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Abstract

Hepatitis C virus (HCV) is a member of Hepacivirus and belongs to the family of Flaviviridae.

HCV infects millions of people worldwide and may lead to cirrhosis and hepatocellular carci-

noma. HCV envelope proteins, E1 and E2, play critical roles in viral cell entry and act as

major epitopes for neutralizing antibodies. However, unlike other known flaviviruses, it has

been challenging to study HCV envelope proteins E1E2 in the past decades as the in vitro

expressed E1E2 heterodimers are usually of poor quality, making the structural and func-

tional characterization difficult. Here we express the ectodomains of HCV E1E2 heterodimer

with either an Fc-tag or a de novo designed heterodimeric tag and are able to isolate soluble

E1E2 heterodimer suitable for functional and structural studies. Then we characterize the

E1E2 heterodimer by electron microscopy and model the structure by the coevolution

based modeling strategy with Rosetta, revealing the potential interactions between E1 and

E2. Moreover, the E1E2 heterodimer is applied to examine the interactions with the known

HCV receptors, neutralizing antibodies as well as the inhibition of HCV infection, confirming

the functionality of the E1E2 heterodimer and the binding profiles of E1E2 with the cellular

receptors. Therefore, the expressed E1E2 heterodimer would be a valuable target for both

viral studies and vaccination against HCV.

Author summary

Hepatitis C virus (HCV) is an enveloped virus that infects millions of people worldwide

and may lead to cirrhosis and hepatocellular carcinoma. HCV has two envelope proteins,

E1 and E2, which form heterodimers on viral surface and are critical for HCV cell entry.
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However, current studies of HCV E1E2 are often limited by the poor quality of the in vitro

expressed E1E2 heterodimers. Here we express the ectodomains of HCV E1E2 with differ-

ent tags, and are able to isolate soluble E1E2 ectodomains suitable for structural and func-

tional studies. Then we generate the 3D reconstruction of E1E2 heterodimer by electron

microscopy and also model the E1E2 structure by the coevolution based strategy with

Rosetta, showing the potential interactions between E1 and E2. Moreover, the E1E2 het-

erodimer is applied to examine the interactions with the HCV cellular receptors, neutral-

izing antibodies as well as the inhibition of HCV infection. These results suggest that the

expressed E1E2 heterodimer would be a promising target for both viral studies and vacci-

nation against HCV.

Introduction

Hepatitis C virus (HCV) is an enveloped positive-stranded RNA virus that belongs to the

genusHepacivirus in the family of Flaviviridae [1, 2]. Its genome consists of a single open read-

ing frame encoding a protein product, which is cleaved by cellular and viral proteases into ten

smaller proteins, including three structural proteins, namely core protein, E1 and E2, and

seven nonstructural proteins [3]. HCV causes both acute and chronic infections, and the

chronic infection may lead to liver diseases such as cirrhosis, hepatocellular carcinoma and

liver failure [4]. According to the statistics fromWHO, approximately 71 million people have

chronic HCV infection globally and nearly 400,000 people die each year from hepatitis C,

mostly through cirrhosis and hepatocellular carcinoma. Current antiviral medicines against

HCV show high cure rates (>95%), but the high cost, side effects, viral resistance and the

potential of reinfection [5–7] are limiting the antiviral effects. Up to date, no vaccine is avail-

able for HCV, largely due to its high polymorphism in genotypes and morphologies. The lack

of structural information also hampers the development of HCV vaccines.

HCV has two envelope glycoproteins, E1 and E2, which mediate the cell entry through the

interactions with host cell receptors and are promising targets for vaccine development. A

large number of studies have shown that several cell surface receptors are involved in HCV cell

entry. Among them, glycoprotein E2 has been reported to interact directly with tetraspanin/

CD81 [8–11], scavenger receptor class B member 1 (SR-B1) [12, 13] and very low density lipo-

protein receptor (VLDLR) [14]. Glycoprotein E1 is suggested to be responsible for the fusion

between viral and cellular endosomal membranes during HCV entry process and it might also

interact with the apolipoprotein E (ApoE) [15, 16]. In addition, several other receptors have

also been reported to be important for HCV cell entry, for example, claudin-1 (CLDN1) [17],

occludin (OCLN) [18], and NCP1L1 [19]. However, the exact roles of these receptors in viral

entry are not fully understood [20].

Both E1 and E2 of HCV are type I transmembrane proteins containing an N-terminal ecto-

domain (160 residues for E1 and 330 residues for E2) and a well-conserved C-terminal trans-

membrane domain of about 30 amino acids [21]. E1 and E2 form heterodimers on viral

surface, which is important for the maturation as well as the infectivity of viral particles, and

their transmembrane domains might be involved in the heterodimerization process [20, 22].

E1 and E2 ectodomains have five and eleven potential glycosylation sites, respectively, and

these carbohydrates might be important for the stability and antigenicity of HCV particles

[23]. Moreover, E1 and E2 ectodomains also contain eight and eighteen cysteines, respectively,

which can form both intra- and inter- molecular disulfide bonds that may affect the host

receptor interactions [20, 24]. Glycosylation and disulfide bonds might be critical for the
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folding and maturation of E1 and E2 as overexpression of these proteins often results in mis-

folded disulfide bond-linked aggregates [25, 26]. Up to date, only partial structural informa-

tion of E1E2 heterodimer is available. The crystal structure of an N-terminal fragment of E1

ectodomain shows a covalently linked domain-swapped homodimer [27]. The core of E2 has

been solved in complex with antibodies [28–30], where E2 adopts a central immunoglobin-

like fold formed by β-sheets surrounded by short α-helices dispersed in loops. However, both

E1 and E2 used for structural studies are truncated proteins, part of the ectodomains are miss-

ing in the solved structures [31, 32]. Meanwhile, several groups have been trying to co-express

E1E2 heterodimer to ensure the correct folding of the intact proteins as the folding and matu-

ration of E1 and E2 may depend on each other [33–36]. Unfortunately, co-expression of E1E2

heterodimer often leads to poor quality samples and the structural characterization of the

intact E1E2 heterodimer has not been successful.

Here we expressed the ectodomains of HCV E1E2 heterodimer fused with either an Fc-tag

or a de novo designed heterodimeric tag and characterized the structure of E1E2 heterodimer

with both electron microscopic reconstruction and the coevolution-guided modeling using

Rosetta. Moreover, we examined the interactions of the E1E2 heterodimer with the known

HCV receptors and neutralizing antibodies and the inhibition of HCV infection by the hetero-

dimer, suggesting that the expressed E1E2 heterodimer is functional and could be a valuable

target for further structural studies and vaccine development against HCV.

