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PREDICTION OF ALZHEIMER’S DISEASE

PROGRESSION ACCOMMODATING MULTIPLE
TIME-VARYING COVARIATES

By Shu Jiang∗ Yijun Xie† and Graham A. Colditz∗

Washington University in St. Louis∗ and University of Waterloo†

With the exponential growth in data collection, multiple time-
varying biomarkers are commonly encountered in clinical studies,
along with rich set of baseline covariates. This paper is motivated
by addressing a critical issue in the field of Alzheimer’s disease (AD)
in which we aim to predict the time for AD conversion in people with
mild cognitive impairment to inform prevention and early treatment
decisions. Conventional joint models of biomarker trajectory with
time-to-event data rely heavily on model assumptions and may not
be applicable when the number of covariates is large. This thus moti-
vated us to consider a functional ensemble survival tree framework to
characterize the joint effects of both functional and baseline covariates
in predicting disease progression. The proposed framework incorpo-
rates multivariate functional principal component analysis to charac-
terize the changing patterns of multiple time-varying neurocognitive
biomarker trajectories and then nest these features within an ensem-
ble survival tree in predicting the progression of AD. We provide a
fast implementation of the algorithm that accommodates personal-
ized dynamic prediction that can be updated as new observations
are gathered to reflect the patient’s latest prognosis. The algorithm
is empirically shown to perform well in simulation studies and is il-
lustrated through the analysis of data from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI). We provide implementation of our
proposed method in R package funest.

1. Introduction. Alzheimer’s disease (AD) is one of the most preva-
lent disease worldwide which leads to memory loss and dementia [Mattson,
2004, LaFerla et al., 2007, Rabin et al., 2019]. Early detection is critical due
to the lack of disease-modifying agents for patients diagnosed with AD. Mild
cognitive impairment (MCI) is defined as the transition stage between the
clinically normal and dementia state where it involves memory and language
loss that is considered greater than expected age-related changes [Mattson,
2004]. As a result, MCI patients are typically enrolled as the target pop-
ulation for early prognosis and evaluation of therapies trials [Ewers et al.,
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2012]. There is considerable interest in identifying biomarkers or combina-
tion of covariates, so that the likelihood of predicting the neurodegenerative
pathology due to Alzheimer’s disease for patients diagnosed with MCI can
be greater. See Park et al. [2012], Ewers et al. [2012], Gomar et al. [2014]
for example. Accurate and robust prediction of disease progression to AD is
thus important and critical to move the field forward [Risacher et al., 2009].

Tremendous amounts of data are being collected in the hopes of find-
ing significant factors that may be associated with AD progression. In the
dataset that motivated this work, the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI), the focus was on the collection of longitudinal assessments,
magnetic resonance imaging and positron emission tomography imaging
measures, as well as other biomarkers from blood and cerebrospinal fluid
[Cuingnet et al., 2011]. Of those covariates collected in the cohort, many
are time-varying. For example, the cognitive change in preclinical AD is a
series of cognitive tests which are measured at each patient visits. The po-
tential for discovery would be much greater in incorporating all available
patient-specific covariates in predicting the progression of AD. However, the
challenges may arise from i) high dimensionality of the baseline covariates;
ii) presence of multivariate time-varying biomarkers; iii) non-linear and com-
plex relationship between the covariates and the time-to-event outcome. A
natural question then is how to best utilize this information to improve
prediction performance to inform prevention and early treatment decisions.

