient
content, and photosynthesis of

Phragmites
australis.

[72]

Gilmaniella sp. AL12 Atractylodes lancea Terpenoid Improve photosynthesis and
biomass synthesis. [73]

Cercospora Tricyrtis macropoda Amino acids, organic acids,
lipids.

Improve photosynthesis and
biomass synthesis. [74]

Endophytic bacteria Enterobacter sp. MN17 Pisum sativum Protein, fat, fiber, and ash Improve photosynthesis efficiency
and cadmium (Cd) pollution. [75]

Bacillus altitudinis HNH7 and
Bacillus velezensis HNH9 Cotton IAA Promote the growth of cotton plants [76]

Bacillus megaterium ZS-3 Arabidopsis thaliana Chlorophyll (Chl) content and
carotenoid content

Promote plant growth in
salt-stressed environments. [77]

Bacillus subtilis Phaseolus vulgaris L. Chl a and Chl b, lignin. Promote plant growth and stress
tolerance. [78]

Bacillus thuringiensis and,
Brevibacillus agri Phaseolus vulgaris L.

Photosynthetic pigments,
carbohydrate, and protein

contents.

Promote the growth and biomass
accumulation of common legumes. [70]

Burkholderia, Pseudomonas
and, Azospirillum No data

Shoot biomass, relative water
content, sugar, and proline

concentrations.

Improve the cold resistance of plants
and regulate their growth. [79]
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3.2. Endophytes Affect the Expression of Genes Related to Plant Secondary Metabolites

Endophytes regulate genes related to the synthesis of secondary metabolites by plant
cells through their signal transduction pathways. Endophytes also change the rate and
intensity of the expression of these genes and induce the production and accumulation of
corresponding secondary metabolites in plants (Table 2). The results showed that the levels
of nutrients (N, P, K, Ca, Mg, Mn, Fe, Cu, and Zn) and related quality parameters (polysac-
charide, total soluble protein, tea polyphenols, catechin, total flavonoids, and theobromine)
were significantly increased by inoculating tea plants with arbuscular mycorrhizal fungi
(AMF). In addition, the enzyme-encoding genes CsAPX, CsTCS1, CsPAL, CsC4H, CsF3H,
and CsDFR showed the same trend as their corresponding quality parameters, indicating
that AMF could promote the synthesis of secondary metabolites by upregulating the expres-
sion of related genes, thus affecting tea quality [42]. Other results showed that the culture
biomass of Euphorbia officinalis was increased by 19.35% after treatment with an elicitor
from the endophytic fungus Fusarium oxysporum, while the levels of isoflavin and diphenol
were 5.81 times and 3.56 times those in the control, respectively. The activity of 1-deoxy-D-
xylosulfos-5-phosphate synthetase (the key enzyme for the biosynthesis of isofluoromycin)
was not significantly improved, while the activity of 3-hydroxy-3-methylglutaryl coenzyme
A reductase (the key enzyme for phenol) was 1.67 times higher than that in the control [60].
In addition, the total levels of nine monomeric saponins in 1- to 4-year-old ginseng treated
with Bacillus polymyxis spraying and root irrigation were 36.83%, 44.52%, 67.96%, and
79.44% higher than those in the control from the same year. At the same time, coculture
of B. polymyxis and ginseng significantly increased the levels of 12 kinds of ginsenoside
monomers, especially the levels of the rare ginsenosides CK and protopanaxadiol, which
increased by 1.38- and 7.78-fold, respectively [80,81].
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Table 2. Endophytes affect the expression of plant-related genes.

Microbial Classification Endophytic Strains Sources Differences in Gene Expression Functions Reference

Endophytic fungi Penicillium brevicompactum and, P.
chrysogenum Tomato and Lettuce Enhanced expression of the NHX1 gene.

Improved sequestration of Na+ in vacuoles
is suggested by the upregulation of the
expression of vacuolar NHX1 Na+/H+

antiporters.

