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Abstract Ferritin, a major iron storage protein with a
hollow interior cavity, has been reported recently to play
many important roles in biomedical and bioengineering
applications. Owing to the unique architecture and surface
properties, ferritin nanoparticles offer favorable character-
istics and can be either genetically or chemically modified
to impart functionalities to their surfaces, and therapeutics
or probes can be encapsulated in their interiors by
controlled and reversible assembly/disassembly. There
has been an outburst of interest regarding the employment
of functional ferritin nanoparticles in nanomedicine. This
review will highlight the recent advances in ferritin
nanoparticles for drug delivery, bioassay, and molecular
imaging with a particular focus on their biomedical
applications.
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1 Introduction

Ferritin, the primary iron storage protein, first discovered
by Laufberger in 1937 [1], was isolated from horse spleen.
Ferritins can be found throughout the animal, plant, and
microbial kingdoms. The iron storage protein ferritin
consists of a spherical polypeptide shell (Apoferritin)
surrounding a 6-nanometer inorganic core of the hydrated
iron oxide ferrihydrite (5Fe2O3∙9H2O) [2,3]. There are
two types of ferritins in mammalian cells, H and L, these
two ferritins have complementary functions in iron uptake
process. The H chain contains a dinuclear ferroxidase site
that is located within the four-helix bundle of the subunit; it
catalyzes the oxidation of ferrous iron by O2, producing

H2O2. The L subunit lacks this site but contains additional
glutamate residues on the interior surface of the protein
shell which produce a microenvironment that facilitates
mineralization and the turnover of iron (III) at the H
subunit ferroxidase site [4]. Consequently, the L chain
ferritin has less iron than the H ferritin.
Different ferritins from different species possess vari-

eties in amino acid sequences but similarity in architec-
tures. Members of the ferritin superfamily are spherical
proteins composed of 24 subunits of mass 450–500 kDa
with an outer diameter of about 12 nm and interior cavity
diameter of about 8 nm (Fig. 1) [5]. The protein shell can
possess up to 4500 iron atoms within its 8-nm-diameter
cavity, while this capacity is not always utilized to the full,
ferritin preparations usually take less than 3000 iron atoms
[6]. Iron gains entry to the interior of ferritins through the
eight hydrophilic channels that traverse the protein shell.
The unique architecture of ferritin provides two interfaces,
one outside and one inside, for possible functional loading.
The outer surface of ferritin can be chemically or
genetically modified with functional motifs, and the cavity
of the ferritin can be loaded with a wide range of metals
and small molecules with high affinity [7–14].
Besides the characteristic architecture, ferritins possess
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Fig. 1 Scheme structure of human H chain ferritin. Adapted
from ref. [5] with permission

Front. Chem. Sci. Eng. 2017, 11(4): 633–646
https://doi.org/10.1007/s11705-017-1620-8



unique properties physically and chemically. Unlike most
other proteins, which are sensitive to harsh temperature
and pH, ferritins are able to bear high temperatures up to
75 ºC for 10 min and is stable in various denaturants such
as urea, sodium hydroxide, and guanidinium chloride.
These unique features are owing to the fact that ferritin
contains large numbers of salt bridges and hydrogen bonds
formed between subunits [15]. One of the most amazing
features of ferritin is that the protein architecture can be
broken down in an acidic environment (around pH 2.5) and
restored, almost completely, by returning the pH back to
physiological conditions (around pH = 7.5) [16]. These
unique properties enquire ferritin an ideal and mighty
nanoplatform in many fields, including constrained synth-
esis, nanodevices, disease diagnosis and therapy, drug
delivery, vaccine development, bioassay, etc.
The ferritin nanoparticles used in constrained synthesis,

nanodevices [5,17–21], have been summarized in several
excellent review articles and will not be discussed here. In
this article, we will focus on the use of ferritin
nanoparticles in the fields of drug delivery, vaccine
development, bioassay, disease diagnosis and therapy
with molecular imaging methods (Fig. 2).