Existing methods in the literature, such as the joint model, hinges on
the pre-specified model assumptions for both the time-varying biomarker
and the survival outcome [Rizopoulos, 2012]. However the nature of time-
varying biomarkers may vary under different clinical settings, making it
difficult to identify a suitable model. For illustration purposes, we present
in Figure 1, the raw longitudinal trajectories for two of the longitudinal
cognitive measures for 50 randomly selected MCI patients in ADNI. We
can see that both the Mini Mental State Examination (MMSE, left) and
Functional Activities Questionnaire (FAQ, right) trajectories have changing
patterns over time and are highly variable within and between patients. In
addressing this concern, nonparametric methods such as splines or kernel
smoothing, have been adopted in the literature for prediction using the de-
noised smoothed values of the biomarker trajectories [Wu and Chiang, 2000,
Welsh et al., 2002]. More recently, functional approaches such as functional
principal component analysis (FPCA), has become a popular alternative for
modeling time-varying predictors due to its ability to use extracted features
(changing patterns) in addition to the denoised smoothed values which will
likely improve prediction [Ramsay and Silverman, 2004, Wang et al., 2016].
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Examples of functional data analysis applied to time-to-event data include
Yan et al. [2017, 2018], Kong et al. [2018]. However all of the aforementioned
methods focuses on the dynamic prediction of time-to-event outcome with a
single time-varying biomarker. As a result, Li and Luo [2019] recently pro-
posed the use of multiple longitudinal biomarkers in predicting the disease
progression. However, their method contingent on the proportional hazards
model which may not be realistic and viable especially when the number of
covariates is large.

Fig 1. Longitudinal trajectories of Mini Mental State Examination (MMSE, left) and
Functional Activities Questionnaire (FAQ, right) of 50 randomly selected MCI patients in
ADNI.

In this article, we propose a unified strategy for dynamic prediction that
does not depend on the model specification and can handle high dimen-
sional baseline and multivariate time-varying covariates in the presence of
right censoring. The proposed approach is entirely data-driven and can be
stated in terms of three main steps. (1) First, extract features from the
multivariate time-varying covariates such that the changing patterns can be
summarized by a set of functional basis functions and the associated indi-
vidualized functional scores. (2) Then, construct candidate estimators based
on the extracted features and observed data. (3) Last, apply cross-validation
to select the optimal estimator among all candidates in step 2. Specifically,
we adopt tree-based methods in this paper where the possible candidate
estimators in step 2 are generated by repeated binary recursive partitions
[Ishwaran et al., 2008, 2011]. Tree-based methods facilitate a comprehen-
sive modeling scheme and are appealing for their ability to handle data
with high-dimensional covariates, facilitate complex and nonlinear relation-
ship between predictors and outcomes and relax the proportional hazard
assumption [Taylor, 2011, Jiang, 2019]. Given the tree-based estimators in
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step 2, the optimal estimator in step 3 can be selected via cross-validation
by tuning the number of functional basis functions from step 1 and tree-
based parameters which we discuss in detail in Section 2. The proposed
method will reinforce model robustness and prediction accuracy and serve
as a valuable tool for researchers in conducting future research.

The remainder of this paper is organized as follows. In Section 2, we de-
fine notation and describe the model setup. In particular, we give detailed
discussion on the multivariate principal component analysis (MFPCA) for
feature extraction from multiple time-varying covariates and the construc-
tion of the functional ensemble survival tree for conducting individualized
dynamic prediction. We investigate the finite sample performance in inten-
sive simulation studies in Section 3 and provide publicly available code in R

package funest. An application involving ADNI is given in Section 4, and
concluding remarks and topics for future research are given in Section 5.

2. Notation and Method.

2.1. Functional Ensemble Survival Tree. Random survival forest (RSF)
is an ensemble tree method that has been widely adopted for the analysis
of right-censored survival data. The goal of constructing the RSF is to train
a model that learns from the available functional and baseline covariates in
the cohort, such that the model can be used to make risk predictions for new
patients conditioning on partially observed data. The focus of this subsec-
tion is on model construction and we elaborate on individualized dynamic
prediction in Section 2.2.