Results

Expression of E1E2 as an Fc-tagged heterodimer in insect cells

In order to obtain E1E2 heterodimer suitable for functional and structural studies, we first

tried to co-express E1 and E2 ectodomains (from HCV strain H1b) in insect cells by replacing

the transmembrane domains of E1 and E2 with a Flag-tag and a 6xHis-tag, respectively. But

almost no expression of E1 and low expression of E2 were detected. This is not surprising as

the folding of E1 and E2 may depend on each other, and the transmembrane domains of E1

and E2 have been shown to be important for the formation of E1E2 heterodimer [22]. There-

fore, we designed a construct using an IgG Fc fragment to substitute the transmembrane

domains of E1 and E2 (Fig 1A), where the IgG Fc fragments would dimerize and may facilitate

the formation of E1E2 heterodimer. To isolate the E1E2 heterodimer, a Flag-tag at the C-ter-

minus of E1-Fc and a 6xHis-tag at the C-terminus of E2-Fc were added for affinity chromatog-

raphy (Fig 1A). The construct was expressed as secreted soluble forms in insect cells and the

purified E1E2 heterodimers were obtained after two consecutive affinity purification steps

with Ni-NTA resin and anti-Flag M2 resin. The size-exclusion chromatography (SEC) showed

that the E1E2 proteins contained both heterodimers and oligomers, which correspond to

the two peaks in the chromatogram (Fig 1A). Proteins from both peaks were loaded onto

SDS-PAGE under reducing and non-reducing conditions (Fig 1B). The peak that corresponds

to the heterodimers showed a single band with the molecular weight equal to E1E2-Fc under

non-reducing conditions, while E1 and E2 were separated under reducing conditions, which is

not unexpected as there are disulfide bonds in Fc tag. Similarly, the peak that corresponds to

the oligomer also showed a smeared band with high molecular weights under non-reducing

conditions (Fig 1B), suggesting they might be disulfide bond-linked oligomers, which has been

reported before [20, 24, 37–40]. The E1E2 heterodimer was collected and showed mono-dis-

persed particles by negative stain EM imaging (Fig 1C). The two-dimensional (2D) class aver-

ages of the boxed particles showed that E1E2-Fc contained a head and a tail region. The head

region should correspond to the E1E2 heterodimer and the tail region is formed by the Fc

homodimer (Fig 1C). The E1E2 oligomers were also collected for negative stain EM, and the
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images showed larger particles with blurry 2D class averages, implying that the oligomers

might be heterogeneous (S3A Fig).

During the expression of E1E2 with Fc tag, E2-Fc homodimer was also found as expected,

however, no E1-Fc homodimer was detected in supernatant, suggesting that E2 might be

Fig 1. Expression of HCV E1E2 as an Fc-tagged heterodimer in insect cells. (A) Schematic representation of the Fc-tagged
HCV E1E2 heterodimer and the SEC profile of the purified E1E2-Fc. The heterodimeric and oligomeric peaks of E1E2-Fc are labeled
as 1 and 2, respectively. (B) SDS-PAGE of the purified E1E2-Fc under reducing and non-reducing conditions for the two peaks
shown in (A). (C) A negative staining EM image showing the heterodimeric E1E2-Fc particles (left; red circles; bar, 100 nm). The
representative 2D averaging classes are also shown (right; bar, 10 nm). The head and the tail regions are indicated by green and
orange arrows, respectively.

https://doi.org/10.1371/journal.ppat.1007759.g001
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required for the secretion of E1. To validate this result, both E1-Fc and E2-Fc were expressed

individually using the similar expression system in insect cells, and indeed, E2-Fc can be

found in supernatant (S1A Fig), whereas E1-Fc can only be detected in cell pellets (S1C Fig),

suggesting that E1-Fc alone may not fold properly and are retained intracellularly. The mono-

dispersed particles of E2-Fc homodimer could be seen on the negatively stained EM images

and the 2D class averages also showed that E2-Fc had two regions corresponding to the E2

homodimer and the Fc tail, respectively (S1B Fig). And the E2 homodimer revealed different

features from the E1E2 heterodimer in the 2D averaged images, which is expected and con-

firms the formation of E1E2 heterodimer with Fc tag.

Expression of E1E2 heterodimer with a de novo designed heterodimeric tag
in insect cells

To mimic the native folding and maturation of E1E2, we used a pair of de novo designed heli-

cal hairpins (DHD15, PDB entry: 6DMA) to replace the transmembrane domains of E1 and

E2 (Fig 2A). The designed helical hairpins only form heterodimers specifically [41], therefore

could maximize the yield of E1E2 heterodimer. In addition, the N-terminus of each helical

hairpin locates close to each other, allowing the direct fusion of E1 and E2. Furthermore, the

de novo designed hairpin heterodimer is thermal stable, which may facilitate the folding and

maturation of E1E2 heterodimer.

The construct of E1E2-DHD15 was expressed in insect cells and purified using both Flag-

tag and His-tag followed by SEC as described above. Similarly, the SEC profile showed two

peaks for E1E2-DHD15 (Fig 2A), which corresponded to E1E2 heterodimer and oligomer,

respectively. The E1E2-DHD15 heterodimer was loaded onto SDS-PAGE under both reducing

and non-reducing conditions (Fig 2B). The non-reducing SDS-PAGE showed a single band

with the molecular weight equal to E1E2-DHD15, while the bands of both E1 and E2 are

detected under reducing conditions. Since there is no disulfide bond in the DHD15 heterodi-

meric tag, the results suggest that disulfide bonds might be formed between E1 and E2 in the

expressed heterodimers. Meanwhile, the fractions from the oligomer peak were also loaded

onto SDS-PAGE under both reducing and non-reducing conditions (Fig 2B), the non-reduc-

ing SDS-PAGE showed a smeared band with high molecular weights, while the bands of E1

and E2 are separated under reducing conditions, confirming the formation of disulfide bond-

linked oligomers during expression, which is consistent with the data reported before [24].

Moreover, fractions from both peaks were negatively stained and observed under EM. The

images of the heterodimer showed uniform particles and the 2D averaged images revealed a

doughnut-shaped head and a tail, which correspond to the E1E2 heterodimer and the DHD15

tag, respectively (Fig 2C). By contrast, the EM images of the E1E2-DHD15 oligomer showed

larger heterogeneous particles (S3B Fig), consistent with the results of SEC and SDS-PAGE.

Expression of E1E2 heterodimer in mammalian cells

Glycosylation has been shown to be important for the function of E1E2 [23]. Considering the

different glycosylation patterns generated by insect and mammalian cells, we expressed both

DHD15-tagged and Fc-tagged E1E2 heterodimer in mammalian cells. Both E1E2-DHD15 and

E1E2-Fc expressed in HEK293 cells showed smeared bands with higher molecular weights on

SDS-PAGE (Fig 3A and 3C), which is expected as mammalian cells usually produce larger and

nonuniform glycosylation patterns. The SEC peak of E1E2-DHD15 also contained two species,

E1E2 heterodimer and oligomer (Fig 3A), and both of them showed single bands under non-

reducing conditions, whereas E1 and E2 were separated under reducing conditions, indicating

the formation of disulfide-bond linked heterodimer or oligomer, which is similar to the
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Fig 2. Expression of HCV E1E2 using a de novo designed heterodimeric tag DHD15 in insect cells. (A) Schematic representation
of the HCV E1E2 heterodimer with a de novo designed tag DHD15 and the SEC profile of the purified E1E2-DHD15 expressed in
insect cells. The heterodimeric and oligomeric peaks of E1E2-DHD15 are labeled as 1 and 2, respectively. (B) SDS-PAGE of the
purified E1E2-DHD15 under reducing and non-reducing conditions for the two peaks shown in (A). (C) A negative staining EM
image showing the heterodimeric E1E2-DHD15 particles (left; red circles; bar, 100 nm). The representative 2D averaging classes are
also shown (right; bar, 10 nm). The head and the tail regions are indicated by green and orange arrows, respectively.

