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Electrofusion-derived BRIN-BD11 cells are glucose-
sensitive insulin-secreting cells which provide an
archetypal bioengineered surrogate -cell for
insulin replacement therapy in diabetes mellitus.
5x106 BRIN-BD11 cells were implanted intraperi-
toneally into severely hyperglycaemic (>24mmol/1)
streptozotocin-induced insulin-treated diabetic
athymic nude (nu/nu) mice. The implants reduced
hyperglycaemia such that insulin injections were
discontinued by 5-16 days (<17mmol/1) and nor-
moglycaemia (<9mmol/1) was achieved by 7-20
days. Implanted cells were removed after 28 days
and re-established in culture. After re-culture for 20
days, glucose-stimulated (16.7mmol/1) insulin
release was enhanced by 121% (p<0.001) compared
to non-implanted cells. Insulin responses to
glucagon-like peptide-1 (10-9mol/1), cholecys-
tokinin-8 (10-8mol/1) and L-alanine (10mmol/1) were
increased by 32%, 31% and 68% respectively
(p<0.05-0.01). Insulin content of the cells was 148%
greater at 20 days after re-culture than before
implantation (p<0.001), but basal insulin release (at
5.6mmol/1 glucose) was not changed. After re-cul-
ture for 40 days, insulin content declined to 68% of
the content before implantation (p<0.01), although
basal insulin release was unchanged. However, the
insulin secretory responses to glucose, glucagon-
like peptide-1, cholecystokinin-8 and L-alanine

were decreased after 40 days of re-culture to 65%,
72%, 73% and 42% respectively of the values before
implantation (p <0.05-0.01). The functional
enhancement of electrofusion-derived surrogate -cells that were re-cultured for 20 days after implan-
tation and restoration of normoglycaemia indicates
that the in vivo environment could greatly assist -cell engineering approaches to therapy for diabetes.
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INTRODUCTION

Cultured insulin-secreting cell lines offer a

potential alternative to isolated pancreatic islets
for implantation into patients with insulinopenic
forms of diabetes mellitus. [2,8,18,2] Indeed, con-
siderable effort has been devoted in the past five
years to generation of new glucose-responsive
islet cell lines and cellular engineering of exist-

ing insulin-secreting cells to confer attributes
[7 19 21 29]responsible for glucose sensitivity. Use
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of cultured cells for transplantation obviates the
shortage of donor islets and difficulties of islet
isolation and storage. [8,25] However, there are

important unresolved issues concerning the
implantation of insulin-secreting cell lines in
vivo, including their containment, control of
proliferation, immunological isolation, and
responsiveness to glucose. [2,4,18,25]

Insulinoma-derived insulin-secreting cell lines
generally show limited responsiveness to changes
in extracellular glucose concentrations within the
physiological range. [11,14,18,19,21] Electrofusion
technology provides a method to produce immor-
tal hybrid cells and this technology has recently
been applied to the development of glucose-sensi-
tive insulin-secreting cells. [18,19] BRIN-BD11 cells
were derived by electrofusion of New England
Deaconess Hospital (NEDH) rat pancreatic -cells
with the RINm5F cell line, which originated from
an insulinoma in an NEDH rat. [171 BRIN-BD11
cells show increased insulin content compared
with RINm5F cells. Additionally, and unlike
RINm5F cells, [11 BRIN-BD11 cells show regulat-
ed insulin secretion in response to physiological
concentrations of glucose and a wide range of
other stimulators and inhibitors of pancreatic
-cell function. [6,17,18,19,26]

This study has examined the ability of electro-
fusion-derived BRIN-BD11 cells to reverse

hyperglycaemia after implantation into severely
insulinopenic streptozotocin (STZ)-diabetic
immunotolerant athymic nude (nu/nu) mice. To
evaluate whether the in vivo environment can
assist -cell engineering, the study has also
assessed insulin content and insulin-secretory
responsiveness of the surrogate [-cells retrieved
after 28 days of implantation and re-culture
in vitro.

