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Abstract

Background: A new paradigm of biological investigation takes advantage of technologies that produce large high 

throughput datasets, including genome sequences, interactions of proteins, and gene expression. The ability of 

biologists to analyze and interpret such data relies on functional annotation of the included proteins, but even in 

highly characterized organisms many proteins can lack the functional evidence necessary to infer their biological 

relevance.

Results: Here we have applied high confidence function predictions from our automated prediction system, PFP, to 

three genome sequences, Escherichia coli, Saccharomyces cerevisiae, and Plasmodium falciparum (malaria). The number 

of annotated genes is increased by PFP to over 90% for all of the genomes. Using the large coverage of the function 

annotation, we introduced the functional similarity networks which represent the functional space of the proteomes. 

Four different functional similarity networks are constructed for each proteome, one each by considering similarity in a 

single Gene Ontology (GO) category, i.e. Biological Process, Cellular Component, and Molecular Function, and another 

one by considering overall similarity with the funSim score. The functional similarity networks are shown to have higher 

modularity than the protein-protein interaction network. Moreover, the funSim score network is distinct from the single 

GO-score networks by showing a higher clustering degree exponent value and thus has a higher tendency to be 

hierarchical. In addition, examining function assignments to the protein-protein interaction network and local regions 

of genomes has identified numerous cases where subnetworks or local regions have functionally coherent proteins. 

These results will help interpreting interactions of proteins and gene orders in a genome. Several examples of both 

analyses are highlighted.

Conclusion: The analyses demonstrate that applying high confidence predictions from PFP can have a significant 

impact on a researchers' ability to interpret the immense biological data that are being generated today. The newly 

introduced functional similarity networks of the three organisms show different network properties as compared with 

the protein-protein interaction networks.

Background
The recent paradigm shift in molecular and systems biol-

ogy to characterization of large sets of genes and proteins

has been enabled by continual technological innovations,

including fast sequencing technologies [1-3], arrays for

measuring gene expression patterns [4], and high

throughput screens that identify various types of molecu-

lar interactions [5-7]. Data sets produced by these new

technologies have also spurred development of computa-

tional tools to assist in their analysis [8-10]. Of particular

importance is function assignment to genes in a genome

or any system of interest, as functional information is

indispensable for both biological interpretation of the

behavior of the system and generation of hypotheses for

designing subsequent experiments [11]. To this end,

many function prediction methods have been developed

recently to meet the urgent needs [12]. They include

those which employ information from sequence database

search [13-17] more thoroughly than conventional
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homology searches [18,19], those which use protein ter-

tiary structure information [20-23], methods that con-

sider conservation of gene locations in genome sequences

[24,25], and methods which utilize protein-protein inter-

action (PPI) data [26-28]. Please refer to recent reviews

for thorough discussion of recent function prediction

methods [9,29].

We previously introduced PFP as a method for predict-

ing Gene Ontology (GO) functional terms [30] for indi-

vidual protein sequences with empirically derived

confidence scores [14,31]. PFP has been shown to outper-

form other sequence-based methods [32-34] and has

been enormously successful in international assessments

of methods for function prediction (AFP-SIG '05 [35] and

Critical Assessment of Techniques for Protein Structure

Prediction CASP7, the function prediction [FN] category

[36]). In the previous studies, we have demonstrated that

PFP is superior to the other methods not only in terms of

the accuracy of function assignment but also in its larger

coverage for genome-scale annotation [14].

Here, we examine the utility of applying PFP predic-

tions to genomes of three organisms, Escherichia coli,

Saccharomyces cerevisiae (baker's yeast), and Plasmo-

dium falciparum (malaria). The malaria genome is used

as an example of a poorly annotated organism for which

new annotation provides extensive interesting and useful

functional knowledge. Taking advantage of PFP's larger

function annotation coverage, more than 90% of proteins

encoded in each genome are annotated. In order to inves-

tigate the structure of the functional space occupied by

each proteome, we represented the mutual functional

similarity of proteins in a form of network named the

functional similarity network. To the best of our knowl-

edge, this is the first of its kind introduced to investigate

the structure of protein function space. Weston et al. pro-

posed to consider the pairwise sequence similarity of

many proteins in a database, which is named the protein

similarity network, to improve the database search accu-

racy [37]. However, the focus of their work is to improve

the database search accuracy but not the investigation of

the network property of the protein similarity. Four dif-

ferent functional similarity networks are generated by

using the function annotation in the three GO categories,

namely, Biological Process (BP), Cellular Component

(CC), Molecular Function (MF), and also by using the

funSim score, which evaluates the overall functional simi-

larity among the three GO categories. funSim uses the

hierarchical structure of GO and information content of

common ancestors of predicted and actual terms [14,38].

Analyses of the network properties of the functional sim-

ilarity networks in comparison with the PPI networks

(Fig. 1) revealed interesting characteristics: First, most of

the functional similarity networks as well as the PPI net-

works are scale-free, following the power-law distribu-

tion. However, the functional similarity networks are

distinct from the PPI networks by their modularity as

indicated by the average clustering coefficient. Moreover,

the funSim network distinguishes itself from the single

GO-score networks by showing a higher clustering

degree exponent value and thus exhibiting a higher ten-

dency to be hierarchical, although the clustering degree

exponent value seems to be sensitive to the similarity

threshold value used to construct the funSim score net-

work. Interestingly, the hierarchy of the biological net-

work was first observed in metabolic pathway networks

[39]. This might imply that the funSim score of the three

organisms studied somewhat captures the structure of

relationships between proteins in pathways. Additionally,

we analyze functional similarity of proteins in sub net-

works in PPI networks and local regions of the genomes.

We present several interesting and potentially useful indi-

vidual cases from each of the analysis, and provide exten-

sive supplementary data for all of the methods discussed.

Results
Enrichment of function annotation by PFP

We have previously shown that PFP can make more accu-

rate function prediction than existing methods and also it

can significantly increase the coverage of the function

assignment to a genome [13,14]. The summary of func-

tion assignments to the three genomes used in this study,

Escherichia coli K-12, S. cerevisiae, and P. falciparum, is

shown in Table 1. PFP provides high confidence function

prediction (i.e. prediction with the confidence score ≥

0.8) to a significant number of genes with unknown func-

tion even to the two very well annotated genomes, E. coli

and yeast. As for the malaria genome, which is less well

annotated, the number of genes with annotation is dou-

bled by PFP's function prediction. Consequently, more

than 90% of genes in all the three genomes have function

information.

Figure 2 shows functional enrichment by PFP in the

context of PPI networks of the three organisms. On a

broad scale, the increase in functional knowledge for a

PPI network can be described by the enrichment of anno-

tated individual interactions. These interactions can be

either (1) fully enriched, where both of the proteins

involved are annotated with some functional term, (2)

partially enriched, where only one of the two proteins is

annotated, or (3) not have any functional terms annotated

to either of the interacting partners. The increase of fully

enriched interactions in yeast is nominal; around 1% for

all the GO categories, since interactions in this organism

have been already well annotated (around 80% for all the

GO categories have been annotated) (Fig. 2, middle). For

the cases of E. coli, about 10% increase of fully enriched

interactions is observed in each GO category (Fig. 2, left

panel). For the malaria genome, we see a significant
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increase in the number of fully enriched interactions in

the three GO categories (Fig. 2, right panel): In the BP

category, the fully enriched interactions increased from

10.8% to 69.2% (58.4 percentage point increase), while

50.7 percentage point increase is observed in the MF cat-

egory. The increase is largest in the CC category (68 per-

centage point, from 17.6% to 85.6%). The magnitude of

the increase in malaria interactions compared to E. coli or

yeast interactions is attributed to the fact that only ~40%

of the proteins encoded in the malaria genome were pre-

viously characterized, whereas upwards of 75-80% were

such in both E. coli and yeast (Table 1).