Typical RSF can not take longitudinal covariates directly as inputs. To
extend the survival tree on the basis of longitudinal covariates, we first
characterize the changing patterns of the time-varying biomarkers via MF-
PCA. We start by setting up the functional framework for single time-
varying biomarkers and then expand to the multivariate setting. We let
Yi = (Y ′i,1, . . . , Y

′
i,Q)′ be the observed time-varying biomarkers for individ-

ual i, i = 1, . . . , n. The qth time-varying biomarker is denoted by Yi,q =
(Yi,q(ti,r), . . . , Yi,q(ti,Ri))

′ where Ri reflects random and irregular individual-
specific visits, q = 1, . . . , Q. We assume that the qth observed trajectory,
∀q ∈ {1, . . . , Q}, is recorded with error,

(2.1) Yi,q(ti,r) = Zi,q(ti,r) + εi,q,r , ∀ti,r ∈ [0, τ ]

where Zi,q(ti,r) denotes the denoised mean value of Yi,q(ti,r) for ti,r ∈ [0, τ ]
and τ denotes the maximum follow up time in the cohort. The error term is
assumed to have E(εi,q,r) = 0 and var(εi,q,r) = σ2q where ti,r, Zi,q and εi,q,r
are assumed to be mutually independent [Yao et al., 2005].
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Under the functional framework, we assume that Zi,q = {Zi,q(t), ∀t ∈
[0, τ ]} are realizations of a stochastic process Zq(t) in a square integrable
functional space with domain τ . The stochastic process is assumed to have
mean function E[Zq(t)] = µq(t) and covariance operator Cq(t, s) = Cov(Zq(t), Zq(s))
for ∀t, s ∈ [0, τ ]. Then by Mercer’s theorem [Mercer, 1909],

(2.2) Cq(t, s) =
∞∑
j=1

λqjφ
q
j(s)φ

q
j(t),

where φqj(t) is the jth orthonormal eigenfunction and λqj is the corresponding
eigenvalue where λq1 ≥ λ

q
2,≥ . . . > 0, j = 1, . . . ,∞. This decomposition thus

allows us to characterize each functional observation Ziq(t) as

(2.3) Zi,q(t) = µq(t) +

∞∑
j=1

ξqi,jφ
q
j(t),

where ξqi,j = 〈Zi,q(t) − µq(t), φqj(t)〉 =
∫ τ
t=0[Zi,q(t) − µq(t)]φ

q
j(t)dt, is the jth

functional principal component (FPC) score for individual i. According to
the Karhunen–Loève theorem [Ramsay and Silverman, 2004], each curve
Zi,q(t), ∀t ∈ [0, τ ], can then be characterized by the infinite sequence of FPC
scores ξqi,j , j = 1, . . . ,∞. In practice, an approximation of (2.3) is usually
carried out by truncating the infinite summation to the first Mq terms where
Mq could be determined by, for example, Akaike information criterion (AIC)
or the total variance explained (TVE) [Wang et al., 2016]. For estimation,
given the observed data, we adopt the Principal Analysis by Conditional
Estimation (PACE) algorithm for its well-known property of accommodating
sparse longitudinal observations as is the case in our motivating study [Yao
et al., 2005]. Specifically, we use PACE algorithm to facilitate the estimation

of the discretized mean function µ̂
(i)
q = (µ̂q(ti,1), . . . , µ̂q(ti,Ri))

′, the Ri ×Ri
empirical covariance matrix Σ̂q

i and the corresponding eigenvectors φ̂qi,j and

eigenvalues λ̂qi,j , j = 1, . . . ,Mq. Then the univariate FPC scores for the qth
biomarker trajectory for ith individual can be estimated as

(2.4) ξ̂qi,j = λ̂qi,j(φ̂
q
i,j)

T (Σ̂q
i )
−1(Yi,q − µ̂(i)q ) ,

j = 1, . . . ,Mq, for q = 1 . . . , Q.
Next we combine the Q univariate time-varying biomarkers via MFPCA

following Happ and Greven [2018]. We let M =
∑Q

q=1Mq and Λ̂ ∈ Rn×M be

an n×M matrix for which the ith row is {ξ̂1i,1, . . . , ξ̂1i,M1
, . . . , ξ̂Qi,1, . . . , ξ̂

Q
i,MQ
}.