MATERIALS AND METHODS

Chemicals and Animals

Chemicals of analytical grade were from Sigma
Chemicals (Poole, UK) and BDH (Poole, UK).
125I-insulin was purchased from Amersham
International (Amersham, UK). Human lentard

insulin was from NovoNordisk (Copenhagen,
Denmark) and glucose assay reagents were
from Beckman (High Wycombe, UK). Tissue
culture media, fetal calf serum, antibiotics and
trypsin were from Gibco BRL (Paisley, UK) and
plastic ware was from Sarstedt (Leicester, UK).
Adult male athymic nude (nu/nu) mice were

obtained from Charles River (Margate, UK) and
maintained in an air conditioned room at
22+2C with a lighting schedule of 12h light
(0800-2000h) and 12h dark. A standard pellet
diet (Economy Rodent Diet, SDS, Great
Waltham, UK) with tap water were supplied ad
libitum. Mice were made diabetic by intraperi-
toneal (ip) injection of streptozotocin (200
mg/kg in 0.5mmol/1 sodium citrate buffer, pH
4.5) following a 6h fast. Food was then withheld
for a further 6h. Twice daily subcutaneous
insulin injections (20U/kg human lentard) were
started after 5-7 days when plasma glucose
concentrations exceeded 20 mmol/1.

BRIN-BD11 Cell Culture
and In Vitro Studies

BRIN-BD11 cells were cultured in RPMI-1640
medium containing 11.1mmol/1 glucose, 10%
(v/v) foetal calf serum, 100IU/ml penicillin and
0.1mg/ml streptomycin, with 95% air and 5%
CO2 at 37C. The production, culture and func-
tional characterisation of this cell line are
described in detail elsewhere. [17-9] Cells were
maintained in 75cm3 flasks and used at passages
15-36 after gently washing in 10ml Hank’s
buffered saline solution (HBSS), detaching with
0.025% (w/v) trypsin in normal saline contain-

ing 2g/1 EDTA. For studies of insulin release
and cellular insulin content, 2.5x 105 cells were
seeded per well in lml medium using 24-well
multiplates, and cultured for 24h as above. Prior
to acute tests, cells were preincubated for 40 min
at 37C in lml Krebs Ringer bicarbonate buffer
(KRBB) containing 1.1mM glucose and 0.1%
bovine serum albumin (BSA). Test incubations
were then performed for 20min at 37C in lml
KRBB containing 0.1% BSA plus glucose and
other stimulators of insulin release as indicated
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in the tables. Insulin content was measured by
acid-ethanol extraction in 0.5ml of 1.5% (v/v)
0.7mol/1 HC1, 75% (v/v) ethanol and 23.5%
(v/v) water for 24h at 4C. Test buffer and acid-
ethanol extracts were stored at-20C for subse-
quent insulin analysis.

Implantation Studies

BRIN-BD11 cells, maintained in RPMI-1640 as
above, and HepG2 cells (kindly donated by
Professor Kevin Docherty, Aberdeen, UK) main-
tained in Dulbecco’s modified Eagle’s medium
(DMEM) with Glutamax I supplemented with
10% foetal calf serum, 100IU/ml penicillin and
0.1mg/ml streptomycin, with 95% air and 5%
CO2 at 37C were harvested by trypsinisation.
The cell monolayer was gently washed with
phosphate-buffered saline (PBS), then 1.5ml of
0.025% (w/v) trypsin in PBS containing 2g/1
EDTA was added, the flask was incubated at 37C
until the cells detached, when 8.5ml of complete
medium was added to stop trypsinisation. The
cells were harvested by centrifugation at 1000
rpm using an MSE benchtop centrifuge and
resuspended at a concentration of 5x106 in 200tl
of complete medium. 5106 cells in 200tl were

injected ip into insulin-treated diabetic nude mice.
Blood samples were taken from the tail tip for

determination of plasma glucose and on occa-
sions plasma insulin. [11 On days 19-20 an oral
glucose tolerance test (OGTT) was performed on
overnight-fasted animals. The glucose dose was
2g/kg body weight, administered as a 40% w/v
solution (i.e., 5ml/kg) by oral gavage. Blood
samples were obtained as above immediately
before (time 0) and at 20, 40, 60 and 80min after
administration of the glucose load. Animals
were killed at 28 days, or earlier if hypogly-
caemia supervened, and autopsied. Tumour-
like aggregations were preserved in 10%
formaldehyde in PBS and 3-5tm sections were
stained for general morphology using haema-
toxylin and eosin, and for immunohistochemical
visualisation of insulin using a guinea pig anti-
insulin antibody with a DAKO Duet kit (DAKO,
High Wycombe, UK).