[71]

Gilmaniella sp. AL12 Atractylodes lancea

Genes and proteins related to primary
metabolism (carbon fixation, carbohydrate

metabolism, and energy metabolism) tended to
be upregulated.

Improved photosynthesis and biomass
synthesis. [73]

Paecilomyces variotii Arabidopsis thaliana Enhanced the expression of IAA related genes.

The reactive ROS production promoted
plant growth, yield, and quality parameters,

and increased the absorption of nitrogen
from the plant.

[82]

Biscogniauxia sp. and Didymella
sp. Vitis amurensis Rupr

Activation of phenylalanine ammonialyase
(PAL) and stilbene synthase (STS) gene

expression.
Stimulated the production of stilbenes. [83]

Serendipita indica and Serendipita
herbamans Solanum lycopersicum SPS-A1 gene expression and SWEET11b

expression. Sucrose resynthesis in roots. [84]

Pochonia chlamydosporia Tomato Expression changes of PAL, PIN II, PR1 and
LOX D.

Activated plant defense response and
improved survival ability. [85]

Endophytic bacteria Bacillus altitudinis HNH7 and
Bacillus velezensis HNH9 Cotton

Upregulated the expression of growth-linked
genes, EXP6, ARF1, ARF18, IAA9, CKX6, and
GID1b, and downregulated ERF and ERF17.

Promoted the growth of cotton plants. [76]

Enterobacter hormaechei H2A3 and
H5A2. Stevia rebaudiana The increase in the transcript levels of the KO,

KAH, UGT74G1, and UGT76G1 genes.

Increased steviol glycosides (SG) synthesis,
flavonoid content, and flavonoid

accumulation.
[86]

Pseudomonas Cotton Downregulated GhCAX3 expression.

Increased intracellular calcium ion (Ca2+),
hydrogen peroxide (H2O2), and nitric oxide
(NO) contents. The coordinated regulation

of Ca2+, H2O2, and NO enhanced cotton
resistance to Verticillium wilt.

[87]

Bacillus circulans GN03 Cotton

Upregulated the expression of phytohormone
synthesis-related genes (EDS1, AOC1, BES1,
and GA20ox), auxin transporter gene (Aux1),

and disease-resistance genes (NPR1 and PR1).

Enhanced growth promotion as well as
disease resistance. [88]
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3.3. Compound Formation and Genetic Material Transfer in Endophytes and Plants

Transfer of compounds or genetic material occurs between endophytes and hosts
(Table 3). Phomopsis sp., an endophytic fungus isolated from orchids in northern Ecuador,
secretes the volatile organic compounds junienes, which are found only in higher plants [89].
The roots of liquorice plants colonized with Bacillus pumilus showed increased levels of total
flavonoids, total polysaccharides, and glycyrrhizic acid. After inoculation with B. pumilus,
the expression levels of HMGR, SQS, and β-AS, the key enzymes of glycyrrhizin synthesis,
were significantly increased. These results indicated that B. pumilus could promote the
growth of Ural hay by modifying the accumulation of antioxidants and increasing the
glycyrrhizin content by changing the expression of key enzymes [90]. In addition, a large
number of bacteria, such as Lysinibacillus fusiformis, Bacillus megaterium, B. lichenifera, B.
pumilus, Brevibacterium halotolerans, Achromobacter xylosoxidans and Pseudomonas putida, were
isolated from the roots of the halophyte Prosopis strombulifera in the Khewra salt region of
Pakistan. The plant hormone abscisic acid (ABA) was widely present in these isolates [91].
Researchers isolated the strain Kocuria turfanensis 2M4 from the rhizosphere of salt-tolerant
plants. This strain exhibited IAA production, phosphorus solubilization, and ferrophilia.
In conclusion, the same or similar secondary metabolites were produced when endophytes
interacted with plants, which suggested that compounds and even genetic material might
be transferred between them during symbiosis.
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Table 3. Endophytes produce the same or similar secondary metabolites as the host plant.