2 Ferritin nanoparticles used in drug
delivery

Ferritin, with an internal diameter of 8 nm, when expressed
artificially in iron-free conditions, the yielded apoferritins
are hollow, comprising a cavity that can be loaded with
different species. Furthermore, ferritin-binding sites and
the endocytosis of ferritin have been identified in tumor
cells [22–25]. The association between ferritin and
membrane-specific receptors lead the ferritin internaliza-
tion to some tumor tissues [26]. Consequently, apoferritin
could be a promising vehicle for targeted drug delivery,
moreover, the outer surface of ferritin can be chemically or

genetically modified with targeting motifs, makes the
targeting process more precise.
Integrins αvβ3 and αvβ5 are up-regulated in angiogenic

tumor vasculature [27,28]. RGD-4C peptide
(CDCRGDCFC) [7] that selectively binds to integrins
αvβ3 and αvβ5 was incorporated into the N-terminus of the
human ferritin subunit. As the N-terminus of the human
ferritin is exposed to the exterior surface of the assembled
ferritin cage, each ferritin cage would have 24 copies of
RGD-4C peptides for multivalent integrin interactions.
With the targeting peptide on ferritin, the ferritin
nanoparticles showed much stronger binding affinity to
tumor cells than normal cells. This suggests that the
exterior surfaces of protein cage architectures can be
modified without altering the structure, and furthermore,
with its unique property that the protein architecture can be
broken down in an acidic environment and restored by
returning the pH back to neutral environment, which
showed that it is possible to add multifunctionality such as
cell targeting, imaging, and perhaps therapeutic agents
simultaneously to a single protein cage [29].
Zhen et al. [12] used ferritin as a drug delivery vehicle to

encapsulate doxorubicin (Dox). Dox is a wide-spectrum
anticancer antibiotic. Dox molecules were efficiently
loaded into ferritin nanocages with Cu (II) as a helper
agent. The integrin targeting peptide RGD4C and near-
infrared (NIR) dye ZW800 (ex/em: 780/800 nm) [30] were
also conjugated to the exterior of ferritin (Fig. 3(a)). With
the incorporation of Dox and NIR dye and the modification
of RGD targeting motif, ferritin behaved as a functional
tumor theranostic agent (Fig. 3(b)).
Besides this Dox encapsulated ferritin, other drugs such

as photosensitizers can also be loaded to ferritins.
Photodynamic therapy (PDT) contains three components,
a photosensitizer (PS), light, and oxygen. With a laser light
of a particular wavelength irradiated on the PS, PSs are
activated, producing reactive oxygen species (ROS) such
as 1O2, which are cytotoxic and capable of killing nearby
cells [31]. PDT has been used in the treatment of many
types of diseases including cancer [32–34]. Zhen et al. [13]
used ferritin to encapsulate and deliver PSs. With this
method, PDT against cancer was achieved. They used
RGD4C modified ferritin to encapsulate zinc hexadeca-
fluoro-phthalocyanine (ZnF16Pc). ZnF16Pc is a hydropho-
bic PS, but with 60 wt-% loading rate in ferritin. With
RGD4C motif on the surface of ferritin, ZnF16Pc loaded
RGD4C-ferritin showed remarkable tumor accumulation
rate as well as good tumor inhibition rate. On the other
hand, ZnF16Pc loaded RGD4C-ferritin also showed
negligible toxicity to the skin and other major organs.
With the successful loading of Zn based metal-containing
PS into ferritin, it is possible for ferritin to load many
different metal-containing PSs with the help of metal
binding sites in them.
Besides RGD peptide, other targeting ligands can also

be used to modify ferritin for tumor specific delivery of

Fig. 2 Schematic representation of nanomedicine applications of
functional ferritin nanoparticles
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drug molecules. For example, Falvo et al. [35] developed
an antibody linked ferritin to encapsulate cisplatin to target
melanoma, which is the primary cause of death in patients
with skin cancer [36].
Malignant melanoma is rising at a high speed much