https://doi.org/10.1371/journal.ppat.1007759.g002
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Fig 3. Expression of HCV E1E2 heterodimers in mammalian cells and the interactions of E1E2-DHD15 or

E1E2-Fc heterodimer with neutralizing antibodies. (A) The SEC profile and the SDS-PAGE under reducing and
non-reducing conditions of the purified E1E2-DHD15 expressed in HEK293 cells. (B) A negative staining EM image
of the E1E2-DHD15 particles (left; red circles; bar, 100 nm) and the representative 2D averaging classes (right; bar, 10
nm). (C) The SEC profile and the SDS-PAGE under reducing and non-reducing conditions of the purified E1E2-Fc
expressed in HEK293 cells. (D) A negative staining EM image of the E1E2-Fc particles (left; red circles; bar, 100 nm)
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proteins expressed in insect cells described above. The E1E2-Fc expression in HEK293 cells

behaved similarly as E1E2-DHD15 (Fig 3C). These results suggest that the disulfide-bond

linked E1E2 heterodimer and oligomer are formed independent of the expression systems,

which is in agreement with data from other groups [20, 24, 37–40]. In addition, the negatively

stained EM images also showed mono-dispersed particles for both samples (Fig 3B and 3D),

however, the 2D averaged images did not show clear features as the insect cell expressed pro-

teins, probably due to the heterogeneity resulting from the larger and nonuniform glycosyla-

tion of the samples.

Similar to the insect cell expression system, E2-Fc alone could be expressed and secreted

properly by mammalian cells (S2A Fig), but no E1-Fc could be detected in supernatant if

expressed by itself (S2C Fig). The negatively stained EM images showed that the mammalian

cell expressed E2-Fc were also mono-dispersed, and the head and the tail regions can be seen

in the 2D averaged images (S2B Fig). In parallel, we also expressed the E1E2 heterodimer from

a different HCV strain, genotype 1a H77, and the similar results were obtained (S2D Fig), sug-

gesting that the co-expression system described above could be applied to other HCV strains

to obtain soluble E1E2 heterodimers.

In the meantime, we also treated E1E2 heterodimer with Endoglycosidase H (Endo H) as

it has been shown that the virion-associated mature HCV glycoproteins are resistant to

Endo H treatment [24, 39]. Indeed, the E1E2 proteins expressed in HEK293 cells were resis-

tant to Endo H treatment (S6B Fig), whereas the insect cell expressed E1E2 proteins could

be slightly deglycosylated by Endo H (S6A Fig). The negatively stained EM images were also

collected for the Endo H treated E1E2-DHD15 expressed in insect cells, and the images

showed well-dispersed particles sharing similar features with the untreated proteins (S6C

Fig).

Interactions of E1E2 proteins with HCV neutralizing antibodies

To validate the folding of the expressed E1E2 proteins, we tested the interactions of the Fc-

and DHD15-tagged E1E2 heterodimers with the known HCV neutralizing antibodies. AR3A

is an E2-specific antibody recognizing a discontinuous epitope on E2 and has been shown to

be able to block the binding of E1E2 to CD81 [42, 43]. The ELISA data showed that AR3A

could bind to the E1E2 heterodimers expressed in both insect and mammalian cells (Fig 3E

and 3H). In parallel, the Fab fragments of neutralizing antibody IGH526, which recognizes a

conformational epitope on E1 and may also have minimal binding activity to E2 [44], and anti-

body HCV1, which binds to a β-hairpin motif on E2 [45], were expressed and purified from

HEK293 cells (S9 Fig). Similarly, the binding data showed that both IGH526 and HCV1 could

bind to the E1E2 heterodimer expressed in both insect and HEK293 cells (Fig 3). In particular,

IGH526 showed much higher binding activity to E1E2 heterodimer than E2 homodimer (Fig

3I), consistent with the reported data for this antibody [44]. Therefore, these results suggest

that the E1E2 proteins expressed by our strategies have the similar epitopes as the E1E2 on

viral surface. Furthermore, we also tested the binding of the oligomeric fractions of E1E2 with

the neutralizing antibodies described above, and the data showed that E1E2 oligomers could

bind to the neutralizing antibodies as well (S7 Fig), suggesting that the oligomers of E1E2 also

contain correct epitopes.

and the representative 2D averaging classes (right; bar, 10 nm). (E)-(J) ELISA data show the binding of the insect or
mammalian cell expressed E1E2-DHD15 or E1E2-Fc with neutralizing antibodies AR3A, IGH526 and HCV1,
respectively. The ELISA data shown in (E)-(J) are representative of three repeated experiments and presented as
mean ± SD.

https://doi.org/10.1371/journal.ppat.1007759.g003
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Three-dimensional EM reconstruction of E1E2 heterodimer

To investigate the structure of E1E2, we applied 3D electron microscopy reconstruction to the

E1E2 heterodimers expressed in insect cells as they showed mono-dispersed homogenous par-

ticles on negative staining EM images. The 2D averaged images showed that the E1E2 region

of the E1E2-Fc heterodimer adopted a doughnut-like conformation (Fig 1C). But the 3D

reconstruction based on the 2D images was not successful as the Fc portion, which occupies

roughly one third of the total volume, was rather flexible relative to the E1E2 portion, thus

making the particle alignment difficult for 3D reconstruction. By contrast, DHD15 tag is

smaller with relatively low flexibility, allowing us to reconstruct a 3D model of E1E2-DHD15

heterodimer based on the negatively stained EM images at ~27 Å resolution (Fig 4).

The EM reconstruction of E1E2-DHD15 showed a volume with a doughnut-like head and

a tail (Fig 4). The de novo designed helical bundle DHD15 can be fitted into the tail volume

reasonably well (Fig 4A). The head that corresponds to the E1E2 heterodimer can be roughly

divided into two density blobs at the high-density contour level (Fig 4A), which might

Fig 4. Three-dimensional EM reconstruction and the structural model of HCV E1E2 heterodimer. (A) Three views of the 3D reconstruction of
E1E2-DHD15 (low-density contour: gray mesh; high-density contour: surface). The solved structures of E2 (PDB entry: 4MWF, green), E1 (PDB entry:
4UOI, orange) and DHD15 (brown) are put into the EM density showing that a large portion of E1 and E2 are missing in the known crystal structures.
The densities corresponding to E2, E1 and DHD15 are colored in green, orange and brown in the high-density contour, respectively. (B) Three views of
the coevolution based E1E2 structural model fitted into the EM reconstruction. The hyper variable region 2 (HVR2, blue) of E2 and the putative fusion
peptide (magenta) of E1 are shown in the structural model.

https://doi.org/10.1371/journal.ppat.1007759.g004
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correspond to the ectodomains of E2 and E1, respectively. Docking of the known crystal struc-

tures of E1 and E2 into the EM volume is difficult as these structures are truncated and only

occupy roughly 50% of total EM volume (Fig 4A) [27–29].