In the multivariate setting we aim to perform a matrix eigenanalysis such
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that we can estimate the corresponding eigenvectors v̂m, from the empiri-
cal block matrix Ĝ = 1

n−1 Λ̂T Λ̂ ∈ RM×M , m = 1, . . . ,M . Note that MFPCA
indirectly accommodates the potential correlations among multiple trajecto-
ries via correlation among the FPC scores by pooling all estimated eigenvec-
tors from the univariate biomarkers in the block matrix Ĝ. The eigenvectors
v̂m thus contain the information of correlations across different time-varying
biomarkers. As a result, the multivariate eigenfunctions are estimated as

(2.5) ψ̂qm(tq) =

Mq∑
k=1

[v̂m]qkφ̂
q
k(tq), tq ∈ τ,

where [v̂m]qk denotes the kth entry in the qth block of v̂m, q = 1, . . . , Q,
m = 1, . . . ,M . The corresponding individual-specific MFPC scores can thus
be estimated as

ρ̂i,m =

Q∑
q=1

Mq∑
k=1

[v̂m]qkξ̂
q
i,k,(2.6)

m = 1, . . . ,M . Similar to the univariate setting, the optimal number of
MFPCs, {D : D ≤M}, can be chosen based on, for example, TVE or AIC.

The RSF can be easily constructed once the MFPCA scores have been es-
timated as in (2.6). Within the forest, every tree in the forest is grown from
a single node to a tree with multiple terminal nodes. Specifically, each deci-
sion tree is grown by partitioning individuals at each node into two groups,
where the split is chosen under a user-specified splitting rule. Node splitting
rules often are determined with the goal to either maximize within-node ho-
mogeneity or between-node heterogeneity. The standard split criterion for
survival trees is the log-rank statistic to maximize the survival differences
at each node which has been widely used and implemented [Ishwaran et al.,
2011]. Other splitting criterion such as the maximally selected rank statis-
tic has been recently developed for its well-known unbiased split variable
selection property [Wright and Ziegler, 2015]. In each terminal node of a
tree, the survival function is estimated using the Kaplan–Meier estimator,
utilizing only the observations from the same terminal node. Note that sev-
eral parameters needs to be tuned via cross-validation. In particular, the
prediction error needs to be assessed with, for example, various number of
trees, number of covariates to split on and the minimal terminal node size.
In addition, we may also tune the number for MFPCs that are nested within
the RSF for a better prediction performance. See Section 3 for more details.
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2.2. Individualized Dynamic Prediction. We let n denote the number of
individuals in the training cohort and n + 1 be the new individual who is
event-free and has observation up to some time t?, t? < τ . For each single
tree b, b = 1, . . . , B, prediction of the survival probability at t? +4t < τ , is
made by dropping the new individual n+ 1’s observations down the tree as

(2.7) Ŝb(t
? +4t|t?) =

Ŝb(t
? +4t|Wn+1, ρ̂n+1)

Ŝb(t?|Wn+1, ρ̂n+1)
,

where Wn+1 is the baseline covariates for individual n+1 of dimension P×1.
The MFPC scores ρ̂n+1 can be obtained by first estimating the univariate
FPC scores from (2.4),

(2.8) ξ̂qn+1,j = λ̂qn+1,j(φ̂
q
n+1,j)

T (Σ̂q
n+1)

−1(Yn+1,q − µ̂q) ,

j = 1, . . . ,Mq, q = 1, . . . , Q. We then pass these FPC scores to (2.6) to
obtain the MFPCA scores ρ̂n+1 = (ρ̂n+1,1, . . . , ρ̂n+1,D)′. The final prediction
from the forest is estimated by averaging over B trees in as

(2.9) Ŝ(t? +4t|t?) =
1

B

B∑
b=1

Ŝb(t
? +4t|t?) .