Functional similarity network by PFP

The previous section shows that PFP significantly

enriches the function annotation in the three genomes,

which facilitates analysis of the whole landscape of the

functional space occupied by the genomes. In this work,

we represent the functional similarity of genes in a

genome as a network which is named the functional simi-

larity network (Fig. 3). In the functional similarity net-

work, nodes represent proteins with function assignment

and edges between proteins denote functional similarity

between them. For each genome, four networks are con-

structed by considering the similarity scores in the three

individual GO categories, i.e., BP-score, CC-score, and

MF-score separately (Eqn. 11), and the funSim score (Eqn.

12). Figure 3 visualizes functional similarity networks in

which protein pairs with a similarity score of 0.95 or

higher are connected by edges. We also analyze networks

with two different threshold values of the similarity score,

0.8 and 0.99. These networks intuitively represent overall

functional space of proteins in a genome. The structure of

the functional similarity networks changes as different

threshold values are used. Obviously, the number of

edges in a functional similarity network increases and the

network becomes denser as a smaller threshold value is

used for connecting edges. Table 2 shows the number of

edges for the functional similarity networks using three

threshold values, 0.80, 0.95, and 0.99. Here we first dis-

cuss the functional similarity networks using the thresh-

old value of 0.95 (Fig. 3) and later analyze how the

network properties change by using different threshold

values. In Table 3, the parameters of the functional simi-

larity networks for a threshold of 0.95 are underlined.

Figure 1 Protein-protein interaction networks used in this work. Networks are visualized by Cytoscape [58]: A, E. coli; B, S. cerevisiae; C, P. falcipar-

um.

Table 1: Number of protein genes with annotated/predicted function.

Organism Total Annotated a) Predicted with 

high confidence 

(≥ 0.8)

Predicted with 

medium 

confidence ≥ 0.6

Predicted with 

low confidence 

≥ 0.4

Previously 

annotated and 

predicted with 

high confidence 

(≥ 0.8)

E. coli K-12 4381 3646 (83.2%) 523 696 733 4169 (95.2%)

S. cerevisiae 6690 5496 (82.2%) 932 1116 1187 6428 (96.1%)

P. falciparum 5270 2209 (41.9%) 2575 3025 3060 4784 (90.8%)

In the parentheses, the percentage of the genes relative to the total number of genes in the genome is shown.

a) The number of genes with function annotation in the GOA database.
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Figure 2 Enrichment of function annotation in protein-protein interaction networks. The networks show a total of 8565, 1376, and 2542 inter-

actions for E. coli, S. cerevisiae, and P. falciparum, respectively. The fraction of interactions where both proteins are not annotated (none), interactions 

where one of the two proteins are annotated (one), and interactions where both proteins are annotated (both) are shown in the original annotation 

in the GOA database and after adding high confidence function prediction by PFP. Enrichment of three categories of GO, BP, MF, CC, are shown sep-

arately.

Table 2: Size of the functional similarity networks.

Organism Number of Nodesa) Functional 

Similarity 

Category

Number of Nodes with 2+ Edgesb)/Edges

      0.80c 0.95 0.99

E. coli K-12 4169 BP 3085/208664 2169/44063 1497/13893

CC 1603/584156 600/19862 425/17252

MF 3033/321422 2161/74164 998/9576

funSim 2901/121999 1172/7003 414/2648

S. cerevisiae 6428 BP 4622/253711 4070/72191 3270/33282

CC 4442/3246553 2717/113947 2208/83648

MF 4293/826942 3246/87173 1871/14257

funSim 3879/48115 1755/10679 954/5431

P. falciparum 4784 BP 3968/1730159 2356/50180 1346/18444

CC 1696/443757 1201/19154 1021/9524

MF 4057/2619387 3788/1658678 1098/9977

funSim 4002/208085 1521/14075 536/3134

a) The number of proteins which have annotated function or high confident predicted function (the last column in Table 1).

b) The number of proteins (nodes) which have at least two edges so that the clustering coefficient can be computed.

c) The threshold value of the functional similarity score to connect an edge between pairs of nodes.
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The functional similarity network using the 0.95 for the 

similarity threshold value

In all of the functional similarity networks (Fig. 3), a

majority of the proteins are included in the largest con-

nected component, which holds 74.0% (the CC-score net-

work of E. coli) to 97.5% (The BP-score network of yeast)

of the proteins. The degree distribution of the networks,

i.e. the fraction of proteins, P(k), with a given number of

connections, k, (Fig. 4) shows that most of them, except

for a couple of networks, follow the power-law, P(k) ~ k-γ

[40]. The degree exponent γ ranges from 0.21 (the net-

work for MF-score in P.falciparum) to 1.37 (the funSim

score network in E. coli), which indicates that there are a

small number of "hub" proteins with functional similarity

to many other proteins (Table 3, top rows). The degree

exponent values (γ) of the functional similarity networks

of the BP-, CC-, and MF-score are smaller than those of

the PPI networks shown in Figure 1, which means that

the GO-score networks have larger clusters (i.e. hub pro-

teins with a larger degree) and less proteins with a small

degree than the PPI networks. Moreover, small R2 value

of the CC-score networks (shown in the legend of Fig. 4)

indicates that they do not fit well to the power-law. This is

visually evident, for example, in the CC-score network of

E. coli and the MF-score network of malaria (Fig. 3). The

funSim networks have smaller dominant hub proteins

than the BP-, CC-, and MF-score networks as shown by

their larger γ values (Table 2). This is natural as a hub

Table 3: Network parameters of the functional similarity networks.

Parameter 

Type

Organism PPIa) BPb) CC MF funSim

Degree 

exponent (γ)

E. coli 1.38 0.74

0.99

1.14

-0.05

0.37

0.24

0.52

0.85

1.33

0.93

1.37

1.16

S. cerevisiae 1.80 0.90

1.22

1.23

0.13

0.83

0.80

0.51

0.96

1.15

1.32

1.31

1.13

P. falciparum 1.60 0.35

1.02

0.89

0.09

0.73

0.72

0.25

0.21

0.93

0.94

1.27

1.22

Cluster 

coefficient 

<C(k)>

E. coli 0.08 0.74

0.75

0.77

0.67

0.85

0.79

0.82

0.74

0.69

0.65

0.49

0.45

S. cerevisiae 0.10 0.50

0.63

0.58

0.75

0.77

0.77

0.72

0.72

0.62

0.46

0.46

0.50

P. falciparum 0.01 0.70

0.74

0.60

0.75

0.86

0.77

0.88

0.82

0.75

0.44

0.64

0.62

Clustering 

degree 

exponent (β)c)

E. coli 0.75 0.31

-0.08

0.06

0.01

-0.19

-0.22

0.40

0.40

0.55

0.51

1.29

0.52

S. cerevisiae 1.26 0.45

0.11

0.38

0.08

-0.05

-0.02

0.13

0.40

0.50

2.12

1.39

0.67

P. falciparum 0.20 -0.20

0.51

0.42

0.26

0.57

0.39

-0.15

0.34

0.10

0.80

1.39

1.15

a) The PPI networks shown in Figure 1.

b) The degree distributions of the functional similarity networks (Fig. 3) are fit to the power-law distribution, P(k) ~ k-γ and the value of γ (the 

degree component) is computed. The values for the networks with the similarity score threshold value of 0.80 (top), 0.95 (middle, underlined), 

and 0.99 (bottom) are shown. Only edges with the threshold value or higher are considered.

c) The average clustering coefficient C(k) relative to the degree k is fit to the clustering-degree function, C(k) ~k-β. For the PPI, the data with k 

≥ 10, while data with k ≥ 100, k ≥ 30, and k ≥ 10 are used for the functional similarity networks with the similarity score threshold value of 0.80, 

0.95, and 0.99.
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protein in the funSim network needs to have similarity in

all of the BP-, CC-, and MF-score with neighboring pro-

teins and thus tends to have fewer edges.