It has been reported that during HCV entry, viral particles are internalized and transported

into endosomes where E1E2 may undergo conformational changes in response to acidic pH

[46–48]. Therefore, we incubated E1E2-DHD15 in acidic buffer (pH 5.5) overnight and

imaged under EM. The resulting 2D class averages and the 3D reconstruction reveal no obvi-

ous difference (S4 Fig), suggesting that the pH-induced conformational change of E1E2 may

not be large enough to be visible at low resolution. Another possibility is that the E1E2 hetero-

dimer requires post-attachment priming steps before it responds to low pH during viral entry

[47], as in the case of pestiviruses [49].

Coevolution-based structural modeling of E1E2 heterodimer

To further explore the structure of E1E2 heterodimer, we modeled the E1E2 heterodimer by

combining the coevolution analysis with GREMLIN [50] and the molecular modeling with

Rosetta [51, 52] in the context of the 3D EMmodel. According to the coevolution theory, the

coevolving residues within or between proteins usually form spatial contacts, and such infor-

mation would facilitate protein structure prediction by Rosetta [53–55].

The accuracy of coevolution-based contact prediction depends on the availability of a large

amount of diverse (< 90% sequence identity) sequences where coevolving residues can be

detected unambiguously. There are about 50,000 different sequences of HCV glycoproteins in

the database. Although these sequences are not diverse enough to guarantee accurate contact

predictions based on the previous studies [54], we hypothesized that the massive amount of

somewhat different (about 95% sequence identity) sequences may still contain valuable coevo-

lution signals. We calibrated the prediction accuracy using residue pairs present in the crystal

structures of E2 (PDB entry: 4MWF and 4WEB) [28, 29] (Fig 5A). The top 0.5L (L is the sum

of the length of E1 and E2) predicted contacts are expected to contain 70% correct predictions,

and the contacts between E1 and E2 among these predictions are listed in Fig 5C. The calibra-

tion also allowed us to assign a probability of being correct to each predicted contact, and the

top 0.5L contacts that are separated by at least two residues (Fig 5B) are used as constraints for

modeling with Rosetta.

In addition to the coevolution constraints, we used the partial structures of E1 (excluding

the swapped beta hairpin from PDB entry: 4UOI) and E2 (PDB entry: 4MWF and 4WEB) as

templates to model the complete ectodomains of E1 and E2 with Rosetta. The top five models

ranked by Rosetta energy function (including atom pair constraints) are inspected and selected

based on the agreement to the EM density and the satisfaction to the coevolution constraints

between E1 and E2. The selected models of E1E2 heterodimer were manually docked into the

EM density and further refined using Rosetta with coevolution constraints. The resulting

model shows that the ectodomains of both E1 and E2 can be divided into two parts, an N-ter-

minal region and a stem region (Fig 4B), and E1 and E2 have two interfaces: one locates at the

membrane distal ends of the N-terminal regions and the other one stays near the membrane

proximal ends of the stem regions (Figs 4 and 5D). The modeled N-terminal region of E2 is

similar to the solved crystal structures, except that the hyper variable loop regions are rebuilt

by the Rosetta loop modeling protocol. Deletion of hyper variable region 2 (HVR2) has been

reported to abolish the formation of E1E2 heterodimers, indicating its important role in E1E2

heterodimer formation [56], which is consistent with our model where HVR2 comprises a

large portion of the E1E2 interface (Fig 4B). Moreover, the model is also in agreement with

the previously results showing that the back sheet region of E2 may interact with E1 [57]. In
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addition, a broadly neutralizing antibody AR3C has been showed to be able to block the bind-

ing of CD81 to HCV [28, 43]. The superimposition of the E2-AR3C complex structure [28]

with the E1E2 heterodimer model shows that the CD81 binding site locates on the side of the

E1E2 heterodimer, away from the E1E2 interface (S4C Fig).

The stem regions are commonly found in the glycoproteins in the Flaviviridae family [10,

58] and may play important roles in viral entry [59–63]. In the E1E2 structural model, the

stems regions are composed of helices and interact with each other, which is in agreement

with the strong coevolution signal between Q335 and S706 (Fig 5C). In addition, these helices

are hydrophobic and have positive WWIHS scores [64], suggesting they may interact with the

lipid membrane.

Fig 5. Coevolution based structural modeling of HCV E1E2 heterodimer. (A) Histogram of the accuracy of the top-ranked contacts. The accuracy of
the predicated contacts is calibrated using the crystal structures of E2 core. (B) The top 0.5L contacts that are used in the Rosetta modeling protocol are
shown as a contact map. Residue numbers of E1 and E2 are labeled and the predicated secondary structures of E1 and E2 are shown as bars with α-helix
in magenta and β-sheet in cyan. (C) A table of the predicted top scoring contacts between E1 and E2. (D) A cartoon representation of E1E2 heterodimer
on HCV envelope. The residues that may form contacts as well as the locations of the fusion peptide (FP), hyper variable region 2 (HVR2) and the
CD81 binding site are shown in the model.

https://doi.org/10.1371/journal.ppat.1007759.g005
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It is noteworthy that the putative fusion peptide of E1 (residue 272–285: CSA-

MYVGDLCGSVF), which has been suggested to be important for triggering the fusion process

during HCV entry [15, 59, 65–68], forms a helix in our model and interacts directly with E2

(Fig 4B). This interaction is supported by the strong coevolutional signal between residues

F284 of E1 andW645 of E2 (Fig 5C and 5D). Moreover, the structural modeling of E1 by

Rosetta also gives several alternative conformations of the fusion peptide with comparable

Rosetta energies. Among them, the extended helix of the peptide could bend in the middle and

form a helical hairpin, suggesting that large conformational changes are allowed for the fusion

peptide, which may be relevant to the fusion process. In addition, since the fusion peptide is

quite hydrophobic, it could be unstable if exposed in the absence of E2, which may explain

why E2 is required for the functional expression of E1.

In order to verify the model, we generated two deletion mutants at the interface between E1

and E2, including a HVR2 deletion mutant on E2 and a putative fusion peptide deletion

mutant on E1. Moreover, two double mutants of the coevolving residues that may form

hydrophobic contacts with each other at the E1E2 interface, including I307S &L653S and

F284S&W645S, were also made. In parallel, another version of the two double mutants,

I307R&L653R and F284R&W645R, were constructed to increase the probability of disrupting

the interface. All the mutants were generated based on the E1E2-DHD15 construct and

expressed in insect cells, which would only produce E1E2 heterodimers. However, none of the

mutants were detected in supernatants, and the western blot data showed that all these

mutants were expressed but retained intracellularly (S5A and S5B Fig), suggesting that the het-

erodimers were not formed properly probably due to the disruption of the interface between

E1 and E2. By contrast, a single mutant Q466R, which showed strong coevolving signal with

residue G198 on E1 (Fig 5C and 5D), could be expressed and secreted into supernatant (S5A

and S5B Fig). Since Q466 locates at the peripheral region of the interface in the model (Fig

5D), therefore may not be able to affect the interface as other mutated hydrophobic residues,

and indeed, the EM imaging of this mutant did not show any obvious difference with the wild

type samples (S5C Fig).