3. Simulation Study. We conduct intensive simulation studies to in-
vestigate the finite sample performance of our proposed method in this sec-
tion. We aim to mimic the motivating application and simulate n = 400
individuals in each dataset with nsim = 500. The individual-specific visit
times {ti,r, r = 1, 2, . . . , 7} are generated from the Gaussian distribution
centered at 0, 3, 6, 9, 12, 15, and 18 with standard deviation of 0.1 except the
initial baseline visit which is fixed at 0.

We assume that the time-varying biomarkers are recorded with error,
Yi,q(ti,r) = Zi,q(ti,r)+εi,r,q, where εi,r,q ∼ N(0, 1) and q = 1, 2, 3. We consider
both the linear and non-linear longitudinal trajectories in a similar fashion
as Li and Luo [2019]. Specifically in the linear setting, we simulate

Zi,q(ti,r) = β0q + βtqti,r + β1qXi,q + bi,q,

where [β01, β02, β03] = [1.5, 2, 0.5], [βt1, βt2, βt3] = [1.5,−1, 0.6], and [β11, β12, β13] =
[2,−1, 1]. We simulate Xi,q ∼ N(3, 1) for q = 1, 2, 3 and the individual-
specific random effects [bi,1, bi,2, bi,3] ∼MVN(0,Σ) with

Σ =

σ21 η12σ1σ2 η13σ1σ3
σ22 η23σ2σ3

σ23

 ,
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where [σ21, σ
2
2, σ

2
3] = [1, 1.5, 2], and [η12, η13, η23] = [−0.2, 0.1,−0.3].

The nonlinear trajectories for each individual i is assumed to follow a
piecewise model

Ziq(tir) = β0q + βtq

3∑
r=1

crs
(+)(tir − kr) +

3∑
q=1

β1qXiq + biq,

where [c1, c2, c3] = [1.2, 0.7, 0.5], [k1, k2, k3] = [0, 6, 13], and

s(+)(t) =

{
t, t ≤ 0

0, otherwise
.

We assume a porportional hazards model in this simulation where the
conditional hazard function follows

hi(t) = h0(t) exp
{ P∑
p=1

γpWi,p +

3∑
q=1

αqZi,q(t)
}

where αq is set to be (0.1,−0.1, 0.2) for q = 1, 2, 3 respectively. We consider
four different scenarios for the set of fixed covariates Wi = (Wi,1, . . . ,Wi,P )′.
In the first two scenarios we set ρ = 0.2 and 0.5 for P = 20, 100 respectively
to represent strong autoregressive dependence where Wi ∼ MVN(0,Σ(W ))
with the (k, l)th component of Σ(W ) define as

Σ
(W )
k,l =

{
1, k = l

ρ|k−l|, i 6= j
.

In the last two scenarios, we consider binary covariates with P (Wi,p = 1) =
0.5 similarly under ρ = 0.2 and 0.5 for P = 20, 100. We set the associated
coefficients γp = (−2.5,−0.5,−0.15,−0.15,−0.1) for p = 1, . . . 5 so that
high values of γ1, . . . γ5 are associated with shorter times to the event, and
γp = 0 for p = 6, . . . , P . The elements of Wi with non-zero coefficients were
chosen to give both weak and strong dependence within the set of important
covariates accompanied with set of noise variables. With the above setups,
we are then ready to simulate T̃i and Ci. As demonstrated in Austin [2012]
the survival time Ti can be generated from the inverse of the cumulative
hazard function H−1i (u|Di; θ) where H(t) is the cumulative hazard function
and u ∼ unif(0, 1). We have simulated under the independent censoring
scheme, where the censoring time is set to follow a uniform distribution
unif(0, Cm) where Cm is set such that the % of being censored by the end
of the study is 30%.
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In the simulations that we conducted, 300 individuals were randomly cho-
sen from each simulated dataset to train the model and the 100 used to eval-
uate the prediction performance. To avoid overfitting, we employed a 5-fold
inner and outer cross-validation. Specifically for the inner cross-validation,
an optimal ensemble survival tree model was built and selected based on the
best prediction performance by tuning the parameters in each fold. For each
fold in the outer cross-validation, the prediction accuray measure is recorded
dynamically for each time window (t?, t?+4t] conditional on data observed
up to t?,t? = 6, 9, forecasting t? +4t for 4t = 3, 6.