The middle rows in Table 3 show the clustering coeffi-

cients for the networks computed as per the description

in methods section. We found that the PPI and the func-

tional similarity networks are clearly distinguished by the

clustering coefficient with the latter having larger modu-

larity (i.e. larger values in the clustering coefficient). Sin-

gle GO-score networks have larger modularity as

compared with the funSim networks. The malaria CC-

score network has the largest clustering coefficient value

(0.86), which is also evident from how it looks (Fig. 3C,

the second network from the left). The funSim networks

have slightly lower modularity than the single GO-score

networks for the same reason that they have fewer hub

proteins, i.e. the edges need to satisfy the more severer

condition of functional similarity.

We further investigated the fit of the networks to the

hierarchical model proposed by Ravasz et al. [39]. The

hierarchy in their model is quantitatively characterized by

comparison of the clustering coefficient of a node with k

Figure 3 Functional similarity networks. A, E. coli; B, S. cerevisiae; C, P. falciparum. From left to right, BP-score, CC-score, MF-score, and funSim matrices. 

Nodes represent individual proteins and edges represent a category GOscore or funSim of ≥ 0.95. Individual clusters in the functional similarity net-

works are highlighted in color to show functional category of proteins. For the BP-score networks (left panels), green nodes represent proteins involved 

in transcription (GO:0006350 and its children nodes), blue nodes represent proteins involved in transport (GO:0006810), purple nodes represent pro-

teins involved in pathogenesis (GO:0009405) (for P. falciparum, Fig. 3C) or signaling (GO:0007165) (for E. coli and yeast, Fig 3A,B), and red nodes repre-

sent proteins involved in protein modification (GO:0043687). For the CC-score networks (the second panels from the left in Fig. 3), yellow nodes 

represent proteins localized in the membrane (GO:0016020), orange nodes represent proteins localized in the ribosome (GO:0005840), and blue 

nodes represent proteins localized in the cell wall (GO:0005618) (for E. coli) or in the nucleus (GO:0005634) (for malaria and yeast). For the MF-score 

networks (the second panels from the right), light green nodes represent proteins which bind ATP (GO:0005524), pink nodes represent proteins which 

bind rRNA (GO:0019843), light purple nodes represent proteins which bind ions (GO:0043167), and olive nodes represent proteins exhibiting trans-

porter activity (GO:0005215). For the FunSim networks (the panels on the right), burgundy nodes represent proteins which bind ATP (GO:0005524), 

blue nodes represent proteins localized in the ribosome (GO:0005840), and light green nodes represent proteins exhibiting transmembrane receptor 

activity (GO:0004888).
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links to the scaling law, C(k) ~ k-1. The last rows in Table 3

show the clustering degree exponent (β; C(k) ~ k-β) of

each network. Consistent with previous studies [41-43],

the PPI networks of E. coli and yeast show hierarchy, indi-

cated by a β value close to 1.0 (Fig. 5A). It is rather inter-

esting to notice that the PPI network of malaria does not

show the hierarchy. The apparent dissimilar behavior of

the malaria PPI network might be due to the smaller cov-

erage of the proteins in its PPI network. Compared to the

E. coli and yeast PPI networks which include more than

55% of total known proteins, the malaria PPI network

covers only 23.1% of its proteins. The individual GO-score

networks show less dependency of the C(k) value to the

degree k and thus do not exhibit hierarchy as shown by

their small clustering degree exponent values. However,

the clustering coefficient of the funSim network is well

Figure 4 Degree distribution of the functional similarity networks. The similarity threshold value of 0.95 are used to connect edges. The X-axis is 

the number of interactions, k (the degree of interactions) and the Y-axis is the probability of proteins with a certain number of interactions, P(k). Both 

axes are log scaled. The dotted line is fit to the data to compute the degree exponent, γ, in the power-law degree distribution: P(k)~ k-γ. A, E. coli; B, S. 

cerevisiae; C, P. falciparum. From left to right, the BP-score, CC-score, MF-score, and the funSim score. The degree exponent values are shown in Table 3. 

The R2 value of the fitted line to each distribution is as follows. E. coli: 0.579 (BP), 0.144 (CC), 0.472 (MF), 0.872 (funSim); S. cerevisiae: 0.585 (BP), 0.481 (CC), 

0.505 (MF), 0.798 (funSim); P. falciparum: 0.466 (BP), 0.345 (CC), 0.068 (MF), 0.825 (funSim).

Figure 5 Hierarchical modularity of networks. C(k) is plotted relative to k. A, the PPI networks; B, the funSim networks. The dotted lines corresponds 

to C(k) ~ k-1.
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approximated by C(k) ~ k-1 (Fig. 5B). It is an interesting

observation that hierarchy of the network arises for the

funSim score that integrates single GO-scores, which do

not show hierarchy individually. It might imply that the

funSim score somewhat captures properties of the meta-

bolic networks. Although both the PPI and the funSim

network show hierarchy, they are different in the range of

the clustering coefficient values (i.e. the y-value in Fig. 5),

with the latter having larger values.

Effect of changing the similarity threshold value for 

connecting edges

In addition to the networks with the similarity threshold

value of 0.95 which are discussed above, we examine the

networks using a smaller threshold value, 0.80, and a

higher threshold value, 0.99 to understand how the net-

work structure changes. The total number of edges sig-

nificantly increases by using a more permissive threshold

value (0.80) for connecting edges and decreases with a

larger threshold value (0.99) (Table 2). As the networks

become denser with more edges (using the threshold

value of 0.80), the number of highly connected nodes

increases, which reflects to the decrease in the degree

component (γ). This trend is evident especially for the

CC-score networks, for which the degree component val-

ues are too small for them to be power-law networks. The

funSim networks of the three organisms constantly have

high degree exponent values. The average clustering coef-

ficient values (middle rows in Table 3) are relatively less

affected by the change of the similarity threshold values

for drawing edges. Thus all networks with all three simi-

larity threshold values examined are modular.

Looking at the clustering degree exponent values, β,

(the last rows in Table 3), none of the single-GO score

networks exhibits significant hierarchy (i.e. the β value of

around 1.0) by changing the similarity threshold value.

The funSim networks of malaria consistently show hier-

archy for all the similarity threshold values. The β value

for the E. coli funSim networks drops to around 0.5 by

changing the similarity threshold value from 0.95 to a

smaller (0.80) and also to a larger (0.99) value. In the case

of yeast funSim network, lowering the similarity thresh-

old value still keeps a high β value but raising the thresh-

old value to 0.99 drops it to 0.67. Thus, referring to the

originally proposed scaling law for the hierarchical net-

work [39], which has the β value of 1.0, E. coli funSim net-

works with the similarity threshold value of 0.80 and 0.90

as well as the yeast funSim network with the similarity

threshold value of 0.99 may not be fully qualified as hier-

archical. However, as Figure 6 and Table 3 show, the fun-

Sim networks have a higher β value, and thus tend to be

more hierarchical than the single GO-score networks.