Interactions of E1E2 heterodimer with the cellular receptors

A number of cell surface receptors have been reported for HCV cell entry, but the specific

interactions between E1E2 and the receptors are not fully characterized. We first examined the

interactions of E1E2 with the receptors using E1E2-Fc heterodimers. CD81 is a known HCV

receptor that binds to E2 [8–11]. Indeed, the GST-pull down assays showed that the mamma-

lian cell expressed E1E2-Fc heterodimer could bind to CD81 (Fig 6B), and according to the

ELISA assays, the CD81 binding affinities of E1E2-Fc and E2-Fc were similar (Fig 6A), sug-

gesting that CD81 might bind to E2 directly and may not have interactions with E1. This is

consistent with the modeled structure of E1E2, where the CD81 binding site locates on the

side of E2, far away from the E1E2 interface (Fig 5D and S4C Fig). By contrast, apolipoprotein

E (ApoE) has been reported to facilitate the HCV entry through its interaction with E1 [16].

The ELISA results showed that E1E2-Fc could bind to ApoE, whereas E2-Fc only bound to

ApoE at background level, confirming the recognition between ApoE and E1 (Fig 6C). Among

the HCV receptors, very-low-density lipoprotein receptor (VLDLR) has been shown to medi-

ate HCV entry independent of CD81, and E2 plays an important role in this process [14].

Indeed, the ELISA results showed that both E1E2-Fc and E2-Fc bound to VLDLR similarly

(Fig 6D), which is consistent with previously studies. In addition, we also tested the interaction

between oligomeric E1E2 and CD81, and the results showed that the E1E2 oligomer could also

bind CD81 (S7D Fig), as has been reported previously [24].
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In the meantime, we also tested the interactions of E1E2-Fc heterodimer with other HCV

receptors, including SR-B1, OCLN and CLDN1. Since these receptors are multi-pass trans-

membrane proteins and difficult to isolate, we transfected HEK293 cells with the full-length

receptors fused with GFP and monitored the binding of E1E2-Fc heterodimer by FACS.

Fig 6. Interactions of HCV E1E2 heterodimer with the cellular receptors. (A) ELISA data show that both E1E2-Fc
and E2-Fc bind to CD81. (B) GST pull-down assays show that E1E2-Fc binds to CD81. (C) ELISA data show that
E1E2-Fc binds to ApoE, whereas E2-Fc has no obvious binding affinity to ApoE. (D) ELISA data show that E1E2-Fc
and E2-Fc bind to VLDLR similarly. (E) FACS data show that both E1E2-Fc and E2-Fc bind to the SR-B1 transfected
HEK293 cells. (F) Both E1E2-Fc and E2-Fc show no binding affinity to the OCLN transfected HEK293 cells. (G) Both
E1E2-Fc and E2-Fc show no binding affinity to the CLDN1 transfected HEK293 cells. (H) Both E1E2-Fc and E2-Fc
can block the infection of HCVcc. The ELISA data shown in (A), (C) and (D) are representative of three repeated
experiments and presented as mean ± SD. The viral infection blocking data shown in (H) are representative of three
repeated experiments and presented as mean ± SD.

https://doi.org/10.1371/journal.ppat.1007759.g006

Functional expression and characterization of HCV E1E2 heterodimer

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007759 May 22, 2019 13 / 26

https://doi.org/10.1371/journal.ppat.1007759.g006
https://doi.org/10.1371/journal.ppat.1007759


Among them, SR-B1 could bind to both E1E2-Fc and E2-Fc similarly (Fig 6E), suggesting that

SR-B1 might interact mainly with E2, which is in agreement with the previous results [12]. By

contrast, we were not able to detect any binding signals of E1E2-Fc on the OCLN or the

CLDN1 transfected cells (Fig 6F and 6G), this is somewhat unexpected as these two molecules

have been shown to be indispensable for HCV entry to murine cells [17, 18]. However, it has

also been reported that other cofactors might be required for E1E2 to recognize OCLN and

CLDN1 [69], therefore they may not interact directly with E1E2 during viral entry. In parallel,

we also tested the binding of E1E2-DHD15 with CD81, SR-B1, OCLN and CLDN1, respec-

tively, and similar results were obtained (S8 Fig).

To further confirm the functional activities of the expressed E1E2 heterodimer, we tested

the inhibition of HCV infection with the expressed E1E2 heterodimer or E2 homodimer. The

results showed that both E1E2 heterodimer and E2 homodimer could block the HCV infec-

tion, therefore validating the functionality of the E1E2 heterodimer (Fig 6H). Among them,

the E1E2-Fc heterodimer expressed in mammalian cells appeared to block the infection better

than other constructs, suggesting that both E1 and E2 as well as the glycosylation pattern of the

envelope proteins may all affect the viral entry. Taken together, these results confirmed that

the expressed soluble E1E2 heterodimer described above is functional and could be applied to

explore the HCV entry mechanism and might also be a valuable target for developing prophy-

lactic vaccines against HCV.

Discussion

Although HCV was identified nearly thirty years ago [70], the structure and the life cycle of

HCV have not been fully understood. Current publications suggest that HCV cell entry is a

multistep process involving a number of receptors in a temporally and spatially ordered man-

ner [1, 2], and the two envelope glycoproteins, E1 and E2, are the key players in the viral cell

entry process. Probably due to the complex folding and maturation process of E1 and E2, the

native form of E1E2 is difficult to isolate [33, 35, 36]. E1 and E2 have been shown to form a

heterodimer through their transmembrane domains on viral surface, and the folding and mat-

uration of E1 and E2 may depend on each other [20, 25, 26]. To mimic the native expression

of E1E2 glycoproteins, we utilize either an IgG Fc region or a de novo designed heterodimeric

tag to substitute the transmembrane domains of E1 and E2, resulting in E1E2 heterodimers

similar to the native form of E1E2 on HCV particles, which has been validated by the binding

of neutralizing antibodies that recognize conformational epitopes on both E1 and E2. Previous

evidence has shown that the intracellular forms of E1 and E2 might be assembled as non-cova-

lent heterodimers, whereas the virion-associated envelope glycoproteins could form covalent

dimers or oligomers stabilized by disulfide bonds, and the disulfide bond-linked E1E2 com-

plexes were in a conformation competent for cell entry [24]. Interestingly, the E1E2 proteins

expressed by our strategy usually contain two species, E1E2 heterodimers and oligomers, and

they all form inter-subunit disulfide bonds and could bind to the neutralizing antibodies and

cellular receptors, which is consistent with the findings about the virion-associated E1E2

glycoproteins.

Previously, similar co-expression systems have been used successfully with either GNA

enrichment method or fusing E2 with an Fc tag to facilitate purification [33, 71–74]. An advan-

tage of the strategy described here is that the E1E2 heterodimers are expressed as water-soluble

forms and secreted into media with reasonable yields, which makes purification and functional

characterization much easier than isolating the heterodimers from membranes with deter-

gents. The EM images also show that the purified E1E2 heterodimers are mono-dispersed and

suitable for further structural studies.
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De novo protein design has recently shown significant success in therapeutic drugs, new

enzymes and biocatalysts, drug delivery tools and other applications [75]. Here we use a de

novo designed helical bundle DHD15 to induce soluble heterodimer formation by replacing

the transmembrane domains of E1 and E2. The DHD15 tag has several advantages: (1) The

two N-termini of DHD15 are close to each other, which can be fused to the ectodomains of E1

and E2 without introducing extra geometric hindrance. The helical bundle of DHD15 also

mimics the conformation of the transmembrane domains of native E1E2; (2) DHD15 can

form stable heterodimer quickly and facilitate the folding and maturation of E1 and E2; (3)

Since DHD15 forms a heterodimer, it could maximize the yield of E1E2 heterodimer during

expression, because in the case of Fc tag, both E1E1 and E2E2 homodimers are also produced

during expression; (4) The helical bundle of DHD15 is quite rigid containing only 75 amino

acids with no disulfide bonds or glycosylation sites, making it suitable for crystallographic and

EM studies. The application of this de novo designed heterodimeric tag for HCV E1E2 glyco-

proteins suggest that computational protein design could be a powerful tool to facilitate biolog-

ical researches.