Microbial
Classification Endophytic Strains Sources The Same or Similar Secondary Metabolites Functions Reference

Endophytic fungi Pyricularia oryza Rice Melanin, nectriapyrones, tenuazonic acid. It can effectively prevent plant diseases and
pests. [92]

Eupenicillium parvum Azadirachta indica Azadirachtin A and B. Having antifeedant and insect
growth-regulating properties. [93]

Pestalotiopsis fici Camellia sinensis Polyketide, nonribosomal peptides,
alkaloids, and terpenes.

Promotes the accumulation of plant active
ingredients and plant growth. [94]

T. asperellum,
T. brevicompactum,
T. koningiopsis, and
T. longibrachiatum

Vinca major, Vinca herbacea, and
Vinca minor

Alcohols, esters, pyrones (lactones), acids,
furanes, and lipids.

Antibacterial and cytotoxic activities and can
promote plant growth. [95]

Endophytic bacteria Bacterial strain Bvel1 Grape
Iturin A2, surfactin-C13 and -C15,

oxydifficidin, L-dihydroanticapsin, and azelaic
acid.

Antifungal activity; promotes wound healing
in plants. [96]

Pseudomonas,
Xanthomonas, Variovorax, Bacillus,

Pantoea, and
Stenotrophomonas

Alkanna tinctoria Pectinase and cellulase It has antibacterial and antitumor properties,
promoting wound healing and plant growth. [97]

Acinetobacter baumannii Capsicum annuum L.
Phenols, carboxylic acids, aromatic

heterocyclic compounds, ketones, aromatic
esters, aromatic benzenes, and alkenes.

Antioxidation; promotes plant growth. [98]

Bacillus atrophaeus and
Bacillus mojavensis Glycyrrhiza uralensis

1,2-benzenedicarboxylic acid, bis
(2-methylpropyl) ester; methyl ester;

9-octadecenoic acid,; and decanedioic acid,
bis(2-ethylhexyl) ester.

Resistance to Verticillium wilt disease and
other phytopathogens. [99]

Pseudomonas fluorescens ALEB7B Atractylodes lancea IAA

It triggers the oxidation burst, stimulates the
conversion of terpene hydrocarbon scaffolds
into active components containing oxygen

sesquiterpenes, and promotes the
accumulation of plant biomass and plant

growth.

[100]

Microbacterium and Burkholderia Coptis teeta Berberine Enhances plant nutrient absorption, promotes
growth, prevents pathogen damage. [101]

Bacillus subtilis LB5 Chuanxiong Rhizoma Ligustrazine
Promotes plant growth and biomass synthesis.

Simultaneously produced metabolites can
treat ischemic vascular-related diseases.

[102]
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3.4. Synthesis of Unique Secondary Metabolites by Endophytes Affects Plant Material Synthesis
Pathways

Endophytes can synthesize compounds that the host cannot synthesize, or can only
synthesize small amounts, changing the method of metabolite synthesis in the host and af-
fecting metabolite levels. Sphingomonas melonis, an endophytic bacterium found in rice, con-
fers resistance to disease-prone phenotypes by producing anthranilic acid. When Burkholde-
ria plantarii infects rice, S. melonis secretes the small extracellular signaling molecule am-
monia acetic acid to coordinate the host response and then interferes with the regulation
of the RpoS transcriptional cascade that is dependent on the virulence factor biosynthesis
pathway of B. plantarii. This prevents B. plantarii infection and promotes the accumula-
tion of plant secondary metabolites [103]. By comparing the volatile substances of mint
seedlings without fungi and those infected with endophytic fungi, significant differences
in the components of mint roots, stems, and leaves, and even new compounds were found
in mint infected with fungi [63]. In addition, Peng [104] screened an endophytic fungus
capable of transforming curcumin from turmeric rhizomes. The conversion products were
demethylcurcumin and dimethylcurcumin. Demethylcurcumin has higher antioxidant and
anti-inflammatory activities than curcumin. Fu [105] screened four endophytes capable
of transforming ursolic acid from the stems and leaves of the medicinal plant Huperzia
serrata. These endophytes enhanced the production of ursolic acid. Denise [106] used an
endophytic bacterium of the genus Anthracis to oxidize betulinic acid and transform it.
This oxidation reaction is similar to the metabolic pathway of betulinic acid in mammals,
providing a new method for studying this metabolic pathway in plants.