To summarize, both PPI and most of the newly

described functional similarity networks are scale-free.

The PPI network and functional similarity networks

(namely, funSim, BP-score, CC-score, and MF-score net-

works) are distinguished by their modularity, with the lat-

ter networks showing significant modularity with high

clustering coefficient values while the PPI does not.

Lastly, the funSim network is different from the single

GO-score networks by exhibiting a higher tendency to be

hierarchical (i.e. showing a higher β value). However, note

that the β value of funSim networks seem to be sensitive

to the similarity threshold value and E. coli and yeast fun-

Figure 6 The clustering degree exponent value of the functional 

similarity networks relative to the number of edges in the net-

works. A, E. coli; B, S. cerevisiae; C, P. falciparum.
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Sim networks drop their β value to less than 1.0 when the

similarity threshold value is changed to 0.80 and 0.99.

Annotating PPI subnetworks

Next, we examine subnetworks in the PPI networks to see

how many edges in them are present in the functional

similarity networks. Here, the functional similarity net-

works with the similarity threshold value of 0.95 are used.

We compare the number of edges in subnetworks con-

necting nodes with common annotations assigned in the

GOA database and edges with nodes with common pre-

dictions by PFP (Table 4). Edges with common annota-

tions for both nodes did not increase much in E. coli and

yeast by PFP's prediction. Particularly, there is no

increase in the number of edges with common annota-

tions in yeast. This is because yeast PPI networks have

been already well annotated as shown in Figure 2. In con-

trast, 131 out of 155 subnetworks of malaria are enriched

by the PFP prediction. The number of edges with com-

mon annotations increased four times (from 241 to 972

edges) in malaria.

Since malaria has the largest annotation enrichment

among the three organisms (Fig. 2, right panel and Table

4), below we focus on annotations given to the malaria

PPI network. Following a previous work [44], we examine

annotation given to subnetworks of the PPI. A subnet-

work is identified as all proteins connected to a common

centroid protein and the edges among them. The statisti-

cal significance of the number of edges in a subnetwork is

tested by computing the connectivity coefficient (Eqn. 5)

compared with 100 randomized networks. Those subnet-

works with a p-value of below 0.05 by the t-test (Eqn. 6)

are identified as targets for discussion. We identified 155

subnetworks which hold 716 (97.3%) of the proteins in

the entire PPI network.

Each target subnetwork is tested for overrepresentation

of GO terms using only previously known annotations

and then using known and predicted terms by PFP. The

false discovery rate (FDR) correction of the hypergeomet-

ric distribution (Eqn. 15) is used to evaluate the statistical

significance of overrepresented GO terms in a subnet-

work. For malaria, we found six subnetworks in which no

functional terms were overrepresented in the original

annotation in the GOA database. To these we assigned

422 new annotations. In 146 other subnetworks we were

able to identify a total of 6,391 new overrepresented GO

terms, with an average annotation gain of 591%. To evalu-

ate the consistency of newly predicted annotations with

previously known annotations, we used the funSim score

(Eqn. 12) to compare all of the terms within each subnet-

work. It is a general assumption that interacting proteins

are involved in the same or coordinating biological path-

ways and coexist in the same locations within the cell

[45,46]. For malaria, newly predicted functional terms

had a positive effect on the majority of the subnetworks

as shown in the histograms (Fig. 7). On an average, BP-

score, CC-score, MF-score, and funSim score similarity

increased by 0.198, 0.189, 0.195, and 0.108, respectively.

Thus, not only does the addition of predicted terms effect

in an increase in the functional information available for

annotating a subnetwork, but it also tends to refine the

overall annotation for that subnetwork.

Below we present six individual cases of interesting new

annotations to subnetworks in P. falciparum. The previ-

ous and new annotations for each of these examples are

provided in Table 5, and visual representations of the ana-

lyzed subnetworks are provided in Figure 8. The subnet-

work centered by the protein Q8I1Q4 (Fig. 8A) contains

20 proteins, 14 of which are newly annotated by PFP pre-

diction. Among the six previously annotated proteins,

representative functionality by our analysis deals with

chromosome/chromatin packing. When new high-confi-

dence predicted annotations are considered, some new

functional terms arise as statistically overrepresented in

the subnetwork. These include several functions relating

Table 4: Enrichment of function annotation to subnetworks.

Organism # of subnetworks # of edges # of edges with 

common 

annotationa)

# of edges with 

common 

annotation or 

predictionb)

# of edges with 

common 

predicted 

annotationc)

# of subnetworks 

with functionally 

enriched edgesd)

E. coli 632 6401 2689 (42.0%) 2718 (42.5%) 29 (0.5%) 17

S. cerevisiae 1148 38108 29407 (77.2%) 29407 (77.2%) 0 (0%) 0

P. falciparum 155 2578 241 (9.3%) 972 (37.7%) 731 (28.4%) 131

a) Edges connecting two nodes with (at least one) common GO annotation in the GOA database. In the parentheses, the fraction of the edges 

relative to the total number of edges is shown.

b) Edges connecting two nodes with (at least one) common annotation in the GOA database or common GO term prediction by PFP.

c) Edges connecting two nodes with common GO term prediction by PFP.

d) Subnetworks where the number of edges with common annotation increased by considering PFP prediction.
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to the cytoskeleton (actin binding and myosin, cytoskele-

ton-dependent transport) and nuclear-directed trans-

port. The theme of these new annotations tends to

suggest that interactions among this group of proteins

may reveal a transport mechanism, potentially for mov-

ing proteins involved in chromosome packaging into the

nucleus. Next, protein Q8I206 centers a subnetwork of

proteins which we were unable to characterize using only

known annotations (Fig. 8B). Nine of the 15 proteins are

annotated with high-confidence predictions, revealing

two related groups of functional terms as potential repre-

sentatives of the overall function of the subnetwork. The

first of these groups is related to nucleic acid binding and

transport and localization, and the second is related to

carbohydrate metabolism.

The next two examples are potentially more interesting,

especially with regard to the known pathogenicity of the

Malaria plasmodium. The group of 21 proteins centered

on Q8I255 was previously annotated with terms directly

related to pathogenesis (pathogenesis, extracellular, sig-

nal transduction) (Fig. 8C). After providing predicted

annotations for 13 of those 21 proteins, several other

functions that may be related to particular pathogenic

mechanisms were revealed. Particularly interesting are

the terms "translation regulator activity", "negative regu-

lation of lymphocyte activation", "microtubule cytoskele-

ton organization and biogenesis", and "peroxisome

degradation". Although the proteins in this subnetwork

could already be associated with pathogenesis, new pre-

dicted annotations for uncharacterized proteins add

direction for designing experiments to test for specific

mechanisms that may be responsible for the pathogenic

behavior. The interaction subnetwork around Malaria

protein Q8I562 (Fig. 8D) also has some potential interest

in the molecular mechanisms that contribute to apopto-

sis. Again, over half of the included proteins (14 of 25)

were initially uncharacterized but could be assigned high

confidence PFP predictions. Before taking new predic-

Figure 7 The increase of the average score similarity of subnetworks of P. falciparum. The score before and after adding function prediction by 

PFP to the 152 subnetworks are compared. A, BP-score; B, CC-score; C, MF-score; and D, funSim score.
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Table 5: Annotations of highly interconnected PPI subnetworks in malaria.

