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The aim of this work is to make an overview on the emerging technologies and traditionally used to 

develop functional foods. In this way, we classified the technologies used in three main groups and 

analyzed the research tendency since the year 2000 until now. Thus, while traditional techniques 

are the most commonly used for development of functional foods, from years 2000 until 2010 the 

techniques aimed towards personalized nutrition have grown greatly. 

 

1. Introduction. 

  

In the last decades consumer demands in the field of food production has 

changed considerably. Consumers more and more believe that foods contribute 

directly to their health (Mollet & Rowland, 2002). Today foods are not intended to 

only satisfy hunger and to provide necessary nutrients for humans but also to 

prevent nutrition-related diseases and improve physical and mental well-being 

(Takachi, Manami, Junko, Norie, Motoki, Shizuka, Hiroyasu, Yoshitaka, & Shoichiro, 

2008; Nöthlings, Murphy, Wilkens, Henderson, & Kolonel, 2007). According to the 

World Health Organization and the Food and Agriculture Organization, several 

dietary patterns along with lifestyle habits constitute major modifiable risk factors 

in relation to the development of coronary heart disease, cancer, type 2 diabetes, 

obesity, osteoporosis and periodontal disease (WHO, 2003). In this regard, 

functional foods play an outstanding role (Figure 1). The increasing demand on 

such foods can be explained by the increasing cost of healthcare, the steady 

increase in life expectancy and the desire of older people for improved quality of 

their later years (Roberfroid, 2007). 

 

 
Figure 1. Tendency of the articles related to functional food with the time. 
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Innovation is today’s business mantra. Experts proclaim daily that the only 

hope for business survival is the ability to continue innovating. In this context, the 

development of new functional food products turns out to be increasingly 

challenging, as it has to fulfil the consumer’s expectancy for products that are 

simultaneously relish and healthy (Shah, 2007).  

Developing a new functional food is an expensive process. Product 

development requires detailed knowledge of the products and the customers, 

which is why quantitative and qualitative marketing studies must be carried out 

before launching any product on the market (Beardsworth & Keil, 1992). The high 

reported failure rates for new international functional foods suggest a failure to 

manage the customer knowledge effectively, as well as a lack of knowledge 

management between the functional disciplines involved in the new product 

development process (Jousse, 2008). The methodologies that advance a firm’s 

understanding of customer’s choice motives and values, and its knowledge of 

management process, can increase the chances of new product success in the 

international market. The commercial success of functional products ultimately 

depends on taste, appearance, price, and health claim appeal to consumers. They 

need to receive a comprehensible and reasonable message about the physiological 

effects of food in humans, without appearing to be exaggerated; moreover, all the 

factors mentioned previously influence directly the consumers’ attitudes toward 

effective purchase, which is necessary for the maintenance of industry. In 

summary, the food industry takes into consideration many variables to develop or 

reengineer functional products, such as sensory acceptance, stability, price, 

chemical, functional properties (Granato, Branco, & Nazzaro, 2010) and 

convenience. A great variability of techniques are required in order to meet needs 

and expectancies in the area of functional foods. The aim of this review is to make 

an overview on the emerging technologies and traditionally used to develop 

functional foods. In this way, we classified the technologies used in three main 

groups and analyzed the research tendency since the year 2000 until now (Figure 

2). The first group is formed by the technologies traditionally used in food 

processing, formulation and blending and cultivation and breeding. The second 

group is constituted by the technologies that forming a structure try to prevent the 

deterioration of physiologically active compounds; microencapsulation, edible 

films and coatings and vacuum impregnation are part of this group. Finally, the 

third group we classified is formed by those technologies, recent technologies, 

aimed to design personalized functional foods. 

 



 

 

 
Figure 2. Growth in the number of articles (%) over the years. 

 

2. Adaptation of general technologies traditionally used in food 

processing. 