Table 1 illustrates simulation results from the nonlinear setting. Addi-
tional simulation results under the linear setting are provided in Table 2
within the Supplemental Material for interested readers. As shown in Ta-
ble 1, the AUC [Li et al., 2015] outputted from the proposed method are in
good agreement with the true AUC confirming a satisfactory model discrim-
ination. Additionally, we see that the Brier scores [Schoop et al., 2008] are
very close to zero which confirms good model calibration as well. From our
results, we can see that when the signal-to-noise ratio (S:N) decreases from
5 : 15 to 5 : 95, the proposed model retains robust performance in both the
AUC and Brier score.

The proposed method has been implemented in our funest package which
utilizes the well developed ranger that wraps the implementation of random
forest in C++. The computational speed of our package is outstanding, as
it takes less than 30 seconds for growing and making dynamic predictions
on the functional ensemble survival forest with ∼2500 trees on a desktop
with i7-7700 CPU. In addition, the package naturally takes advantage of
the multi-core processor when running in a larger scale computational envi-
ronment which warrants a even more promising computational speed.

4. Alzheimer’s Disease Neuroimaging Initiative. The data used
in this section were obtained from the Alzheimers Disease Neuroimaging
Initiative (ADNI) database1. We treat the conversion from MCI to AD as the
time-to-event outcome and focus on 317 patients who have been diagnosed
with MCI in ADNI-1. Out of those who were diagnosed with MCI, 141 of
them progressed to AD before the end of the study. Patients were assessed
at baseline, 6, 12, 18, 24, and 36 months in ADNI-1 with additional annual
follow-ups in ADNI-2 resulting in an average follow-up period of 33.4 (sd
= 14.1) months. The corresponding average number of visits recorded was
of 6.3 (sd = 2.3). Table 3 in the Supplemental Material shows the list of
variables that we consider in this section. We have focused on five time-

1http://adni.loni.usc.edu/
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Table 1
Estimated AUC(t?, t? + 4t) and Brier score(t?, t? + 4t) under the nonlinear setting via

functional ensemble survival tree; n = 400, nsim = 500, S:N = signal-to-noise ratio.

Wi P S:N t? 4t True AUC AUC BS

Normal 20 5:15 6 3 0.892 0.847 0.134

6 0.904 0.864 0.147

9 3 0.877 0.815 0.151

6 0.896 0.830 0.147

100 5:95 6 3 0.898 0.855 0.137

6 0.913 0.870 0.142

9 3 0.881 0.813 0.164

6 0.899 0.827 0.157

Binary 20 5:15 6 3 0.827 0.781 0.085

6 0.848 0.816 0.143

9 3 0.843 0.805 0.123

6 0.868 0.838 0.149

100 5:95 6 3 0.836 0.792 0.083

6 0.867 0.834 0.127

9 3 0.854 0.819 0.114

6 0.883 0.852 0.133

varying neurocognitive markers as well as other baseline covariates that
have been well studied in the Alzheimer’s literature [Mattson, 2004, LaFerla
et al., 2007, Gomar et al., 2014].

Figure 2 illustrates the dynamic prediction performances under different
models. In particular, we considered model 1 which is the full model that
includes all available covariates and model 2 which includes only baseline
covariates (including baseline measures for the time-varying markers). To
avoid overfitting, we employed a 5-fold inner and outer cross-validation in
this analysis similar to our simulation study. An optimal ensemble survival
tree model was built and selected based on the best prediction performance
by tuning the parameters in each fold in the inner cross-validation. For
each fold in the outer cross-validation, the prediction accuracy measure is
recorded dynamically for each time window (t?, t?+4t] conditional on data
observed up to t?,t? = 6, 12, 18, 24 (month), forecasting t? +4t for 4t = 6

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 19, 2020. ; https://doi.org/10.1101/2020.02.17.952994doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.17.952994
http://creativecommons.org/licenses/by-nc-nd/4.0/


11

month. It is apparent that model 1 achieves a better AUC(t?, t? +4t) and
BS(t?, t? + 4t) dynamically over all time points. This suggests that the
inclusion of the changing pattern of time-varying covariates indeed facilitates
a better model discrimination and calibration.