Centroid Proteins 

(Edges)

Previous annotations (GO) P-valuea) New annotations with PFP (GO) P-value

Q8I1Q4 20 (24) chromatin assembly or disassembly 

(0006333)

0.043 Myosin I binding (0017024) 0.004

chromosome organization and 

biogenesis sensu Eukaryota (0007001)

0.048 Cytoskeleton-dependent intracellular 

transport (0030705)

0.028

Structural constituent of nuclear pore 

(0017056)

0.020

mitotic cell cycle (0000278) 0.040

Nuclear export (0051168) 0.031

Nuclear import (0051170) 0.043

Q8I206 15 (16) --- --- Nucleic acid transport (0050567) 0.003

Nucleobase, nucleoside, nucleotide and 

nucleic acid transport (0015931)

0.004

Transport (0006810) 0.045

Localization (0051179) 0.026

Regulation of gluconeogenesis (0006111) 0.017

Glucosyltransferase activity (0046527) 0.032

Q8I255 21 (21) Signal transducer activity (0004871) 0.002 Hydrolase activity (0016787) 0.023

Receptor binding (0005102) 0.014 Translation regulator activity (0045182) 0.003

Pathogenesis (0009405) 0.009 Autotransporter activity (0015474) 0.041

Extracellular region (0005576) 0.022 Structural constituent of nuclear pore 

(0017056)

0.023

Localization (0051179) 0.008

Negative regulation of lymphocyte activation 

(0051250)

0.026

Peroxisome degradation (0030242) 0.023

Microtubule cytoskeleton organization and 

biogenesis (0000226)

0.008

Protein catabolism (0030163) 0.046

Intermediate filament cytoskeleton (0045111) 0.040

Q8I562 25 (31) Cellular protein metabolism (0044267) 0.028 Cell death (0008219) 0.030

Protein folding (0006457) 0.022 RNA localization (0006403) 0.006

Anterior/posterior axis specification 

(0009948)

0.025

Anterior/posterior pattern formation 

(0009952)

0.025

Cytoskeleton organization and biogenesis 

(0007010)

0.027

Myosin II (0016460) 0.010

Actin cytoskeleton (0015629) 0.012

Q8I5X5 18 (27) Transferase activity (0016740) 0.017 ATP binding (0005524) 0.0001

Glycolysis (0006096) 0.003 Cellular protein metabolism (0044267) 0.020
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Macromolecule catabolism (0009057) 0.002 Catalytic activity (0003824) 0.047

Kinase activity (0016301) 0.036 Intermediate filament cytoskeleton (0045111) 0.030

Cytoskeleton-dependent intracellular 

transport (0030705)

0.002

Q8IKV2 18 (22) Chromatin binding (0003682) 0.011 Adenyl nucleotide binding (0030554) 0.019

Chromatin assembly or disassembly 

(0006333)

0.043 Transcription coactivator activity (0003713) 0.007

Chromosome organization and 

biogenesis sensu Eukaryota (0007001)

0.048 RNA-mediated posttranscriptional gene 

silencing (0035194)

0.018

Translation regulator activity (0045182) 0.008

a) The P-value is computed by Eqn. 15.

Table 5: Annotations of highly interconnected PPI subnetworks in malaria. (Continued)

tions into account, the cluster was annotated as being

related to "cellular protein metabolism" and "protein fold-

ing". Several more interesting and specific functional

terms were brought to light after including predictions.

These terms are related to the cytoskeleton and protein/

RNA transport and localization. Specifically, the terms

"anterior/posterior pattern formation", "RNA localiza-

tion", and "cell death" are closely related and signify that

the protein interactions in this subnetwork are likely to be

involved in the programmed re-organization of the cell

leading to death, or apoptosis.

Identifying clusters of functionally related protein-coding 

genes in genomes

Genome proximity is known to be related to conservation

of protein function, most notably in the cases of coordi-

nately regulated groups of protein-coding genes in oper-

ons or regulons [47] and among some membrane

transport proteins [48]. Similarity of phylogenetic profiles

[25] and stability of local genome organization between

species [49] have also revealed functional conservation

among groups of genes. Here we scanned the three

genomes using a window of a certain size (10 kb for E. coli

and 30 kb for yeast and malaria genome) to identify

groups of neighboring genes with significant function

similarity. Windows of genes that have an overall categor-

ical similarity (one or more of MF-score, BP-score, or CC-

score) of greater than 0.7 or a comprehensive similarity

(funSim) of greater than 0.49, including new functional

terms predicted by PFP, were considered for analysis. The

threshold values, 0.7 and 0.49, are chosen to roughly

match the number of windows to be selected with the

number of known regulons in E. coli. According to the

RegulonDB database (June 2009 release) [47], there are

374 regulons in the E.coli genome. Using 0.7 in MF, BP,

and CC score selects 339 (14.7%), 377 (16.4%), and 779

(34.1%), respectively, and 0.49 in the funSim score selects

437 (18.8%) windows (Fig. 9). For example, the windows

with regulons of ribosomal subunits (rplQ, rpoA, rpsJ,

etc.), flagellar proteins (two windows: flgA, flgB, etc. and

fliE, fliF, etc.), his operon (hisL, hisG, etc.), and psp

operon (pspF, pspA, etc.), satisfy these threshold values.

Figure 10 illustrates the functional similarity scores along

the E. coli genome. Some of the known operons are

marked in color.

As with the PPI subnetworks, each genome window

identified as a target was tested for overrepresentation of

GO functional terms using only previously known anno-

tations and then using known and predicted terms by

PFP using the hypergeometric distribution (Eqn. 15). The

percent difference between these two scenarios is used as

our standard measure of annotation gain. The summary

of the increase of the annotation to the genome windows

is shown in Table 6. Again, as was the case with annota-

tion of PPI subnetworks, we would expect to find that

applying predicted terms to groups of proteins in E. coli

and yeast would yield some, but not an extensive, degree

of annotation gain. This indeed turned out to be true. For

E. coli and yeast, we were able to annotate 38 and 29 pre-

viously unannotated windows, respectively, in each

genome. The average annotation gain computed for pre-

viously annotated windows are 49% and 14% for E. coli

and yeast, respectively. Analysis of annotation gain

among windows in the malaria genome again yielded sig-

nificantly higher increases. 37% (2418 out of 6539) of

windows with no previously known functional annota-

tion were assigned with predicted GO terms by PFP. The

remaining 2,735 windows for which some annotation

already existed, we observed an average annotation gain

of 289% (Table 7).