 

2.1 Formulation and blending. 

 

Formulation and blending constitutes a simply and cheap technology to 

develop new functional foods and has been widely used in food processing. Its use 

in functional food development has a long history for the successful control of 

deficiencies of vitamins A and D, several B vitamins (thiamine, riboflavin and 

niacin), iodine and iron. Salt iodization was introduced in the early 1920s in both 

Switzerland (Burgi, Supersaxo, & Selz, 1990) and the United States of America 

(Marine & Kimball, 1920) and has since expanded progressively all over the world 

to the extent that iodized salt is now used in most countries. From the early 1940s 

onwards, the fortification of cereal products with thiamine, riboflavin and niacin 

(Kyritsi, Tzia, & Karathanos, 2011) has become common practice. Margarine was 

fortified with vitamin A (FAO & WHO, 2006) in Denmark and milk with vitamin D 

(FAO & WHO, 2006) in the United States, then enriched with phytosterols and used 

by patients with high cardiovascular risk (Laforest, Moulin, Schwalm, Le Jeunne, 

Chretin, Kitio, Massol, & Van Ganse, 2007). Folic acid fortification of wheat 

(Samaniego-Vaesken, Alonso-Aperte, & Varela-Moreiras, 2010) became 

widespread in the Americas, a strategy adopted by Canada and the United States 

and about 20 Latin American countries. In more recent years, the emergence of 

dietary compounds with health benefits offered an excellent opportunity to 

improve public health and thus, this category of compounds received much 
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attention from the scientific community, consumers and food manufacturers. The 

list of dietary active compounds (vitamins, probiotics, bioactive peptides, 

antioxidants…) is endless and the type of final products obtained is growing 

steadily (Wildman, 2006). From the classical enriched milks (Kim, Ko, Park, Kim, 

Ha, & Cho, 2010; Alzate, Pérez-Conde, Gutiérrez, & Cámara, 2010) and yogurts 

(Karaaslan, Ozden, Vardin, & Turkoglu, 2011; Zare, Boye, Orsat, Champagne, & 

Simpson, 2011) through infant formula enriched with prebiotics (Alliet, 

Scholtensc, Raes, Hensen, Jongen, Rummens, Boehm, & Vandenplas, 2007), 

probiotics (Puccio, Cajozzo, Meli, Rochat, Grathwohl, & Steenhout, 2007), vitamins 

(Chávez-Servín, Castellote, & López-Sabater, 2008) and long chain polyunsaturated 

fatty acids (Chávez-Servín, Castellote, Martín, Chifré, & López-Sabater, 2009) to 

provide infants with the required nutrients for optimal growth and development, 

until juices mainly enriched with flavonoids (González-Molina, Moreno, & García-

Viguera, 2009), vitamins (Rivas, Rodrigo, Company, Sampedro, & Rodrigo, 2007) 

and resveratrol (González-Barrio, Vidal-Guevara, Tomás-Barberán, & Espín, 2009), 

snacks (Da Costa, Ferraz, Ros-Polski, Quast, Collares Queiroz, & Steel, 2009), pastas 

rich in legumes (Petitot, Boyer, Minier, & Micard, 2010) and meats enriched with 

large number of bioactive compounds (Jiménez-Colmenero, Sánchez-Muniz, & 

Olmedilla-Alonso, 2010; Zhang, Xiao, Samaraweera, Lee, & Ahn, 2010) are being 

developed by formulation.    

 

2.2 Cultivation and animal breeding techniques. 

 

Agriculture and livestock provide the primary source of the nutrients required 

by human. There is a general consensus among nutritionist that the best way to 

tackle micronutrient deficiency is through diversification in diet to include 

vegetables, fruits, meat and fish (FAO & WHO, 2001). However, this is not always 

possible. Agriculture and livestock have been traditionally presented a way to 

obtain products with high nutrients. In cases where agronomic and breeding 

approaches cannot achieve significant improvement of food products, 

biotechnology offers a useful alternative (Zhao & Shewry, 2011). 

Biotechnology has been practised in crops and animal breeding since the 

beginning of human history. The evaluation and selection of different breeds 

started with the domestication of animal and plant species around 12.000 years 

ago, which was led by the wish to obtain desired traits, dictated by social, 

nutritional and environmental needs with no understanding of the molecular 

processes involved (National Research Council, 1989). 

Going not so far in time, with the use of molecular biology tools and the 

development of genetically modified seeds, the biotechnology turned into a 

modern technique which offers an additional way to modify composition of foods. 