To re-culture ex-vivo cells, tumour-like aggre-
gations were aseptically excised and cut into
small pieces in a small volume of complete
medium and disaggregated using a 21 gauge
needle. The resulting cell suspension was cul-
tured overnight, using the standard conditions
for BRIN-BD11 cells, after 24h the cells were
washed with PBS to remove any remaining
aggregates and fresh medium was added.

Analyses

Plasma glucose was measured by an automated
glucose oxidase procedure [28] and insulin was
measured by dextran-charcoal radioimmuno-
assay [l] using a fully cross-reacting antibody
and rat insulin as standard. Groups of data
were compared using the Student’s unpaired
t-test. Differences were considered to be sig-
nificant if p<0.05.

RESULTS

Implantation Studies

Induction of diabetes with a high dose of strepto-
zotocin (200mg/kg, ip) produced severe hyper-
glycaemia in the nude (nu/nu) mice. To avoid
mortality, all mice were treated with twice daily
injections of insulin (20U/kg human lentard, sc).
Plasma glucose concentrations, which were
measured 18h after the last insulin injection,
were consistently in the range 21-30retool/1
(Fig. 1), compared with the values of 6-gmmol/1
in normal non-diabetic untreated nu/nu mice.

After 2 weeks of severe but stable insulin-
treated diabetes, mice received an intraperi-
toneal implant of either 5x106 BRIN-BD11 cells,
or an intraperitoneal implant of 5x106 HepG2
cells a s a control. As shown in Figure 1 the non-
insulin-secreting HepG2 cells did not affect
plasma glucose control, and insulin injections
were continued. However, in mice receiving the
implant of insulin-secreting BRIN-BD11 cells,
plasma glucose concentrations were reduced at

varying rates. When the glucose concentration
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FIGURE 1 Plasma glucose concentrations of untreated non-diabetic nude (nu/nu) mice (O O) and streptozotocin diabetic
nude (nu/nu) mice implanted intraperitoneally on day 0 with 5x106 insulin-secreting BRIN-BD11 cells (o o) or 5x106
non-insulin-secreting HepG2 cells (r-I !-3). Values are mean+sem of 5 (untreated and HepG2) or 6 (BRIN-BD11) mice.
*p<0.05 versus mice treated with HepG2 cells.

fell below 20mmol/1 the insulin dosage was
reduced by half, and when glycaemia fell below
17mmol/1 insulin injections were discontinued.
Insulin injections were discontinued in all mice
implanted with the BRIN-BD11 cells (5-16 days
after implantation), and all of these mice
achieved normal plasma glucose concentrations

(<9mmol/1) by 7-20 days after implantation.
An oral glucose tolerance test (2g/kg) conduct-
ed on overnight fasted mice 19-20 days after
cell implantation showed lower plasma glucose
concentrations than normal non-diabetic un-
treated nu/nu mice (Fig. 2).
Plasma glucose concentrations fell below 2

mmol/1 by 11-22 days after implantation of
BRIN-BD11 cells (Fig. 1), and the study was ter-
minated at 28 days. At this time, plasma insulin
concentrations ranged from 1.2 to 14.0ng/ml
(mean+sem, 7.6+3.1ng/ml) in the mice

implanted with the BRIN-BD11 cells. In untreat-
ed control mice and mice implanted with

HepG2 cells basal plasma insulin concentrations
were < 1 ng/ml.

Autopsy showed that ip implants of BRIN-
BD11 cells produced multiple well-vascularised

aggregations of cells attached to the peritoneal
wall, diaphragm, mesentery and occasionally
attached to the liver and kidney. The aggregates
were typically 1-5mm in diameter. They com-

prised a thick outer mantle rich in healthy
insulin-positive staining cells with areas of
necrosis dispersed towards the core. The many
small aggregates in each recipient precluded
accurate quantitation of their overall weight or
total number of insulin-positive staining cells.
HepG2 implants produced similar aggregates
but were devoid of insulin-positive staining
cells and showed fewer areas of necrosis.

In a separate study, three insulin-treated STZ-
diabetic nu/nu mice received subcutaneous
(sc) implants of 5106 BRIN-BD11 cells in the
suprascapular region. Following the same pro-
tocol as for the ip implants, the sc implanted
mice showed a reduction in hyperglycaemia.
Insulin injections were discontinued at 9-15
days and the study was terminated at 24 days
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FIGURE 2 Effect of glucose (2g/kg body weight given orally at 0min) on plasma glucose concentrations of untreated non-
diabetic nude (nu/nu) mice (O O) and streptozotocin diabetic nude (nu/nu) mice at 19-20 days after intraperitoneal im-
plantation of 5106 insulin-secreting BRIN-BD11 cells (o o). Values are mean+sem of 5 (untreated) or 6 (BRIN-BD11)
mice. *P<0.05 versus untreated mice.

when glucose concentrations had fallen below
2mmol/1 in one mouse. Multiple aggregates
of insulin-positive staining cells were dispersed
in the suprascapular region at autopsy.