We further illustrate the variable importance ranking via the variable per-
mutation importance measure as shown in Figure 3. A variable is identified
as important if it exerts a positive effect on the prediction performance. A
greater value of permutation measure on a variable implies that the variable
is more important for the overall predictive accuracy; see Nembrini et al.
[2018] for more details. As a result, we see from Figure 3 that the first
principal component (PC1) stands out with significantly large permutation
importance measure in relation to other variables. This finding suggests that
the contribution of the changing patterns of time-varying covariates in pre-
dicting the progression of AD for those who are diagnosed as MCI is much
greater relative to the fixed baseline covariates. Such finding is indeed in
agreement with what we observe in Figure 2.

Lastly, we demonstrate individualized dynamic prediction where we ran-
domly set aside a single patient from the cohort. The model was trained
on the remainder of the cohort leaving this single patient out, such that
we are able to visualize the predicted future biomarker trajectory and risk
conditional on partial profile. Figure 4 shows two of the five neurocogni-
tive markers (i.e., ADAS-COG13 and FAQ) that we use in the model for
ease of visualization. The dashed line in Figure 4 represents the last time
the biomarker has been recorded for the patient. From the first column of
Figure 4, we can see that the predicted trajectories of the ADAS-COG13
and FAQ are in great harmony with the true values. Correspondingly, the
predicted AD-free probability for the patient is shown as a function of time
in the second column where splines have been adopted to provide a smooth
curve. The predicted low risk should be consistent with what one would
expect from the stability of neurocognitive marker measurements. A full set
of neurocognitive markers and their associated predictions are provided in
Figure 5 in Supplemental Material for interested readers.

5. Discussion. We have formulated the functional ensemble survival
tree framework that facilitates individualized dynamic prediction for dis-
ease progression accommodating multiple time-varying biomarkers. The pro-
posed framework is fully data-driven and therefore removes the burden of
the need to impose model assumptions on both the time-varying trajectories
and the survival distribution. Specifically, we adopt MFPCA to characterize
the changing pattern of the multivariate time-varying biomarkers which ef-
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Fig 2. Comparison of dynamic prediction performances of the full model (model 1) and
baseline model (model 2) under a 5-fold cross-validation. AUC(t?, t?+6) and BS(t?, t?+6)
conditions on data observed prior to t? = 6, 12, 18, 24 (month) in forecasting t? + 6 under
a sliding window framework.

Fig 3. Varbiable permutation importance barplot.
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Fig 4. Predicted trajectories of ADAS-COG13 and FAQ in the first column and predicted
AD-free probability in the second column conditional on partially observed marker values
prior to the dashed line; dashed line represents the last time the biomarker has been recorded
for the patient.

fectively captures the correlation among them. We also nest these extracted
features into the ensemble survival tree which accommodates dynamic pre-
diction under high dimensionality of baseline covariates and complex asso-
ciations between the covariates and the time-to-event outcome. We investi-
gate the empirical performance of the proposed algorithm and show that the
model is robust and has a good discrimination and calibration via both the
AUC and Brier score. We describe how to conduct individualized dynamic
prediction and illustrate the proposed framework in the ADNI dataset. Fur-
thermore, we make the proposed algorithm publicly available in R package
funest. This could help physicians to predict future course of the biomarker
trajectories as well as the associated risk of AD which in turn, could facil-
itate identifying high risk individuals for prevention trials and treatment
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interventions.
A limitation in all tree-based methods is the lack of interpretability. How-