HCV glycoproteins are challenging targets to study with current structural approaches due

to the conformational flexibility, glycosylation and folding requirements, and only partial

structural information is available for E1 and E2 [27–29, 76]. Given the high sequence variabil-

ity and the availability of a vast number of sequences, the E1E2 of HCV is a reasonable target

for the in silicomodeling using coevolution information derived from sequence alignments. In

the context of the low-resolution EM reconstruction, the intact E1E2 ectodomain has been

modeled by Rosetta using the coevolution information regarding the residue contacts. The

E1E2 heterodimer roughly forms a doughnut-like conformation with two interfaces between

E1 and E2 (Fig 4). Both E1 and E2 ectodomains exhibit elongated electron densities in the EM

reconstruction and can be divided into an N-terminal region and a stem region. The putative

fusion peptide on E1, the HVR2 and the back-sheet region on E2 are involved in forming the

membrane distal interface between E1 and E2 in our model. This is in consistent with previous

experimental and computational studies, for example, the HVR2 region on E2 has been shown

to play an important role in E1E2 heterodimer formation [56], and the coevolution analysis

shows the critical role of the back sheet region on E2 in the E1E2 interface. Moreover, a recent

high-throughput mutagenesis study also emphasizes the importance of HVR2 and the back-

sheet region in the heterodimer formation [77]. The stem regions of E1E2 include hydropho-

bic helices, which might be involved in forming the membrane proximal interface between E1

and E2, since the coevolution analysis shows strong residue coupling signals between the stem

regions of E1 and E2 (Fig 5C).

Rosetta modeling has been used before for generating a computational model of E1E2 het-

erodimer [78], which shares some structural features with our model. During the modeling

process, we combine Rosetta modeling with the coevolution analysis, which has been shown to

be able to improve the accuracy of Rosetta predictions [79], and the structural information

from the 3D EMmodel. Several mutants have also been made to test the structural model,

especially the residues at the E1E2 interface with coevolution signals. The results show that

most of the mutants cannot be secreted into media, suggesting that they might be critical for

the formation of E1E2 heterodimer.

Several cell surface receptors have been reported to be involved in HCV cell entry, however,

the direct binding profiles between E1E2 heterodimer and the receptors are still incomplete.

The binding assays based on the expressed soluble E1E2 heterodimer suggest that CD81 inter-

acts with E2, which is consistent with the published results as well as the modeled E1E2 struc-

ture. Similarly, two other receptors, SR-B1 and VLDLR, are also mainly interacting with E2.

By contrast, ApoE could bind to the E1E2 heterodimer rather than the E2 ectodomain alone,
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suggesting that E1 might be involved in viral attachment through ApoE. Interestingly, no

binding signals are detected for E1E2 heterodimer with OCLN or CLDN1, which have

been shown to be functional at late stages of HCV entry. One possibility is that these two tight

junction proteins might be involved in the endocytosis process without having direct interac-

tions with E1E2 or other co-factors are required for the binding to E1E2 [69]. The HCV infec-

tion inhibition assays also show that the expressed E1E2 heterodimer could block the viral

infection effectively. As exposed proteins on HCV surface, the E1E2 heterodimer is the target

of immune system and the soluble E1E2 heterodimer obtained here would be a promising tar-

get for generating antibodies and facilitate the development of prophylactic vaccines against

HCV.

Materials andmethods

Protein expression and purification

The cDNA sequences encoding E1 and E2 of HCV genotype 1b, Con1 (Accession number

AJ238799) and genotype 1a, H77 (Accession number AF009606) were synthesized. In order to

co-express E1 (residues 192–354, for both Con1 and H77) and E2 (residues 384–717, for both

Con1 and H77) glycoproteins in insect cells, the cDNA fragments of E1 and E2 excluding the

transmembrane domains were sub-cloned into a pFastBac Dual vector (Invitrogen) (E1E2),

then mouse IgG Fc homodimeric fragment with a Flag and a 6xHis tag at its C-termini was

fused to the C-termini of E1 and E2, respectively (E1E2-Fc). Similarly, a de novo designed het-

erodimeric tag (DHD15), which contains a 6xHis tag and a Flag tag at its C-termini, was fused

to the C-termini of E1 and E2, respectively (E1E2-DHD15). In parallel, both E1 and E2 fused

with mouse IgG Fc with a 6xHis tag at the C-termini were also individually cloned to the

pFastBac vector (E1-Fc and E2-Fc). Similar cDNA fragments, including E1E2, E1E2-Fc,

E1E2-DHD15 as well as E1-Fc and E2-Fc were sub-cloned into pMlink co-expression vector

[80] for transient expression in HEK293F cells (Invitrogen).

For antibody expression, sequences of IGH526 and HCV1 Fab fragments were obtained

from PDB (4N0Y, 4DGV). The cDNA sequences were sub-cloned into pMlink co-expression

vector [80] with 6xHis tag fused at the C-terminus of light chain for transient expression in

HEK293F cells (Invitrogen).

For receptor binding assays, the ectodomain of human VLDLR (residues 28–797) (Han lab,

Xiamen University) with a C-terminal 6xHis tag was cloned into pFastBac vector for expres-

sion in insect cells. The full-length human SR-B1 (Sino Biological), OCLN (Sino Biological),

and CLDN1 (Sino Biological) fused with C-terminal GFP were also individually cloned into a

pTT5 vector for transient expression in HEK293 cells.

For protein expression in insect cells, baculoviruses of the target proteins were generated

following the Bac-to-Bac baculovirus expression protocol (Invitrogen), then High-5 cells (Invi-

trogen) were used for protein expression in ESF921 medium (Expression Systems). The super-

natants were collected after 72~96 hours and buffer-exchanged with 50 mM Tris, 150 mM

NaCl at pH 8.0 by dialysis, then applied to Ni-NTA affinity column (Qiagen) and Flag M2

affinity column (GeneScript) before loading onto a HiLoad Superdex 200 prep grade column

(GE Healthcare) with Tris-NaCl buffer (50 mM Tris, 150 mMNaCl at pH 8.0) for further puri-

fication. The purified proteins were loaded onto SDS-PAGE for detection.

For protein expression in mammalian cells, target protein constructs were transiently

expressed in HEK293F cells following the manufacturer’s protocol (Invitrogen) using PEI as

transfection reagent. The transfected cells were cultured in Gibco FreeStyle-293 medium (Invi-

trogen) at 37˚C for 6 days, then the supernatants were collected for purification using the simi-

lar buffers and conditions described above.
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A fragment of human CD81 (Genewiz) (residues 122–202) fused with either the small ubi-

quitin-like modifier (SUMO) or Glutathione S-transferase (GST) were expressed in E. coli

BL21(DE3) cells (Novagen) using expression vector pET28a or pGEX6p-1. The soluble

SUMO-CD81 or GST-CD81 were purified from the supernatants of cell lysates by Ni-NTA

affinity column (Qiagen) followed by SEC chromatography using a HiLoad Superdex 75 prep

grade column (GE Healthcare) with Tris-NaCl buffer (50 mM Tris, 150 mMNaCl at pH 8.0).