Insulin Secretion In Vitro

Before implantation, the BRIN-BD11 cells
showed a 2.5 fold increase (p<0.001) of insulin

release when the glucose concentration was

raised from 5.6 to 16.7mmol/1 (Tab. I).
L-Alanine (10mmol/1) produced a marked
increase (9.2 fold, p<0.001) of insulin release,
while glucagon-like peptide-1 (7-36 amide)
(tGLP-1; 10-9mol/1) and cholycystokinin-8
(CCK-8; 10-8mol/1) increased insulin release 2.7
fold and 2.1 fold respectively (p<0.001).

After implantation in nu/nu mice for 28 days,

TABLE Insulin secretion by BRIN-BD11 cells during 20min incubations in vitro before
and after establishment in re-culture following 28 days implantation in diabetic nude mice

Insulin secretion ng/106 cells/20 min
Days of re-culture

Test agent Glucose Before
(M) (mM) implantation 9 20 40

None 5.6 0.9 + 0.1 0.8 + 0.1 0.9 + 0.1 0.9 + 0.1
None 16.7 2.3 + 0.2b 5.1 + 0.7bd 5.1 + 0.5be 1.5 + 0.1ad

L-alanine (10-2) 5.6 8.3 + 1.5b 11.4 + 0.6bc 13.9 + 0.9bc 3.5 + 0.3bc

tGLP-1 (10-9) 5.6 2.5 + 0.3b 3.8 +_ 0.2bd 3.3 + 0.2b 1.8 + 0.1bc

CCK-8 (10-8) 5.6 1.9 _+ 0.1b 2.7 _+ 0.1be 2.5 0.1bd 1.4 + 0.1bc

Values are mean+sem, n 6; ap<0.01, bp<0.001 compared with 5.6mM glucose at the same
time; Cp<0.05, alp<0.01, ep<0.001 compared with the same test agent before implantation.
tGLP-1, glucagon-like peptide-1 (7-36 amide); CCK-8, cholecystokinin-8.
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the aggregations of implanted cells were excised
and the cells were re-established in culture for
up to 40 days. At 9 and 20 days of re-culture the
insulin responses to a rise in the glucose concen-
tration from 5.6mmol/1 to 16.7mmol/1 glucose
were 6.3 and 5.6 fold respectively (p<0.001).
These responses were significantly greater
(p<0.01 and p<0.001) than the 2.5 fold increase

achieved before implantation. The insulin

responses to 10retool/1 L-alanine, 10-9mol/1
tGLP-1 and 10-8mol/1 CCK-8 were also signifi-
cantly greater than before implantation (Tab. I).
The insulin content per cell at 9 and 20 days
after re-culture was 1.6-2.4 fold higher (p<0.05
-0.001) than before implantation (Fig. 3).
At 40 days of re-culture the insulin responses to

glucose, L-alanine, tGLP-1 and CCK-8 declined to
below the values observed before implantation
(Tab. I), and the insulin content had fallen to 32%

400
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after 28 days implantation

FIGURE 3 Insulin content of BRIN-BD11 cells before
intraperitoneal implantation in streptozotocin diabetic nude
(nu/nu) mice, and at 9, 20 and 40 days of re-culture after
implantation for 28 days. Values are mean+sem, n=6.
*p<0.05, **p<0.001 versus before implantation.

below (p<0.01) that before implantation (Fig. 3).
Basal insulin secretion at 5.6mmol/1 glucose was

not affected by in vivo implantation or the period
of subsequent re-culture (Tab. I). Non-implanted
cells maintained in culture for the same number of
passages showed no significant changes in insulin
secretion or content. [17]

DISCUSSION

BRIN-BD11 is a unique cell line produced by
the application of electrofusion technology to

an insulinoma-derived insulin-secreting cell
line. [171 Although the insulin content of BRIN-
BD11 cells is only modestly greater than the
parent RINm5F cell line, the insulin secretory
responses of BRIN-BD11 cells show similarities
to normal [-cells when exposed to a wide range
of established stimulators and inhibitors of
pancreatic [-cell function, including nutrients,

hormones, neurotransmitters and drugs. [17-19]