The most known enriched crop product is the Golden Rice (Ye, Al-Babili, Kloti, 

Zhang, Lucca, Beyer, & Potrykus, 2000) that has 1.6 µg/g total carotenoids in the 

rice endosperm. The second generation of Golden Rice (Golden Rice 2) (Paine, 



 

 

Shipton, Chaggar, Howells, Kennedy, Vernon, Wright, Hinchliffe, Adams, 

Silverstone, & Drake, 2005) contains up to 37 µg/g of total carotenoids. A recent 

clinical trial shows that the Golden Rice 2 is an effective source of vitamin A for 

humans, with a b-carotene to retinol conversion efficiency (Tang, Qin, Dolnikowski, 

Russell, & Grusak, 2009), and locally adapted varieties of Golden rice are expected 

to reach the market in 2012 (Potrykus, 2010). The fortification of vitamin A has 

been carried out also in other food crops like potato (Tanumihardjo, Bouis, Hotz, 

Meenakshi, & McClafferty, 2008) and maize (Zhu, Naqvi, Breitenbach, Sandmann, 

Christou, & Capell, 2008). Tomato (De La Garza, Gregory, & Hanson, 2007) and rice 

grain (Storozhenko, De Brouwer, Volckaert, Navarrete, Blancquaert, Zhang, 

Lambert, & Van der Straeten, 2007) have been fortificated in folates and corn seeds 

and soybean seeds (Karunanandaa, Qi, Hao, Baszis, Jensen, Wong, Jiang, 

Venkatramesh, Gruys, Moshiri, Post-Beittermiller, Weiss, & Valentin, 2005) in 

vitamin E. Furthermore, an attractive alternative is to synthetise LC-PUFs in plants, 

notably in oilseeds to replace the fatty acids which are usually stored on 

triacylglicerol (reviewed by Venegas-Caleron, Sayanova, & Napier, 2010). 

Animal breeding also offers the possibility to obtain improved food products. In 

this way, a lot of studies have been done to examine the sources of nutrients 

available for inclusion in animal diets and their subsequent transfer into products 

obtained. Matsushita, Tazinafo, Padre, Oliveira, Souza, Visentainer, Macedo, & 

Ribas, (2007) carried out and study in which characterized the fatty acids profiles 

and physico-chemical parameters of milk samples from Saanen goats fed diets 

enriched with 3% of three different vegetable oils (soybean, canola and 

sunflower). The milks obtained presented different concentration of conjugated 

linoleic acid (CLA) depending on the vegetable oil added to animal fed. In addition 

(Laible, 2009), many other milk modifications have been suggested to improve the 

nutritional quality of milk and it´s processing into dairy products. Woods & Fearon 

in 2009 examined in a review the sources of fatty acids available for inclusion in 

animal diets and their subsequent transfer into meat, eggs or milk. Juniper, Phipps, 

Ramos-Morales, & Bertin, (2009) determined the concentration of total selenium 

and the proportion of total (Se) comprised as selenomethionine and 

selenocysteine, as well as meat quality of lambs offered diets with an increasing 

dose rate of selenized enriched yeast or sodium selenite.  

 

3. Specific technologies for the manufacture of functional food that 

prevent the deterioration of physiologically active compounds. 

 

3.1 Microencapsulation. 

 

Microencapsulation is the envelopment of small solid particles, liquid droplets 

or gases in a coating (Thies, 1987). Microencapsulation is based on the embedding 

effect of a polymeric matrix, which creates a microenvironment in the capsule able 

to control the interactions between the internal part and the external one 



(Borgogna, Bellich, Zorzin, Lapasin, & Cesàro, 2010). Microencapsulation allows 

the protection of a wide range of materials of biological interest, from small 

molecules and protein (enzymes, hormones,…) to cells of bacterial, yeast and 

animal origin (Thies, 2005). For this reason such versatile technology is widely 

studied and exploited in the high technological fields of biomedicine and 

biopharmaceutics, for application ranging from cell therapy to drug delivery 

(Smidsrød & Skjak-Braek, 1990). The same characteristics make 

microencapsulation suitable for food industry applications, in particular for the 

production of high value aliments and nutraceuticals.  

Many encapsulation procedures have been proposed but none of them can be 

considered as a universally applicable procedure for bioactive food components. 

This is caused by the fact that individual bioactive food components have their 

own characteristic molecular structure (Augustin & Hemar, 2009). However 

compatibility with the bioactives is not the only requirement an encapsulation 

procedure has to meet. It also should have specific characteristics to withstand 

influences from the environment (Augustin and Hemar, 2009).  