The human apolipoprotein E was purchased from Novoprotein.

SDS-PAGE andWestern blot assays

Purified Fc- and DHD15-tagged E1E2 or E2-Fc proteins were separated by SDS-PAGE (6% or

8%) and stained with coomassie brilliant blue R-250 (Aladdin). For western blot detection,

both supernatants and cell pellets were run on SDS-PAGE (8%) for separation and transferred

onto a polyvinylidene difluoride (PVDF) membrance (Invitrogen). The membrane was probed

with mouse anti-His tag antibody (1:1000 dilution; Proteintech) or mouse anti-Flag M2 anti-

body (1:1000 dilution; Sigma) followed by the HRP-conjugated rabbit anti-mouse IgG second-

ary antibody (Proteintech). After washing three times with the buffer (25mM Tris, 150mM

NaCl, pH 7.4, 0.05% Tween-20), the membrane was incubated with Diaminobenzidine (DAB,

Sigma) for detection.

Electron microscopy and 3D reconstruction

10 μl of purified HCV glycoprotein was apply to the glow-discharged EM carbon grids and

stained with 0.75% (wt/vol) uranyl formate. Negatively stained EM grids were imaged on a

Tecnai T12 microscope (FEI) operated at 120 kV. Images were recorded at a nominal magnifi-

cation of 67,000x, using a 4k x 4k Eagle CCD camera, corresponding to a pixel size of 1.74 Å
per pixel on the specimen. e2boxer.py program in EMAN2 suite was used to pick particles.

e2refine2d.py of EMAN2 was used to generate 2D averaging classifications. The initial model

was generated using the program e2initialmodel.py, and e2refine_easy.py of EMNA2 was used

for refinement and reconstruction. The final resolution was estimated at 27Å based on the

gold standard criterion.

Coevolution analysis

The homologs of HCV E1 and E2 were identified from Refseq [81] and Uniref [82] databases

and aligned using BLASTP [83]. A pair of E1 and E2 sequences from the same protein

sequence were concatenated and the resulting alignment was filtered using HHfilter (-id 95

-cov 75) [84]. The filtered alignment was analyzed using GREMLIN [55] with two sets of

parameters: (1) -e 0, -n 100, -w 0.8; and (2) -e 0, -n 100, -w 0.9. The resulting scores from the

two CCMpred runs were averaged to obtain the final coevolution score of each pair of resi-

dues. All the predicted contacts were ranked by the strength of coevolution and extracted the

top L (L is the length of E1 and E2) contacts. Some of the contacting residues from the top pre-

dictions were present in the crystal structures of E2 (PDB ids: 4MWF and 4WEB), therefore

could be used to evaluate the accuracy of prediction. The prediction accuracy at each rank iL

(L is the length of E1 and E2, and i = 0.1, 0.2, . . ., 1.0) were calculated as the number of cor-

rectly predicted contacts in the experimental structure divided by the total number of pre-

dicted contacting pairs that are present in the experimental structure. A predicted contacting

residue pair is considered to be correct if the shortest distance between the residues in the

structure is below 6 angstroms.
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Structural modeling

Both E1 and E2 ectodomains were partitioned into two parts, one N-terminal region (the first

125 residues for E1 and the first 280 residues for E2) and a highly hydrophobic region. Then

RosettaCM [85] protocol was applied to model the N-terminal regions of E1 and E2, and used

the partial crystal structures of E1 (PDB: 4UOI) and E2 (PDB: 4MWF and 4WEB) as templates.

In addition, the top 0.5L predicted contacts were also used as constraints to aid the modeling.

The constraints were set up as previously described [53], so that satisfying a contact was

rewarded while missing a contact is still tolerated. The C-terminal regions were de novomod-

eled with coevolution-derived constraints.

E1 core region (E1c), E1 stem region (E1s), E2 core region (E2c), and E2 stem region (E2s)

were modeled separately. The average pairwise TMscore (roughly means the percent of resi-

dues that can be aligned within 5 Å) of top 10 (out of thousands) models ranked by Rosetta

energy function is a good estimator for modeling accuracy [53]. The accuracy of E1c, E1s, E2c,

and E2s are 0.47, 0.41, 0.70, and 0.44 by TMscore, respectively. The models with the lowest

Rosetta energy were selected except E1c. The E1c model has the second lowest energy as this

model agrees better with the coevolving residues between E1 and E2. Guided by both the EM

reconstruction and the coevolution constraints, we manually arranged E1c, E1s, E2c, and E2s

together to generate a model of E1E2 heterodimer. The flexible loops in this model were

removed first and then rebuilt and refined in the context of the whole structure using Rosetta

hybridize protocol [85].

Pull-down assays

Glutathione-Sepharose 4B beads (GE Healthcare) were mixed with GST-CD81 or GST protein

alone (approximately 50 μg) in 100 μl PBS, then the beads were incubated with E2-Fc or

E1E2-Fc (about 20 μg protein) in 800 μl PBS on a rotary shaker for 2 hrs at 4 ˚C. After washing

3 times with PBS, the beads were boiled and centrifuged before loading onto SDS-PAGE for

detection with coomassie brilliant blue R250.

ELISA experiments

The expressed receptors (VLDLR, SUMO-CD81), Fab fragments (IGH526 and HCV1), anti-

body AR3A and ApoE (Novoprotein) were coated onto 96-well MaxiSorp plates (Nunc) with

*2 μg protein per well at 4 ˚C overnight. The plates were blocked with the TBST buffer

(25mM Tris, 150mMNaCl, pH 7.4, 0.05% Tween-20) containing 5% (w/v) BSA for 3 hrs. The

purified E1E2 (E1E2-DHD15, E1E2-Fc) or E2-Fc were serially diluted and added to each well

in a binding buffer (25mM Tris, 150mMNaCl, pH 7.4, 0.05% Tween-20, 1% BSA). Then the

plates were incubated at room temperature for 3 hrs (for VLDLR and SUMO-CD81) or at 4 ˚C

overnight (for ApoE). After incubation, plates were washed with the TBST buffer for five

times. For E1E2-DHD15 detection, mouse anti-FLAGM2 antibody (Sigma) were added to

each well at 1:1000 dilution and incubated at room temperature for 1 hr, followed by washing

with TBST for five times. After washing, HRP-conjugated rabbit anti-mouse IgG antibody

(Proteintech) was added to each well at 1:1000 dilution and the plates were incubated at room

temperature for 1 hr. After washing five times with the TBST buffer, 100 μl of chromogenic

substrate (1 μg/mL tetramethylbenzidine, 0.006% H2O2 in 0.05 M phosphate citrate buffer, pH

5.0) was added to each well and incubated for 30 min at 37˚C. Then, 50 μl H2SO4 (2.0 M) was

added to each well to stop the reactions. The plates were read at 450 nm on a Synergy Neo

machine (BioTek Instruments).
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Flow cytometry

HEK293 cells were transfected with pTT5 vectors containing GFP tagged human SR-B1,

OCLN or CLDN1. After 48 hrs of transfection, E1E2-DHD15, E1E2-Fc or E2-Fc (~20 μg)
were added to the transfected cells in PBS and incubated on a rotary shaker for 2 hrs at room

temperature and followed by washing three times with PBS. For E1E2-DHD15 detection,

mouse anti-Flag M2 antibody (1:1000 dilution; Sigma) was added and incubated on a rotary

shaker for 1 hr, followed by washing three times with PBS. After washing, anti-mouse IgG,

F(ab’)2 fragment Alexa Fluor 647 Conjugate antibody (1:1000 dilution; Cell Signaling

Technology) was added to the cells and incubated on a rotary shaker for 1 hr at room tem-

perature. After washing three times with PBS, cells were analyzed by a LSR Fortessa flow

cytometer (Becton Dickinson). Data analysis was performed using FlowJo software (Tree

Star).