faster than any other cancers in the US, and it becomes a
severe public health problem [37,38]. With the rising
tendency, about 1.4% people will get melanoma in his or
her life [39]. Chondroitin sulphate proteoglycan 4
(CSPG4) is a transmembrane cell surface proteoglycan
with a glycoprotein core [40], and it regulates cell
spreading through many signaling pathways [41,42].
Melanoma cells are often CSPG4+ [43], and antibodies
against CSPG4 have been well developed [44,45]. On the
other hand, cisplatin is one of the most effective cytotoxic
agents against many cancers, but its chemical instability,
poor water solubility and low lipophilicity restrict its
clinical applications. After coupling CSPG4 monoclonal
antibody (mAb) to human ferritin, and with the inner
cavity encapsulated with cisplatin molecules, this anti-
body-ferritin-cisplatin conjugate showed specific binding
to a CSPG4+melanoma cells and remarkably inhibited the
growth of CSPG4+ tumors. The same formula was only
modestly effective in treating CSPG4– tumors, which is

likely due to the enhanced permeability and retention
(EPR) effect of ferritin nanoparticle formula [46].
Various drug loading studies suggest that ferritin is a safe

and effective carrier. With the ease of modification,
different targeting moieties can be conjugated on the
exterior surface of ferritin. Also the multi binding sites of
ferritin allow loading a variety of therapeutics to improve
the treatment of diseases. More importantly, ferritin has
negligible toxicity and immunogenicity profiles, which
enable it much fewer concerns than usual drug carriers in
clinical translation.

3 Ferritin nanoparticles used in vaccine
development

Nanotechnology increasingly plays a significant role in
vaccine development in the past decade, leading to the
birth of “nanovaccinology” [47]. The use of nanoparticles
in vaccine formulations is expected to have improved
antigen stability and immunogenicity, targeted delivery
and slow release property [48–50]. There have been many
types of nanoparticle used in the field of vaccine
development [51], including polymeric nanoparticles
[52–54], inorganic nanoparticles [55,56], liposomes [57],
virus-like particles [58,59], self-assembled proteins [60],
etc. Ferritin, with its particle uniformity and inner/outer
surface modifiable features, can play an important role in
the field of vaccine development.
Kanekiyo et al. [61] used Helicobacter pylori non-haem

ferritin [62] to develop a vaccine which can elicit broadly
neutralizing H1N1 antibodies. Haemagglutinin of influ-
enza virus was inserted at the interface of adjacent subunits
so that eight trimeric viral spikes are formed on the surface
of ferritin nanoparticle during the spontaneous assembly
process. Immunization with this influenza-ferritin nano-
particle vaccine produced haemagglutination inhibition
antibody titers of one magnitude higher than those from the
licensed inactivated vaccine.
Dendritic cells (DCs) are the most potent professional

antigen-presenting cells that initiate and control antigen-
specific immune responses. DCs plays an important role in
internalizing, processing, and presenting antigens to naive
T cells and inducing their proliferation and differentiation
into effector cells, such as CD8+ cytotoxic T cells to kill
infected target cells or CD4+ helper T cells to secrete
cytokines and facilitate diverse forms of cellular and
humoral immunity [63]. DC-based vaccine development
has been a promising approach to direct antigen-specific
adaptive immunity in vivo [64,65]. Han et al. [66] used
ferritin nanoparticles to display different ovalbumin
antigens. The ovalbumin antigenic peptides OT-1 (Oval-
bumin257-264) [67] and OT-2 (Ovalbumin323-339) [67] were
genetically introduced either onto the exterior surface or
into the interior cavity of ferritin, and the nanoparticles
were effectively delivered to DCs and processed within

Fig. 3 (a) Schematic illustration of Cu-DOX loaded, RGD and
ZW800 modified ferritin (FRT) nanoparticle; (b) therapeutic
studies on U87MG tumor-bearing mice. Significant difference in
tumor growth was found between Dox-loaded RFRTs (D-RFRTs)
treated mice and those treated with PBS, RGD4C modified FRTs
(RFRTs) and free Dox (P< 0.05) on day 18. Adapted from ref.
[12] with permission
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endosomes, followed by successful induction of antigen-
specific CD8+ or CD4+ T cells. On the other hand, this
ferritin-OT nanoparticle immune effect was also confirmed
on mice. Immunized with ferritin-OT1 peptides efficiently
differentiated OT-1 specific CD8+ T cells into functional
effector cytotoxic T cells, resulting in selective killing of
antigen-specific target cells. Immunized with ferritin-OT2
peptides resulted in the differentiation of proliferated OT-2
specific CD4+ T cells into functional CD4+ Th1 and Th2
cells which was confirmed by the detection of the cell-
produced IFN-γ/IL-2 and IL-10/IL-13 cytokines.