4. Progress in Research on Endophytes Acting on Secondary Metabolites in Plants
4.1. Construction of the SynComs Model for Endophyte–Plant Interactions

Microorganisms rarely exist alone, and there is a positive correlation between species
diversity and community productivity in nature. The ubiquity of these microbial communi-
ties in nature highlights the possible advantages of endophytic strains in coculture [107].
However, the study of plant secondary metabolites relying on only the naturally formed en-
dophyte community is becoming increasingly limited. Researchers have gradually shifted
their focus to identifying methods to better study the occurrence and accumulation of
secondary metabolites under the interaction between plants and endophytes. SynComs is a
process of artificially mixing different microorganisms with distinct species and functions
in certain proportions under certain conditions to create a stable microbial community with
distinct functions. With the development and implementation of SynComs, research on
plants and endophytes advanced further (Figure 4). SynComs consider multiple types
of interactions and the functions of different microorganisms under certain conditions to
determine the proportion of mixed, stable, and functional microbial communities that can
promote plant growth, nutrient uptake, and stress resistance. These interactions play an
important role in such aspects of secondary metabolite production and can be applied to
industrial production.

SynComs were first reported in the early 21st century. Saccharomyces cerevisiae was
genetically modified through genetic hybridization, and two nonmating strains, R and Y,
with different metabolic abilities were obtained. R synthesized lysine but needed adenine
for growth, and Y synthesized adenine but needed lysine for growth [108]. A stable and
sustained cooperative relationship was formed after coculture of the two strains, which laid a
foundation for the development of SynComs in the future. Further studies showed that internal
and external factors played an important role in the stability of the SynComs [109–112]. In
2014, researchers developed the concept of SynComs and defined SynComs as a coculture
system established by two or more microorganisms in a substrate with a clear composi-
tion [113]. Subsequently, the importance of host genotypes and core microorganisms for
the construction of SynComs was further revealed [114–116]. The above research results
greatly promoted the development of SynComs technology and laid a solid foundation for
the use of SynComs technology to reveal the function of plant endophyte communities and
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the interaction mechanisms with plants. The SynCom construction process is regulated by
multiple factors, such as the microorganisms themselves, plant hosts, and environment,
among which the effects of microorganisms themselves include interspecies interactions,
metabolism, and spatial structures [117]. Therefore, the construction of SynComs requires
comprehensive consideration of the interactions among species, metabolism, and spatial
structures to ensure the stability of SynComs.
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Figure 4. Construction of SynComs. SynComs with specific functions are formed by the recombina-
tion of microorganisms with different functions, depending on the needs of the plant. Functional
analysis of the recombinant microbial community was performed using an omics approach. Core
microbial communities that can play a stable and efficient role in plant growth and development, syn-
thesis, and accumulation of secondary metabolites can be screened for commercial mass production.
The function and composition of the SynComs were also optimized through practice.