ever, in analyzing the ADNI dataset, we provided the variable permutation
importance measure which identifies variable that are important contribu-
tors for the overall predictive accuracy. Our findings from ADNI suggest that
time-varying trajectories play a major role in predicting AD progression for
those that are diagnosed with MCI. We did not use the genetic marker data
in our analysis as ADNI is an ongoing project that currently only has a
sparse number of individuals who have their genetic profiles available. How-
ever, the model set up and the software distributed in this article warrants
further research incorporating a richer set of covariates.
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SUPPLEMENTARY MATERIAL

Additional Simulation Results. The prediction performance measures
under the linear setting in Section 3 are displayed in Table 2.

Table 2
Estimated AUC(t?, t? + 4t) and Brier score(t?, t? + 4t) under the linear setting via
functional ensemble survival tree; n = 400, nsim = 500, S:N = signal-to-noise ratio.

Wi P S:N t? 4t True AUC AUC BS

Normal 20 5:15 6 3 0.891 0.852 0.128

6 0.909 0.869 0.146

9 3 0.887 0.828 0.146

6 0.910 0.846 0.136

100 5:95 6 3 0.900 0.856 0.129

6 0.918 0.876 0.140

9 3 0.888 0.824 0.162

6 0.908 0.839 0.155

Binary 20 5:15 6 3 0.751 0.678 0.066

6 0.762 0.679 0.168

9 3 0.760 0.689 0.141

6 0.796 0.717 0.210

100 5:95 6 3 0.759 0.663 0.060

6 0.775 0.690 0.139

9 3 0.762 0.679 0.127

6 0.792 0.703 0.190

Additional Real Data Results. Table 3 gives a full list of the covariates
that we have used in Section 4 for the ADNI dataset. Additional individual-
ized dynamic prediction plots with all neurocognitive markers are displayed
in Figure 5.

().
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Table 3
Covariates used in ADNI dataset; † represents a time-varying covariate.

Variable Description

ADAS-Cog 13† Alzheimer Disease Assessment Scale-Cognitive 13 items
RAVLT.immediate† Rey Auditory Verbal Learning Tests immediate score
RAVLT.learning† Rey Auditory Verbal Learning Tests learning score
FAQ† Functional Assessment Questionnaire
MMSE† Mini Mental State Examination
mPACCdigit.bl baseline preclinical Alzheimer’s cognitive composite score
MidTemp.bl baseline Middle temporal gyrus volume
Hippocampus.bl baseline Hippocampus gyrus volume
Fusiform.bl baseline Fusiform gyrus volume
Entorhinal.bl baseline Entorhinal volume
Ventricles.bl baseline Ventricles volume
ADAS-Cog13.bl baseline Alzheimer Disease Assessment Scale-Cognitive 13 items
RAVLT.immediate.bl baseline Rey Auditory Verbal Learning Tests immediate score
RAVLT.learning.bl baseline Rey Auditory Verbal Learning Tests learning score
FAQ.bl baseline Functional Assessment Questionnaire
MMSE.bl baseline Mini Mental State Examination
APOE4 apolipoprotein E gene indicator
AGE age at recruitment
PTGENDER gender
PTEDUCAT years of education

Shu Jiang
Division of Public Health Sciences
Department of Surgery
Washington University in St. Louis
St. Louis, MO, USA
E-mail: jiang.shu@wustl.edu

Yijun Xie
Department of Statistics and Actuarial Sciences
University of Waterloo
Waterloo, ON, Canada
E-mail: yijun.xie@uwaterloo.ca

Graham A. Colditz
Division of Public Health Sciences
Department of Surgery
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Fig 5. Predicted trajectories of MMSE, RAVLT.immediate and RAVLT.learning in the
first column and predicted AD-free probability in the second column conditional on partially
observed marker values prior to the dashed line; dashed line represents the last time the
biomarker has been recorded for the patient.
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