4 Ferritin nanoparticles used in bioassay

Enzyme-linked immunosorbent assay (ELISA) is currently
one of the most popular methods for biomarker detection;
however, it has relatively poor sensitivity. Many new
bioassay methods with improved sensitivity have recently
emerged [13,68]. Ferritin nanoparticles with unique
physiochemical properties can be used in ultrasensitive
biomarker detection [69–72].
Liu et al. [73] developed a sensitive protein detection

method based on marker-loaded apoferritin nanoparticles.
Briefly, ferritin nanoparticles were first loaded with a
fluorescence marker (fluorescein anion) and a redox
marker [hexacyanoferrate (III)], and then labeled with
NHS-biotin. When used in biomarker detection, primary
antibody was coated on the glass or on the magnetic beads.
After adding the antigen and biotinylated secondary
antibody, streptavidin was applied as a bridge to bind
two or three biotin-functionalized apoferritin nanoparti-
cles. With different markers loaded in the apoferritin, the
antigen of interest can be detected by fluorescence
immunoassay and electrochemical immunoassay, both of
which have comparable sensitivities. Similarly, Liu et al.
[74] also developed a metal (cadmium and lead) phosphate
loaded apoferritin for highly sensitive electrochemical
immunoassay detection of protein biomarkers (Fig. 4).
With the precise control of the synthesis, bioinorganic
nanocomposites were obtained, and labeled with biotin,
with the similar detection method described above, tumor
necrosis factor (TNF-α) as the protein marker was
detected. TNF-α is believed to have an important role in
the pathogenesis of severe infectious disease [75]. With
this electrochemical immunoassay, the detection limit of
TNF-α is around 2 pg/mL, which is about twenty times
lower than the standard ELISA kit [76].
Besides the protein markers, sequence-specific DNA can

also be detected with the help of ferritin nanoparticles. Yu
et al. [77] developed a DNA detection method based on
gold nanoparticles and cadmium loaded apoferritin.
Briefly, the target DNA was sandwiched between capture
DNA coupled to magnetic beads and signal DNA self-
assembled on gold nanoparticles, and the gold nanoparti-
cles were incorporated with marker-loaded apoferritin

nanoparticles. After the hybridization, the nanostructure
was dispersed in acetate buffer (pH = 4.6), and the
cadmium was released from the apoferritin, with the
presence of HgCl2, the Cd

2+ can be detected which reflects
the DNA level. Under the optimum conditions, the DNA
biosensor has a linear range from 2.0� 10–16 to 1.0� 10–14

mol/L and a detection limit of about 5.1� 10–17 mol/L. The
biosensor also had good reproducibility and selectivity
against two-base mismatched DNA.
Tang et al. [71] discovered that ferritin has an enzyme-

mimic activity derived from its ferric nanocore, and can be
used to detect proteins without any other enzyme
components. Note that the enzyme-mimic activity is
derived from its ferric nanocore but not the protein cage.
To confirm this, they used commercially available ferritin,
after heating at 95 °C and complete denature of the protein
cage in 8 mol/L urea, the ferric core is separated. With
apoferritin as a contrast, the enzyme-mimic activity was
measured using colorimetric, fluorescent, and luminescent
substrates. The results revealed that the ferritin, heated
ferritin and ferric core but not apoferritin had an enzyme-
mimic activity on the three substrates. Further research
revealed that the activity is more thermally stable and pH-
tolerant than horseradish peroxidase (HRP). They also
prepared antibody conjugated ferritin (streptavidin and
biotin as linkage) to form a sandwich immunoassay in the