4.2. Application of Omics to Elucidate the Mechanisms by Which Endophytes Promote the
Occurrence and Accumulation of Plant Secondary Metabolites

Endophytes promote the synthesis of plant secondary metabolites in various complex
ways, and traditional research methods have been insufficient for studying secondary
metabolites through these relationships [118]. Studies on plant secondary metabolites
have focused on their genetics, responses to stress, metabolism, and structures (Figure 5).
Among existing studies and analyses, the main research methods used to explore the
interactions between endophytes and plants include next-generation sequencing (NGS)
and omics analysis. To date, NGS has been widely used to study the diversity of microbial
communities in various environments [119–121]. In addition, this technology can also
be used for large-scale genome sequencing [119,122], gene expression analysis [123,124],
the identification of noncoding small RNAs [125,126], the screening of transcription factor
target genes [127,128], and DNA methylation [129,130]. However, NGS has limitations, such
as the possible detection of plant DNA when studying microbial communities interacting
with plants, thereby reducing the amount of data acquired for microbes. Thus, to avoid
interference with plant sequences, we can increase the specificity of the primers or improve
the ability of high-throughput data acquisition to obtain additional information. With
technological advancement, NGS will gradually improve. Currently, omics, as an effective
complement to this technique, plays an essential role in the analysis of plant secondary
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metabolites, particularly the joint effect of multiomics as a directional indicator to study
the interactions between endophytes and plants.
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Figure 5. Visualization of the popular research topics related to plant secondary metabolites in the
past five years. VOSviewer software was used to analyze the titles and abstracts of 12,745 articles
in the Web of Science database from the past five years (1 January 2018–11 October 2022). The
results showed that the current popular research topics mainly focus on three aspects of plant genes:
type, stress, and metabolism. The retrieval conditions used in the database are (ALL = (Secondary
metabolites)) AND ALL = (plant), the export format is a TAB delimited file, and the record content is
“Full record and referenced references”. The lowest frequency of keywords screened by VOSviewer
software was set as 15, and 4523 keywords were screened in total. Among 2714 keywords with
correlations greater than or equal to 60%, 351 uninformative keywords were manually removed, and
2363 keywords were finally used for visual analysis.

To date, the application of multiomic technology in studies on secondary metabolism to de-
termine the interactions between plants and endophytes is becoming more widespread [128,131].
In research, multomics generally takes the form of metaomics, which mainly includes
metagenomics, macrotranscriptomics, and macroproteomics. By combining metagenomic,
macrotranscriptomic, and macroproteomic methods, metaomics can be used to not only pre-
dict the potential functions of endophytic communities, but also to determine the functional
activity of endophytic communities [40,132]. At the same time, a more comprehensive
understanding of endophytic communities can be promoted by determining the intraspe-
cific relationships of communities, understanding nutrient competition between plants and
endophytes, and examining community development [133,134]. In recent years, metaomics
has been the focus and frontier of research in the field of plant–endophyte interactions,
with remarkable results. With the development of whole-metagenome shotgun (WMS)
sequencing technology, research using metaomics has changed from high-depth sequenc-
ing, which can only reflect the characteristics of one sample, to large-sample sequencing,
which can reflect the differences between different samples. Studies have shifted from
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sample sequencing at one time point to dynamic process sequencing in response to different
external environments [132,135].

However, the current metaomic research methods still have some shortcomings and
inadequacies. Metaomic analysis of plant samples, while potentially capable of representing
all the diversity in gene sequence and function, has not been able to elucidate all the
genes and functions of a single microorganism, and this has presented great difficulties in
exploring the functions of plant endophytes. Fortunately, modern methods such as single-
cell genome sequencing (SCGS) have been slowly developed [136]. Therefore, we should
look forward to the development of SCGS and alternative techniques to address these
difficult issues in studying the interaction between plants and endophytes and to further
elucidate the mechanisms by which endophytes facilitate the occurrence and accumulation
of secondary metabolites in plants.