Here, we also present several individual cases of new

annotation to regions in the genomes of each of the three

organisms. A summary of the new annotation is shown in

Table 7. The 30 kb region of malaria chromosome 3 start-

ing at position 906,000 contains six proteins with an aver-

age GO biological process similarity of 0.722. The 30 kb
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region of malaria chromosome 3 starting at position

906,000 contains six proteins with an average GO biolog-

ical process similarity of 0.722. After annotating four of

the five previously uncharacterized proteins coded here

with high confidence predictions, we found that the pro-

teins may share involvement in phosphorylation or

dephosphorylation ("phosphotransferase activity" and

"transferase activity, transferring phosphorous-contain-

ing groups"). This may indicate that these neighboring

proteins are involved in a common signaling or metabolic

pathway. Similarly, the region of malaria chromosome 7

starting at position 1,296,000 (five proteins, average bio-

logical process similarity of 0.891) was assigned several

receptor-like activities. The overrepresented terms

related to several types of receptor activity give a strong

indication that this region contains proteins that form

complex or interact closely as part of a membrane signal-

ing receptor. Membrane receptors and complexes of

membrane proteins are well characterized as sharing

genome proximity [48]. The four proteins between posi-

tions 492,000 and 522,000 of the minus strand of Malaria

chromosome 10 (average biological process similarity of

0.860) were assigned several functional terms that all

relate to the intrinsic cellular response to nutrients. The

terms "intracellular transport", "response to nutrients",

"negative regulation of transcription by carbon catabo-

lites", and "mitotic cell cycle" could all indicate a common

process involving metabolism and cellular signaling

response to the presence of nutrients under particular

conditions, perhaps akin to the well known lac operon in

E. coli.

E. coli is one of the most well-characterized model

organisms in terms of coordinately regulated expression

in the form of operons and regulons [47]. As such, we

would not expect to find many regions of the genome that

could represent new examples of these molecular phe-

nomena relating to specific pathways. However, we did

find several examples including the following two where

annotation of previously uncharacterized regions might

indicate common involvement in processes. First, the 11

proteins within 10 kb of position 1,212,000 (average bio-

logical process similarity of 0.792) share broad annota-

tions of "regulation of biological process" and

"intracellular membrane-bound organelle". Second, the

seven proteins within 10 kb of position 3,016,000 (average

biological process similarity of 0.711) share similarly

broad annotations of "transport" and "localization". In

either case, these annotations might indicate involvement

in a common complex or process in a particular mem-

brane-bound organelle or localization pathway, and

might be enough to warrant further investigation into the

biological reason for the shared function.

Yeast is similarly well characterized, but we again found

some examples of genomic windows where application of

new high confidence predictions revealed a shared func-

tion or related functions. There are two particularly inter-

esting examples. First, the 15 kb region of the plus strand

of Yeast chromosome 14 starting at position 141,000 con-

tains three proteins (average cellular component similar-

ity of 0.749) that share the annotations "chromatin

silencing at telomere" and "telomeric heterochromatin

formation". Second, the six proteins located in 15 kb

region of chromosome 15 starting at position 342,000

(average cellular component similarity of 0.760) share the

related functions of "signal transducer activity" and

"transmembrane receptor activity".

Details of individual protein interaction subnetworks

and genomic windows, and previous and new annota-

tions for each subnetwork and window can be found in

the supplementary data.

Discussion
In this analysis, we enriched functional annotation to the

three genomes by PFP's high confidence predictions and

represented the functional space occupied by the pro-

teomes in the functional similarity network, where edges

between proteins (nodes) denote significant functional

similarity between them. To the best of our knowledge,

this is the first time that structure of functional space is

analyzed as a network. Taking advantage of the PFP's

large annotation coverage [14], more than 90% of proteins

in each genome are included in the functional similarity

network (Table 1). This is a significant enrichment espe-

cially for the malaria genome, as previously only 41.9% of

proteins were annotated. We defined the functional simi-

larity of proteins using their annotated GO terms rather

than other possible functional similarity metrics, e.g. the

conventional sequence similarity, because GO terms can

compare proteins in different aspects of functions (i.e. in

different GO categories and their combinations), which

may be more relevant to protein activity in the cell. More-

over, proteins with a high sequence similarity shows sig-

nificant similarity in the annotated GO terms as well in

majority of the cases, so protein sharing GO term similar-

ity can be considered a superset of those sharing

sequence similarity [38,50].

Our study revealed interesting characteristics of the

functional similarity networks of the three organisms

contrasted with the PPI networks. We analyzed the global

topology of the functional similarity network by comput-

ing the degree exponent, the clustering coefficient, and

the clustering degree exponent of the networks (Table 3).

In general, both functional similarity networks and PPI

networks follow the power-law, but they are distinct in

the former showing the network modularity but the latter

does not. Among the four functional similarity networks

constructed by considering individual GO-scores and the

funSim score, the funSim score network is different from
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the others by exhibiting a higher tendency to be hierar-

chical (i.e. higher clustering degree exponent value) simi-

lar to the metabolic pathway networks. However, the

clustering degree exponent value seems to be sensitive to

the similarity threshold value used to construct the net-

works and the E. coli and yeast funSim score networks

drop its value below 1.0 when some similarity threshold

values are used.

Unlike the current PPI network data, which provide a

static view of protein interactions, the functional similar-

ity networks change their topology as the similarity

threshold value is changed. Functional similarity net-

Figure 8 Protein-protein interaction subnetworks described in Table 3. Proteins in the center of the subnetworks are: A, Q8I1Q4; B, Q8I206; C, 

Q8I255; D, Q8I562; E, Q8I5X5; F, Q8IKV2. Previously annotated proteins are colored red and proteins with functions predicted by PFP are colored yellow. 

Circular edges are self-interactions detected for the proteins. See Table 5 for function annotations of the proteins in these subnetworks.
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works of a different similarity threshold value represent

different levels of granularity of the gene function space

in a genome. Investigation of the global and local struc-

ture properties of dynamically changing functional simi-

larity networks is left as an important future work.

It is reminded that the currently available PPI networks

have several limitations; they are usually incomplete and

potentially include false positive and false negative inter-

actions [51,52]. However, we expect that such limitations

will not affect to this work too much since the focus of

this work is the construction of the functional similarity

networks and the functional enrichment by PFP. We ana-

lyzed the PPI networks as to contrast to the newly intro-

duced functional similarity networks. As a future work, it

may be interesting to compare the network properties of

the functional similarity networks with other types of

biological networks, such as gene regulatory networks

[53,54] or gene functional networks constructed by con-

sidering different types of experimental information [55].

Individual annotation to subnetworks in the PPI net-

works and genome local windows identified numerous

interesting cases where proteins in the subset show high

coherence with other members. These results provide

examples of how computational prediction can be uti-

lized in interpreting or building hypotheses on the pro-

teins sharing such functional association. Interestingly,

there are several cases where proteins in a genome win-

dow are functionally coherent with PFP's assignment of

broader, less-specific functional terms. These may not be

regulons or operons, where functional roles of compo-

nent genes are usually better defined. Rather, these local

windows of genes may imply existence of a new type of

gene clusters where genes are inter-related by much

broader, higher-level functional category.

Together with the introduction of the functional simi-

larity networks and functional coherence of individual

subsets of genes, we have demonstrated the usefulness of

computational function prediction by PFP. The same

methods can be applied to any biologically related group

of proteins. High-throughput technologies such as

microarrays and mass spectrometry that identify clusters

of proteins linked by common expression patterns or

conditions produce datasets that would also be relevant

for such an application. In the end, as PFP is a sequence

similarity-based prediction method, utilizing its high

confidence predictions takes a minimal time and energy

commitment (~1 day to run all uncharacterized proteins

for P. falciparum) and can have a significant impact on a

researcher's ability to interpret the complex datasets that

have now become the norm.

Conclusion
We assigned function to previously uncharacterized pro-

tein genes in Escherichia coli K-12, Saccaromyces cerevi-

siae, and Plasmodium falciparum with high-confidence

function prediction by the PFP method. Using the

enriched function annotation, we introduced the func-

tional similarity network which provides an intuitive rep-

resentation of the functional space of a proteome.