Fig. 4 Schematic illustration of the electrochemical immunoas-
say protocol. The avidin-modified magnetic beads are linked to
biotinylated TNF-α primary antibody. The biotinylated secondary
TNF-α antibody is coupled to cadmium phosphate–apoferritin
nanoparticle labels using streptavidin as a bridge. The sandwich
complex containing TNF-α antigen is then separated by magnetic
field followed by electrochemical measurement at pH 4.6, at which
cadmium ions are released in situ and detected by a plated mercury
film electrode. Adapted from ref. [74] with permission
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detection of nitrated human ceruloplasmin, with N,N-
dimethyl-p-phenylenediamine as substrate, the detection
showed a linear detection range from 33 pmol/L to
3.3 nmol/L.
With the enzyme-mimic activity of ferritin, magneto-

ferritin nanoparticles were able to catalyze the oxidation of
peroxidase substrates 3,3,5,5-tetramethylbenzidine and di-
azo-aminobenzene (DAB) in the presence of H2O2 to give
blue and brown colors, respectively. In addition, the heavy
chain ferritin can bind to human cells via transferrin
receptor 1 (TfR 1) [78]. By using these characters,
Fan et al. [79] were able to detect tumor tissue with
magnetoferritin nanoparticles with high sensitivity and
specificity.
Lee et al. [80] used display pathogen specific antigen

modified ferritin for sensitive and specific diagnostic
assays of acquired immune deficiency syndrome (AIDS)
and Sjögren’s syndrome (SS). AIDS and SS specific
antigens were genetically fused to the C-terminus of
human ferritin heavy chain and the proteins were
expressed in Escherichia coli. The proteins were applied
to detect AIDS and SS specific antibody markers through a
ferritin hydrogel. With this method, the sensitivity of the
ferritin hydrogel is better than commercial ELISA kit in
detecting real serum samples.
Zhao et al. [81] developed horseradish peroxidase

(HRP) and apoferritin dually labeled sandwich-type
electrochemical aptasensor to detect thrombin. In this
assay, core/shell Fe3O4/Au magnetic nanoparticles
(AuMNPs) were coupled with aptamer1 (Apt1) and used
as recognition elements, and apoferritin dually labeled with
Aptamer2 (Apt2) and HRP was used as a detection probe.
The sandwich-type complex, Apt1/thrombin/Apt2-apofer-
ritin NPs-HRP was then anchored on a screen-printed
carbon electrode (SPCE). The current response to thrombin
was monitored by differential pulse voltammetry (DPV).
In this way the detection limit can be as low as
0.07 pmol/L.
Matrix metalloproteinases (MMPs) are a family of

enzymes critical to extracellular matrix remodeling. The
upregulation of MMPs is often found to be related to tumor
invasiveness, metastasis, and angiogenesis [82–84]. Lin
et al. [85] applied the disassembly/reassembly nature of
ferritin to develop a MMP-13 activatable probe. Briefly,
Cy5.5-tagged MMP-13 substrate peptide (Cy5.5-Gly-Pro-
Leu-Gly-Val-Arg-Gly-Cys) and BHQ-3 (BHQ = black
hole quencher) were coupled onto ferritins respectively.
After adjusting the pH to 2.0, and turning back to neutral,
the two forms of ferritin were coupled together. Due to the
quench effect of BHQ-3 to Cy5.5, the hybrid ferritin
showed much weaker fluorescence signal than the Cy5.5-
peptide ferritin. Subsequently, when the probes are
exposed to an MMP-rich environment, with the cleavage
of MMP substrate, Cy5.5 dye molecules are released from
the ferritin, and the fluorescence activity is restored. This
enzyme activatable approach was also tested in other

formulas for tumor detection [86–88].

5 Ferritin nanoparticles used in molecular
imaging

Nanoparticles with large surface area to volume ratio
facilitate surface functionalization [89–91]. Ferritin nano-
particles with unique physicochemical properties, when
properly labeled, can visualize diseases through different
molecular imaging modalities [92,93], such as magnetic
resonance imaging (MRI), optical imaging and radio-
nuclide imaging (positron emission tomography (PET) and
single-photon emission computed tomography (SPECT)).