Deglycosylation assays

Either insect or mammalian cell expressed E1E2-DHD15 (~10 μg) were incubated with endo-

β-N-acetylglucosaminidase H (Endo H) (50 U) at 37 ˚C for 1 hr according to the manufactur-

er’s instruction (Novoprotein). Then the treated proteins were load onto SDS-PAGE for detec-

tion. The treated proteins were also purified by SEC and then loaded onto EM grids for

negative staining and imaging.

Viral infection blocking assays

To perform an HCV infection-blocking assay, Huh-7 cells (Stem Cell Bank, Chinese Academy

of Sciences) seeded at 1 x 104 cells/well in a 96-well plate were incubated with serially diluted

E1E2-Fc (insect cell expressed), E2-Fc (insect cell expressed), E1E2-Fc (HEK293 expressed),

E2-Fc (HEK293 expressed) or bovine serum albumin (BSA) (New England BioLabs). After 1

hr incubation at room temperature, about 100 focus-forming units of JFH1 HCV cell culture

(HCVcc) were added to the cells, and the protein-virus mixture was removed after 6 hrs of

infection. After 3 days of cell culture in complete DMEM, cells were fixed with 2% paraformal-

dehyde and blocked with buffer (3% BSA, 0.3% Triton X-100, and 10% FBS in PBS), followed

by incubation with anti-HCV NS5AMAb (Abmart), Alexa Fluor 488-conjugated donkey anti-

mouse IgG and Hoechst dye. The infection efficiency was determined by counting the number

of NS5A-positive fluorescent foci under a fluorescence microscope.

Supporting information

S1 Fig. Expression of HCV E2-Fc and E1-Fc in insect cells. (A) The SEC profile and the

SDS-PAGE of the purified E2-Fc expressed in insect cells. The SEC peak of E2-Fc homodimer

is indicated by a black arrow. (B) A negative staining EM image of E2-Fc particles (left; red cir-

cles; bar, 100 nm) and the representative 2D averaging classes (right; bar, 10 nm). (C) Western

blot assay detecting E1 in supernatant (S) and cell pellet (P) of the E1-Fc expressed in insect

cells.

(TIF)

S2 Fig. Expression of HCV E2-Fc, E1-Fc and E1E2-Fc in HEK293 cells. (A) The SEC profile

and the SDS-PAGE of the purified E2-Fc expressed in HEK293 cells. The SEC peak of E2-Fc

homodimer is indicated by a black arrow. (B) A negative staining EM image of E2-Fc particles

(left; red circles; bar, 100 nm) and the representative 2D averaging classes (right; bar, 10 nm).

(C) Western blot assay detecting E1 in supernatant (S) and cell pellet (P) of the E1-Fc
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expressed in HEK293 cells. (D) SDS-PAGE of E1E2-Fc from HCV genotype 1a H77 expressed

in HEK293 cells under reducing condition.

(TIF)

S3 Fig. Negative staining EM images of the insect cell expressed E1E2-Fc and E1E2-

DHD15 oligomers. (A) A negative staining EM image showing the oligomeric E1E2-Fc parti-

cles (left; red circles; bar, 100 nm). The representative 2D averaging classes are also shown

(right; bar, 10 nm). (B) A negative staining EM image showing the oligomeric E1E2-DHD15

particles (left; red circles; bar, 100 nm). The representative 2D averaging classes are also shown

(right; bar, 10 nm).

(TIF)

S4 Fig. Negative staining EM of E1E2-DHD15. (A) A negative staining EM image of

E1E2-DHD15 particles in acidic condition (pH 5.5) (left; red circles; bar, 100 nm) and the rep-

resentative 2D averaging classes (right; bar, 10 nm). (B) Three views of the 3D EM reconstruc-

tion (gray) of E1E2-DHD15 in acidic condition. (C) Superposition of the crystal structure of

HCV E2 core in complex with the neutralizing antibody AR3C (cyan) with the E1E2-DHD15

structural model shows that the CD81 binding site on E2 (green) is overlapped with the AR3C

binding site, away from the E1E2 interface.

(TIF)

S5 Fig. Mutagenesis analysis of E1E2 heterodimer. (A) Western blot assay detecting E1 of

the E1E2-DHD15 mutants in supernatants (S) and cell pellets (P). (B) Western blot assay

detecting E2 of the E1E2-DHD15 mutants in supernatants (S) and cell pellets (P). (C) A nega-

tive staining EM image showing the particles of the E1E2-DHD15 mutant (Q466R) (left; red

circles; bar, 100 nm). The representative 2D averaging classes are also shown (right; bar, 10

nm).

(TIF)

S6 Fig. Deglycosylation analysis of E1E2-DHD15 heterodimers. (A) SDS-PAGE of the insect

cell expressed E1E2-DHD15 treated with or without Endo H. (B) SDS-PAGE of the HEK293

cell expressed E1E2-DHD15 treated with or without Endo H. (C) A negative staining EM

image showing the insect cell expressed E1E2-DHD15 particles after Endo H treatment (left;

red circles; bar, 100 nm). The representative 2D averaging classes are also shown (right; bar, 10

nm).

(TIF)

S7 Fig. Interactions of E1E2-Fc heterodimer and oligomer expressed in HEK293 cells with

neutralizing antibodies and CD81. (A)-(D) ELISA data show that both E1E2-Fc heterodimer

and oligomer expressed in HEK293 cells can bind to neutralizing antibodies AR3A, IGH526

and HCV1 as well as CD81. The ELISA data shown in (A)-(D) are representative of three

repeated experiments and presented as mean ± SD.

(TIF)

S8 Fig. Interactions of E1E2-DHD15 with the cellular receptors. (A) FACS data show that

E1E2-DHD15 binds to the CD81 or the SR-B1 transfected HEK293 cells. (B) FACS data show

that E1E2-DHD15 has no binding to the CLDN1 or the OCLN transfected HEK293 cells. (C)

ELISA data show that both insect and mammalian cell expressed E1E2-DHD15 can bind to

CD81. The ELISA data shown in (C) are representative of three repeated experiments and pre-

sented as mean ± SD.

(TIF)
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S9 Fig. SDS-PAGE of the purified Fab fragments of neutralizing antibody IGH526 and

HCV1 under reducing and non-reducing conditions.

(TIF)
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