Comparison with the PPI networks revealed distinct fea-

tures of the functional similarity networks. In addition,

PFP's function assignment identified functionally coher-

ent subnetworks in the PPI and local regions in the

genomes. All together, this work demonstrated useful-

ness of the computational functional predictions by PFP.

Methods
Data sources

The genome sequence and annotation data for Escheri-

chia coli K-12, Saccaromyces cerevisiae, and Plasmodium

falciparum were obtained from the website of the Euro-

pean Bioinformatics Institute (EBI). Annotations quali-

fied as "previously known" were extracted from EBI's

GOA proteome datasets http://www.ebi.ac.uk/GOA/.

PPI data for E. coli was obtained from Arifuzzaman et al.

[5], for S. cerevisiae was obtained from MIPS [56], and for

P. falciparum was obtained from the paper by LaCount et

al. [44]. Genome position data was obtained from the

website of the National Center for Biotechnology Infor-

mation (NCBI) ftp://ftp.ncbi.nih.gov/genomes/.

Computing Clustering Coefficient

The clustering coefficient of a node indicates how well

the neighboring nodes to the central node are intercon-

nected and it is used to measure the modularity of a net-

work [39,40]. Concretely, it is computed as follows for a

given node:

Figure 9 The accumulated fraction of genomic windows in E. coli 

that satisfy the similarity threshold values. Results for the funSim 

score and individual GO scores are shown.

http://www.ebi.ac.uk/GOA/
ftp://ftp.ncbi.nih.gov/genomes/
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Figure 10 Variability of functional similarity in the E. coli genome. Functional similarity (Y-axis) here is an all-by-all category GO score or funSim 

average among the genes included in the local window. The X-axis is the genome position of the left-hand side of the window. The red line indicates 

the threshold value of functional similarity we used for individual analysis of a genome window for overrepresentation of GO terms (0.7 for each cat-

egory GO score average, 0.49 for funSim average). The dots denote known clusters of functionally similar genes. For the BP graph, neon green is the 

lac operon, pink is the trp operon, and dark blue is the his operon. For the MF graph, dark red dots are ATP synthase components (atpX). And for the 

CC graph, dark green dots are proteins of the ribosome. The same plots for yeast and malaria genomes are not provided since they have much larger 

genomes (yeast and malaria have 16 and 14 chromosomes, respectively) but all the data are available on our website.
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where k is the number of neighboring nodes connected

to the central node and n is the number of pairs of the

neighboring nodes that are directly connected. To quan-

tify the modularity of an entire network, the average clus-

tering coefficient is computed [39,40].

Function Prediction by PFP

GO functional terms were predicted for each sequence

without any previously assigned GO terms from E. coli, S.

cerevisiae, and P. falciparum using PFP under its optimal

parameter settings, which are described below. Refer to

the previous work [14] for detailed analyses of the effect

of using different parameter values. Only terms predicted

with high confidence (≥ 0.8) were assigned to each query

sequence. The detailed description of the algorithm as

well as thorough benchmark results of PFP have been

reported in the previous papers [13,14]. Here we will

briefly overview the PFP algorithm for readers' conve-

nience.

The PFP algorithm predicts GO function annotations

in three categories, i.e. MF, BP, and CC, with a statistical

significance score (p-value) and the expected accuracy.

For each sequence hit retrieved by a PSI-BLAST search

[32], associated GO terms are scored according to the E-

value provided by PSI-BLAST. Then the scores of a GO

term are summed up over all the sequence hits consid-

ered. This scoring system ranks GO terms by considering

both (1) their frequency of association to sequence hits

and (2) the degree of similarity those sequences share

with the query. A GO term, fa, is scored as follows:

where s(fa) is the final score assigned to the GO term, fa,

N is the number of the similar sequences retrieved by

PSI-BLAST, Nfunc(i) is the number of GO terms assigned

to sequence i, E_value(i) is the E-value given to the

sequence i, and fj is a GO term assigned to the sequence i.

P(fa | fj) is to take into account the association of two GO

terms, i.e. the co-occurrence of the two GO terms in the

same sequences. It is the conditional probability that fa is

associated with fj. c(fa, fj) is number of times fa and fj are

assigned simultaneously to each sequence in UniProt

[57], and c(fj) is the total number of times fj appeared in

UniProt, μ is the total number of unique GO terms con-

sidered in the associations, and ε is the pseudo-count,

which is set to 0.05. Note that the conditional probability

is asymmetric, i.e. P(fa | fj) ≠ P(fj | fa).

For running PSI-BLAST, the default E-value threshold

for inclusion in multiple iterations (-h 0.005) is used and

the maximum number of iterations is set to three (-j 3).

By shifting the scoring space by a constant (b), individual

annotations from weakly similar sequences (E-value > 1)

can be considered and scored. Here we use b = log(125) to

allow the use of sequence matches to an E-value of 125.

We also employed the score propagation by considering

hierarchical relationship of the GO terms. Each GO term

in the GO hierarchy (a directed acyclic graph) follows the

C
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Table 6: Summary of increase in annotation in genomic windows.

Organism Total # of 

windowsa)

Prior 

un-annotated 

windowsb)

Prior un-

annotated 

windows 

which are 

annotated by 

PFP

Total # of GO 

terms added 

by PFP to 

prior un-

annotated 

windowsc)

# of prior 

annotated 

windowsd)

# of prior 

annotated 

windows to 

which more 

GO terms are 

predicted by 

PFP

# of GO terms 

added to the 

prior 

annotated 

windows

E. coli 27,840 4,436 38 142 23,404 917 1750

S. cerevisiae 48,260 4,807 29 111 43,453 670 925

P. falciparum 45,036 6,539 2418 17435 38,497 2735 17286

a) These numbers include windows with genes on the plus strand, those with genes on the minus strand, and those with genes from the both 

strands.

b) The number of windows which include only unannotated genes in the GOA database.

c) Only overrepresented GO terms are considered.

d) The number of windows which all the included genes are unannotated in the GOA database.
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Table 7: Examples of windows with newly annotated highly similar genes.

Organism Position Directiona) # of Proteins 

(Average FunSim)

New annotations (GO) P-valueb)

E. coli 1212000 (bp) Both 11 (0.792) Regulation of biological process 

(0050789)

0.00006

Intracellular membrane-bound 

organelle (0043231)

0.0000005

Membrane-bound organelle (0043227) 0.0000005

Intracellular organelle (0043229) 0.000004

3016000 both 7 (0.711) Transport (0006810) 0.002

Establishment of localization (0051234) 0.002

yeast chr07 798000 (bp) minus 2 (0.793) rRNA processing (0006364) 0.001

chr02 165000 both 7 (0.704) Organelle lumen (0043233) 0.001

Membrane-enclosed lumen (0031974) 0.001

chr14 141000 Plus 3 (0.749) Chromatin silencing at telomere 

(0006348)

0.0004

Telomeric heterochromatin formation 

(0031509)

0.0004

chr15 342000 both 6 (0.760) Signal transducer activity (0004871) 0.001

Transmembrane receptor activity 

(0004888)

0.00007

Receptor activity (0004872) 0.0002

malaria chr03 906000 both 6 (0.722) Phosphotransferase activity, alcohol 

group as acceptor (0016773)

0.001

Transferase activity, transferring 

phosphorus-containing groups 

(0016772)