5.1 Ferritin nanoparticles used in disease targeting with
MRI

The coupling of proton spins with larger magnetic
moments, namely electronic magnetic moments, consider-
ably speeds up the relaxation of water and provides
contrast for MRI. Most commonly used MRI contrast
agents are paramagnetic gadolinium ion complexes for T1-
weighted MRI and superparamagnetic magnetite particles
for T2-weighted MRI.
Ferritin is the primary intracellular iron storage protein

which keeps the iron in a soluble and non-toxic form. The
relaxivity of ferritin nanoparticles is strongly dependent on
the amount of Fe contained in the apoferritin shell
[21,94,95]. The iron nanoparticles, stored in the ferritin
cages, are either in an antiferromagnetic or super
paramagnetic form [96,97], which results in an unique
effect on the relaxation of water as detected by MRI [98].
Ferritin is abundant in liver and spleen, thus it is possible to
directly use endogenous ferritin as the reporter to monitor
disease progression in vivo with MRI.
Choi et al. developed a model which allows tumor cells

to overexpress H-ferritin by a MR reporter. This model
could be used for in vivo tumor imaging and monitoring of
lymph node metastasis [99]. The advantage of using
ferritin as a MR reporter is that it does not require
exogenous contrast agent to be delivered to the targeted
area and makes it possible to carry out long term in vivo
imaging [100]. Unbalance of iron homeostasis and altered
level of the iron storage protein ferritin directly affect MRI
contrast [101]. Clinical MRI studies have demonstrated the
ability to detect changes in ferritin content in the brain,
heart, liver and spleen [102], and iron accumulation in the
basal ganglia in Parkinson’s, Alzheimer’s, Huntington’s
diseases [103,104].
Ferritin nanoparticles are assemblies of subunits with

very narrow size distributions, which can serve as ideal
templates for the synthesis of inorganic nanoparticle within
the central cavity. Such nanostructures can be chemically
and/or genetically modified, by redesigning the template,
to impart novel functions, including targeting and
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therapeutic delivery. Bennett et al. used cationized ferritin
to detect thick, negatively charged basement membrane in
the glomeruli of kidneys (Fig. 5) [105]. In a glomerulo-
sclerosis model, MR with cationized ferritin, but not native
ferritin, showed reduced ferritin particle accumulation in
the glomeruli and diffuse accumulation in the kidney
tubules, reflecting glomerular dysfunction. The same
principle may be applicable to detect molecular changes
in the basal membrane throughout the body.
Ferritin has hydrophobic and hydrophilic molecular

channels through the protein shell. Through these
molecular channels the metal core can be replaced with
different metals [106–108]. Cross-linked iron oxide
nanoparticles and other iron oxide formulations have
been introduced into ferritin cavity. Uchida et al.
characterized the MRI properties of a ferritin protein cage-
iron oxide nano-composite material and investigated its
use as a MRI contrast agent to label macrophages [109].
Uchida found that the macrophage uptake in vitro and MRI
(T2) properties of the mineralized recombinant human
ferritin compare favorably with known iron oxide MRI
contrast agents. In 2011, Terashima et al. [93] performed
MRI (7T) of macrophages in atherosclerotic carotid
arteries in streptozotocin (STZ)-induced diabetic mice.
Ferritin nanoparticles encapsulated with Fe3O4 (25 mg Fe/
kg) were intravenously injected and MRI images of both
LCA and right common carotid artery (RCA) were
obtained. There was neither T2* signal loss in the control
RCA nor in artery in sham, but a clear loss in the
macrophage-rich ligated LCA (Fig. 6). Quantitative
analysis showed that the T2*-induced reduction in lumen

contrast was significant at both 24 and 48 h in the ligated
LCA compared to contralateral RCA and sham controls.
Immunohistochemical experiments also confirmed that
ferritin nanoparticles were co-localized with macrophages
in the neointima of the ligated LCA but not in the RCA or
sham-operated arteries.
As described before, MMPs are engaged in the