Consistent with these early studies, BRIN-BD11
cells used in the present experiments showed
insulin secretory responses to glucose, L-
alanine, tGLP-1 and CCK-8. [1,17,22]

The therapeutic potential of electrofusion-
derived insulin-secreting cells has been
demonstrated herein by the lowering of plas-
ma glucose concentrations and elimination of
the need for exogenous insulin injections after
intraperitoneal implantation of BRIN-BD11
cells in severely diabetic insulin-treated nude
mice. These observations parallel studies using
intact islets, dispersed islet cells or immuno-

protected MIN-6-cells, [4’13’15’16’ 231 from which
it is evident that the number of implanted
cells required to reverse hyperglycaemia is

greater than the complement of -cells in a

normal pancreas.
The well vascularised tumour-like aggregations

of rat-derived BRIN-BD11 cells after 28 days of
implantation in diabetic nude mice showed no

signs of immune rejection, consistent with the
immunocompromised status of the host.[241

Resection of the cells after 28 days of implantation
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and re-establishment in culture for 9 and 20 days
significantly enhanced insulin content and
increased insulin secretory responsiveness to
glucose, L-alanine, tGLP-1 and CCK-8 compared
with cells which were not previously implanted.
Interestingly basal insulin secretion was un-

changed, suggesting a functional enhancement
of ]3-cell stimulus-secretion coupling pathways
rather than an explanation based simply upon
enhanced cellular insulin content. The mecha-
nisms responsible for these changes in secretory
function require further investigation, but they
seem likely to include in vivo enhancement in
the expression of functional genes involved
in glucose-sensing and insulin exocytosis.
Candidates include Glut-2, glucokinase and other
components of the signal transduction pathways
used by the secretagogues tested, possibly includ-
ing K+-ATP channels, voltage-dependent Ca2+
channels, cyclic AMP, protein kinase A, phospho-
lipase C, inositol 1,4,5 trisphosphate, diacylglyc-
erol and protein kinase C. [3’9’12] Additional or
alternative possibilities include alterations in the
pathways of cellular maturation.
Although follow-up experiments indicate that

the functional enhancement persisted to 20 days
in re-culture, the attributes gained in vivo were

totally lost by 40 days of re-culture. Indeed, by
40 days the functional capacity of the resected
cells was inferior to cells maintained in parallel
in vitro. The reasons for such a decline are
unclear but could stem from differences in the
rate of proliferation and degree of differentia-
tion during in vivo maintenance. These observa-
tions clearly support the idea that in vivo factors
exert a significant en-hancement of functional
gene expression[27] that persists for several days
in BRIN-BD11 cells after re-section and recul-
ture. Recent studies suggest that tGLP-1 might
constitute one such factor. [3,311 However, the
present experimental system might provide an

opportunity to identify the full spectrum of fac-
tors and target genes involved.

Despite unchanged basal insulin secretion
and improved glucose-regulated insulin secre-
tion of BRIN-BD11 cells during in vitro studies
at 9 and 20 days after re-section, plasma glucose

concentrations of the diabetic nude mice
declined to hypoglycaemic levels by 11-22 days
after implantation. This indicates that the capac-
ity of implanted cells to limit insulin secretion in
the face of low plasma glucose was insufficient
to compensate for the increasing f-cell mass.

Strategies are being developed in other laborato-
ries to offset this problem, for example by incor-

porating an antibiotic-sensitive inducer gene
into surrogate -cells to limit cell growth, [5,81

and by the use of encapsulation and prosthetic
implantation devices. [4,13,16,23]

In conclusion, the present study has demon-
strated the capacity of electrofusion-derived
insulin-secreting cells to reverse the hyper-
glycaemia of severely diabetic nude mice.
Functional enhancement of these cells by the in
vivo environment indicates that the true utility of
engineered surrogate [3-cells for transplantation
can only be properly assessed in vivo. Further, it
seems likely that if a surrogate 6-cell has been
endowed with appropriate genes from parental
pancreatic [3-cells, the expression of these genes,
and hence the insulin secretory function of the
cells, can be very usefully enhanced by the in vivo
environment. Overall, these observations illus-
trate the potential value of multiple gene transfer
by electrofusion to generate limitless numbers of
surrogate [3-cells for possible therapy of diabetes.
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