4.3. Endophytes Advance the Application of Plant SMs

Endophytes are ideal resources for facilitating the formation and accumulation of
secondary metabolites in plants. Earth is a large biological resource bank, with approxi-
mately 270,000 plant species, and the number of endophytes that can be isolated exceeds
one million based on the calculation that there are approximately four distinct endophytes
in each plant [137]. The study of endophytes has opened up new areas for research into
the application of microorganisms. The current work focuses on the use of screening to
promote the formation and accumulation of plant secondary metabolites in host strains and
the transformation of strains to improve the breeding process, industrialized production,
and production capacity, as well as to improve the direct application of plant secondary
metabolites in food, agriculture, and other areas [138]. In addition, various plant secondary
metabolites have the potential to be indirectly exploited as biopesticides, pharmaceuticals,
or pharmaceutical precursors, and these secondary metabolites possess a wide range of ac-
tivities, including antimicrobial, antioxidant, and biocontrol activities [18,139]. At the same
time, the interaction between endophytes and plants produces new bioactive secondary
metabolites, providing feasible opportunities for the development of improved drugs and
more effective ways for humans to cure diseases in the future [140]. This result clearly
shows that using endophytes promotes the synthesis of host plant secondary metabolites
and the generation of new active substances. This solves the issues with using traditional
methods involving the long growth cycle and restrictions on the active ingredients needed
to produce plant resources. This method is expected to provide a new way to quickly
produce active substances in plants and will have great application value and development
potential.

5. Expectation

Endophytes are an important part of the plant microecosystem. They have a special
symbiotic and metabolic relationship with host plants and are a potential resource pool
for the synthesis and accumulation of plant secondary metabolites. At present, research
on endophytic bacteria in plants is still in its infancy, and only some plant groups have
been studied. The existing research is more focused on endophytes as a resource, and their
various novel structures and bioactive secondary metabolites have been discussed. As
a result, most research on the substances in host plants has been confined to those that
are the same or similar to active substances in endophytes. Thus, the construction of a
systemic database of endophytes and plants is not possible due to the lack of information
and the need for an endophyte resource platform. Endophytes play an important role
in the development of plant secondary metabolites and in promoting the synthesis and
accumulation of plant secondary metabolites. Many bioactive plant secondary metabolites
are transformed by endophytes to induce plant synthesis and accumulation. However, the
structure, dynamics, and functions of plant endophytic colonies, the factors influencing
the interaction between plant secondary metabolites and endophytic colonies, the spatial
patterns and signal transduction pathways, and the specific mechanism and molecular
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basis of the regulation of the biosynthesis of plant secondary metabolites by endophytes
still need to be further explored. In addition, the fundamental genetic control of endophytes
in plants and how they are affected by changes in other microbiota and environmental
conditions also require attention.

In fact, although researchers have found valuable active substances in the study of
some endophytes promoting plant secondary metabolites, many problems have yet to be
addressed in related research and practical applications. Most plant endophytes have not
been effectively isolated, and the molecular mechanisms and effects of plant endophytes
are not clear. In addition, endophytes cannot be used in practice for biocontrol, and it is not
clear what kind of community they need in different growth stages and when they act on
plants. Therefore, further exploration of the interaction between endophytes and plants
is urgently needed to understand the origin and mechanism of action of endophytes in
plants.

Interdisciplinary research in plant physiology, molecular biology, genetics, microbiol-
ogy, and many other disciplines has been formed in many studies. With the help of analyti-
cal tools such as single-cell genomics and specialized plant metabolomics, we can focus
on identifying gene clusters of secondary metabolite biosynthetic pathways within plants
through whole-genome sequences to investigate the resources of novel endophytes with
sustainable secondary metabolite synthesis and to reveal the molecular signals and tran-
scription factors that regulate the expression of secondary metabolic biosynthesis-related
gene clusters. These data can be used to explore the microbial communities coevolving
with plants as they grow and develop and to provide a new theoretical basis and research
perspective for revealing the regulation of plant growth and development by endophytes
through secondary metabolites and the industrialization of synthetic communities. In
the future, in-depth research on plant endophytes and their applications in various fields
will bring more benefits to humans and will have broad prospects for development and
application.
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