degradation of extracellular matrices and are tightly
associated with malignant processes of tumors, including
metastasis and angiogenesis. Particularly, MMP-2 has been
identified as one of the key MMPs. MMP-2 belongs to a
category of type IV collagenases and plays a critical role in
the degradation of basement membranes [110,111].
Matsumura et al. [112] reported a modified ferritin as a
MMP-2 responsive nanocarrier. The designed ferritin
contained a triad of modifiers composed of four parts
(from inner to outside): 1) ferritin, 2) hydrophobic
segment, 3) linker segment, 4) hydrophilic polyethylene
glycol segment. The linker segment is MMP-2 substrate
that can be cleaved by the protease and then the
hydrophobic segments are exposed, resulting in aggrega-
tion of ferritin cages and enhancement of T2 relaxivity.
Gadolinium (Gd) ion is a well-known T1-shortening

reagent, because Gd possesses seven unpaired electrons
[113]. One obvious advantage of T1 imaging over T2

imaging is the reduced T1 caused by the contrast agent
leads to a positive contrast on a T1 map [92]. Gd
encapsulation within ferritin cage represents a different
approach to the development of MRI contrast agents.
Sanchez et al. [114] prepared water-soluble gadolinium

oxide (Gd2O3) nanoparticles within apoferritin. Based on

Fig. 5 Basement membrane detection in kidney glomeruli. (a,b) Immunofluorescence microscopy (40�) showing the accumulation of
systemically injected cationized ferritin (CF) (b) in glomerular basement membrane of rat kidneys and little accumulation of native ferritin
(NF) (a); (c,d) transmission electron microscopy of normal rat kidney glomeruli after three systemic injection of NF (c) and CF (d). Scale
bars = 100 nm; (e,f) respiratory-gated MRI (GRE) detection of CF after intravenous injection: (e) GRE image of a rat kidney after five NF
injections, showing darkening of the MRI signal due to blood vessels in the cortex and medulla. (f) GRE image of a rat kidney after five
injections of CF, showing darkening of glomeruli in the cortex due to accumulation of CF; (g,h,i) detection of glomerular injury in
puromycin-induced focal segmental glomerulosclerosis (FSGS) by GRE MRI with CF. The accumulation of CF showed a clear spotted
distribution in glomeruli from normal kidney (g), the spots were surrounded by areas of signal hypointensity but still visible in cortex of
kidney from early FSGS (h) at day 13 after puromycin aminonucleoside (PAN) injection, and then cortical signal was darkened without
visible spots in kidneys of late FSGS (i) 13 weeks after PAN injection in an ex vivo study. Adapted from ref. [105] with permission
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the Gd/apoferritin concentration ratio, each apoferritin
would have 1700 Gd. The successfully built ferritin
nanoparticles with NMR longitudinal and transverse
relaxivities about 10 and 70 times higher than those of
clinically approved paramagnetic Gd-chelates. It is also of
note that the r2/r1 ratio changes in response to frequency.
Makino et al. was also able to encapsulate a cationic Gd
chelate, Gd-Me2DOTA, into apoferritin by electrostatic
interactions. Immobilization of Gd chelate on the inner
surface prevents the excess shortening of the T2 relaxation
time and increases T1 relaxivity by one order of magnitude
compared to the free metal chelate. Further decorating the
apoferritin surface with dextran led to tumor contrast after
intravenous administration based on EPR effect.

5.2 Ferritin nanoparticles used in multimodal imaging

Multimodality imaging is drawing more and more
attention and gaining popularity [115–118]. The basic
principle arises from the notion of improving the quality
and accuracy of disease management by combining
different but complementary strengths of multiple imaging
techniques. The development of PET/CT is a good
example of fused technique that permits simultaneous
acquisition of functional and high-resolution anatomical
information [119–121]. Similarly, the assembly of near-
infrared fluorescence (NIRF) imaging and PET is also a
useful combination, since it provides both in vivo imaging
interrogation and ex vivo validation so as to minimize the

chances of misdiagnosis [122–124]. Ferritin cage can serve
as a multifunctional platform for the loading of metal
nanoparticles and can be engineered for use as a cell-
specific targeting moiety. Cell-targeting moieties can be
exposed on the exterior surface of protein cage architec-
tures by means of both genetic and chemical modifications
[7,125,126].
Lin et al. [16] developed chimeric ferritin nanoparticles