0.002

chr06 6000 both 5 (0.891) NADPH regeneration (0006740) 0.0001

NADPH metabolism (0006739) 0.0001

Nicotinamide metabolism (0006769) 0.0001

Pyridine nucleotide metabolism 

(0019362)

0.0002

Oxidoreduction coenzyme metabolism 

(0006733)

0.0004

Water-soluble vitamin metabolism 

(0006767)

0.0004

chr07 1296000 both 7 (0.866) Dopamine receptor activity (0004952) 0.0001

Amine receptor activity ( 0008227) 0.0001

Neurotransmitter receptor activity 

(0030594)

0.0001

Dopamine binding (0035240) 0.0001

Rhodopsin-like receptor activity 

(0001584)

0.001

Receptor activity (0004872) 0.001

Neurotransmitter binding (0042165) 0.0001

G-protein coupled receptor activity 

(0004930)

0.001

chr09 144000 plus 3 (0.881) RNA localization (0006403) 0.0002
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chr10 492000 minus 4 (0.860) Mitotic cell cycle (0000278) 0.0001

Negative regulation of transcription by 

carbon catabolites (0045013)

0.0004

Regulation of transcription by carbon 

catabolites (0045990)

0.0004

Response to nutrients (0007584) 0.0004

Regulation of transcription by glucose 

(0046105)

0.0004

Intracellular transport (0046907) 0.0003

Establishment of localization in cell 

(0051649)

0.0003

chr14 3174000 both 6 (0.800) Autophagic vacuole fusion (0000046) 0.00001

Organelle fusion (0048284) 0.00009

Macroautophagy (0016236) 0.00002

Autophagy (0006914) 0.00002

a) The direction of the DNA strands on which the genes are located.

b) The P-value of the overrepresentation of the GO term in the genes in the window

Table 7: Examples of windows with newly annotated highly similar genes. (Continued)

true path rule; that is, any gene associated with a GO

term must also be associated with the ancestors of that

term leading back to the ontology root. Following this

rule, we score ancestors of any predicted GO term

according to the number of genes associated to the pre-

dicted term relative to the ancestor term:

where s(fp) is the score of the parent term fp. Nc is the

number of child GO term which belong to the parent

term fp and s(fci) is the score of a child term fci. c(fci) and

c(fp) is the number of known genes which are annotated

with function term fci and fp, respectively. The final raw

score of a GO term is given by summing up the score

which is directly computed by Eqn. 2 and those from the

ancestral score propagation by Eqn. 4.

Finally, for each predicted GO term, the p-value of the

raw score is computed by using the term-specific raw

score distribution obtained by running PFP on the bench-

mark dataset [14]. Then, the expected accuracy is

assigned to the prediction by referring to the correlation

of the p-value and the actual accuracy computed for each

GO term (see 6 in our previous paper [14]).

PPI network enrichment

To evaluate enrichment of annotations in the interaction

network, we compared the number of fully (both interac-

tion partners annotated) and partially (one of the interac-

tion partners annotated) annotated interactions before

and after application of PFP to unannotated proteins in

the dataset (Fig. 2). We considered only GO predictions

with high confidence for the node enrichment.

Partitioning PPI subnetworks

We used a randomization approach to partition the PPI

networks into significant subnetworks. Subnetworks

were created from the original dataset using each protein

as a centroid, and including all directly interacting pro-

teins and the edges between them. The original dataset

was then randomized 100 times, maintaining the number

of interactions for each protein while changing specific

interacting partners. For each subnetwork i, the connec-

tivity coefficient (ci) was calculated as the ratio of edges

(gi) to nodes (ni) in the interaction subnetwork:

Statistical significance of the connectivity coefficient of

each real subnetwork was calculated using Student's T

statistic (α = 0.05):

where ν is the average value of the connectivity coeffi-

cient for the set of all subnetworks of the same centroid,

and s is the variance of the connectivity coefficient values

for the same set. This method of determining statistically

significant subnetworks was used by LaCount et al. [44]

for the malaria interaction network.

Functional similarity network

Our novel concept of the functional similarity network

uses individual proteins as nodes and scored functional
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similarities between proteins as edges. We have used the

Schlicker method for calculating the similarity score

between two sets of GO terms that uses the structure and

information content of nodes in the GO hierarchy[38].

Using this method, the similarity of two individual GO

terms c1 and c2 is

where p(c) is the annotation frequency of term c rela-

tive to the frequency of the ontology root, and S(c1, c2) is

the set of common ancestor terms between terms c1 and

c2. The similarity of two sets of terms,  and , of

respective sizes N and M is calculated by constructing an

all-by-all similarity matrix Sij.

Row vectors compare the similarity of set A (protein 1)

to set B (protein 2), while column vectors compare the

similarity of set B (protein 2) to set A (protein 1).

To calculate an overall similarity score for the two term

sets, we combined these two terms for each GO category:

where GOscore is any of the three category scores (MF-

score, BP-score, CC-score). We differentiate from the

Schlicker method only to include cellular component

similarity into the overall score, which is calculated as

max(GOscore) is set to 1 (maximum possible GOscore)

and the range of the funSim score is [0,1]. To construct

the function similarity networks for each organism, we

performed an all-by-all pairwise comparison to find the

funSim and category GOscore values for each unique pro-

tein pair.

In the functional similarity networks, pairs with the

GOScore or funSim score of 0.95 or higher are connected

by edges. The networks are visualized with Cytoscape

[58].

Identifying significant genomic windows

To identify functionally similar regions of a genome, we

used a sliding window approach. For each organism we

used a unique window size (10 kb for E. coli, 30 kb for P.

falciparum, 15 kb for S. cerevisiae) and a slide value equal

to 1/5 the window size. The window sizes were deter-

mined such that the number of genes for both strands in

any window averaged between eight and ten. Genes

included in the window were taken from the plus and

minus strands individually and also from both strands

together. Windows for which the category GO score was

above 0.7 or the funSim was above 0.49 were analyzed for

overrepresentation of GO functional terms by the

method described below.

Identifying significantly overrepresented terms in groups 

of proteins

Functional analysis of the PPI subnetworks and the

genome windows is performed by identifying overrepre-

sented GO terms in the subset relative to the annotation

set of the entire proteome. Overrepresented terms are

found essentially by applying the hypergeometric distri-

bution to all terms annotated to proteins in the cluster

[59]. The probability of a GO term X being annotated to a

protein in the cluster is computed by:

where k is the number of proteins in the cluster anno-

tated with X, N is the number of annotated proteins in the

organism, m is the number of proteins in the organism

annotated with X, and n is the number of annotated pro-

teins in the cluster. To calculate a p-value for overrepre-

sentation of a term, we use this probability for annotation

of k or more proteins in the cluster:

Because we are analyzing overrepresentation of several

GO terms, we use the false discovery rate (FDR) correc-

tion for multiple hypothesis testing:
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where q is the number of unique GO terms annotated

to proteins in the cluster.

The annotation gain for a subset of proteins is calcu-

lated as the percentage increase in the number of unique

new statistically overrepresented annotations as com-

pared to the number of previously known annotations.

Availability
PFP is available as a web tool http://kiharalab.org/pfp and

as a downloadable distribution as used in these analyses

http://kiharalab.org/pfp/dist. In addition, the supplemen-

tal data including the function annotation by PFP to the

three genomes and the PPI networks and networks statis-

tics of the functional similarity networks and the PPI net-

works are available at our lab website http://

kiharalab.org/func_network_suppl/.
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