for multimodal tumor imaging (Fig. 7). RGD4C peptide
was genetically fused to the N-terminus of ferritin for
integrin αvβ3 targeting. Fluorescence dye (Cy5.5) was
chemically coupled to the ferritin surface for NIRF
imaging and 64Cu was encapsulated in ferritin interiors
by association with metal binding sites for PET imaging.
With this multifunctional loading strategy, the interference
among different docked motifs is negligible. The similar
approach can be applied to develop different multi-
functional contrast agents for different combinations of
imaging modalities.
Recently, we also successfully prepared copper sulfide

nanoparticles within the cavity of ferritin using a
biomimetic synthesis method for cancer theranostics
(Fig. 8) [118]. Such uniform ferritin nanoparticles with
copper sulfide inside showed strong near-infrared absor-
bance and high photothermal conversion yield. With the
involvement of 64Cu2 + in the synthesis process, both
photoacoustic imaging (PAI) and PET imaging were
successfully carried out for pharmacokinetics and biodis-
tribution analyses at the same time. The combination of

Fig. 6 In vivo MRI of carotid arteries in ligated and sham-operated mice with magnetite mineralized heavy-chain ferritin (HFn-Fe3O4).
(a) The ligated left carotid artery (LCA) is smaller than the non-ligated right carotid artery (RCA) prior to contrast injection. Concentric
signal loss was found in the LCA lumen at 24 and 48 h after HFn-Fe3O4 injection but not for the RCA; (b) no change was seen in the sham-
operated LCA. Adapted from ref. [93] with permission
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PAI and PET facilitates noninvasive, highly sensitive, and
quantitative in vivo measurement of particle distribution.
Additionally, with the high photothermal conversion
efficiency, copper sulfide-ferritin nanoparticles were
applied to photothermal therapy with good biocompat-
ibility.
One of the most difficult issues that limit clinical

translation of ferritin nanoparticles is the detailed under-
standing of their behavior after administration into the
body [118,127]. Interestingly, PET provides a powerful
way to visualize the biodistribution of 64Cu-labeled ferritin
in mice. As expected, ferritin nanoparticles were mainly
found in the liver and digestive system after injection, and
it showed an increased tumor accumulation within first 8 h
post-injection, and then plateaued until 24 h time point
(Fig. 9). However, the safety profile including pharmacol-
ogy and toxicology should be studied in more details prior

to the possible application this material in human.

6 Conclusions

Ferritin nanoparticle-based bioapplications have attracted
much attention in different fields. It is straightforward to
develop in vitro diagnostic agents using ferritin with high
sensitivity and specificity [79]. For in vivo applications,
however, the efforts have been focused on enhancing
efficacy, biocompatibility and pharmacokinetic profile of
the current ferritin-based delivery systems [127]. Several
barriers remain in the process of clinical translation,
including the difficulty of mass production, as well as
limited knowledge of pharmacology and toxicology data.
Overall, ferritin nanocage has been widely used as a

platform to prepare different metallic nanoparticles and

Fig. 7 Illustration of the process of triple loading of chimeric ferritin nanoparticles. RGD4C peptide is genetically fused to the N-
terminus of ferritin, Cy5.5 is coupled to the protein surface via standard EDC-NHS chemistry. At acidic pH, RGD4C-ferritin and Cy5.5-
ferritin conjugates are mixed and broken into individual subunits, which were radiolabeled with 64Cu and then reconstituted into chimeric
ferritin nanocages that contain both RGD peptide and Cy5.5 fluorophore on the surface and radioisotope in the cavity. Adapted from ref.
[16] with permission

Fig. 8 Schematic illustration of copper sulfide-ferritin nanoparticle were radiolabeled with 64Cu and used for photoacoustic and PET
imaging guided photothermal therapy agent. Adapted from ref. [118] with permission
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offer ample opportunities for external functionalization for
biomedical applications. With its unique characteristics,
including commonly found in almost organism, very low
toxicity, easy modification by genetic and chemical
methods, large loading rate, ferritin nanoparticles have
high potential in drug delivery, bioassay, disease diagnosis
and therapy. Ferritin nanoparticles with more targeted
specific targeting motifs can lead to more effective
diagnosis and therapy of diseases. More translational
work based on ferritin nanoparticles are expected in the
foreseeable future.
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