An important requirement is that the encapsulation system has to protect the 

bioactive component from chemical degradation (e.g., oxidation or hydrolysis) to 

keep the bioactive component fully functional. A major obstacle in the efficacious 

delivery of bioactive food components is not only the hazardous events that occur 

during passage through the gastrointestinal tract but also the deleterious 

circumstances during storage in the product that serves as vehicle for the bioactive 

components (de Vos, Faas, Spasojevic, & Sikkema, 2010). Many food components 

may interfere with the bioactivity of the added bioactive food component. It is 

therefore mandatory that the encapsulation procedure protects the bioactive 

component during the whole period of processing, storage, and transport (Gibbs, 

Kermasha, Alli, & Mulligan, 1999). Another requirement is that the encapsulation 

system allows an efficient package load (McClements, Decker, & Park, 2009a; 

McClements, Decker, Park, & Weiss, 2009b). How ‘efficient’ this package load 

should be depends on the type of molecule that is desired as bioactive component 

and the specific product that serves as vehicle. Administration of large structures 

such as probiotics will require a higher efficiency of package than molecular 

structures such as vitamins. When choosing an encapsulation system with high 

package efficiency, it is always essential to choose a system that can be easily 

incorporated into the food without interfering with the texture and taste of the 

food. And, last but certainly not least, it might be necessary to design the 

encapsulation system as such that the bioactive component is released in a specific 

site of the gastrointestinal tract (de Vos et al., 2010). 

The studies addresses a broad array of questions and challenges related to 

microencapsulation in four main research directions: 

- Microencapsulating materials  

- Wall (matrix) materials for microencapsulation. 

- Processes for microencapsulation. 



 

 

- Properties and functionality of encapsulated systems. 

Some studies have reported the success on some microencapsulation materials. 

Several biopolymers, such as starch, hydrocolloids, whey proteins, gelatins and 

maltodextrins, have already been tested as encapsulating materials by spray 

drying (Gharsallaoui, Roudaut, Chambin, Voilley, & Saurel, 2007). Proteins have a 

potential role as substrates for the development of delivery systems due to their 

good functional properties and high nutritional value (Chen, Remondetto, & 

Subirade, 2006). Proteins from soy bean have been used in the microencapsulation 

of orange oil emulsion by spray drying, being effective in the retention and 

protection against oxidation, due to its emulsification activity (Kim & Morr, 1996). 

Rodrigues Pereira, Saraiva, Carvalho, Andrade, Pedrosa, & Pierucci, (2009) have 

been able to obtain microparticles of ascorbic acid by spray drying using protein 

isolates of green pea and cowpea. Also by spray drying technique Sansone, Picerno, 

Mencherini, Villecco, D´Ursi, Aquino, & Lauro, (2011) produced naringerin and 

quercetin particles using a combination of cellulose acetate phthalate (CAP) as 

coating gastro resistant polymer and swelling or surfactant agents as enhancers of 

dissolution rate. Presence of a combination of CAP and surfactants or swelling 

agents in the formulation produced microparticles with good resistance at low pH 

of the gastric fluid and complete flavonoids release in the intestinal environment. 

The microencapsulation improved the technological characteristics of the powders 

such as morphology and size, gave long-lasting storage stability and reserved the 

antioxidant properties.  

Some studies have reported the success on encapsulating bioactive compounds. 

The most commonly applied bioactive food molecules that are already 

encapsulated in industrial applications are lipids, proteins, and carbohydrates 

(Augustin and Hemar, 2009). Lipids include fatty acids, phospholipids, carotenoids, 

and oil-soluble vitamins (Hämäläinen, Nieminen, Vuorela, Heinonen, & Moilanen, 

2007; McClements et al., 2009a,b). They cannot be easily solved in food products 

because of their extreme low solubility in water and poly-unsaturated fatty acids, 

which are highly susceptible to oxidation, and are now widely applied in powdered 

products thanks to encapsulation processes that form an effective barrier for 

oxygen (de Vos et al., 2010). Therefore many different approaches of encapsulation 

have been proposed for encapsulation of lipids in order to be able to apply them in 

a large variety of food products (McClements et al., 2009a,b). Bioactive proteins 

also might require encapsulation. Many food derived peptides act as growth factor, 

anti-hypertensive agent, antioxidant or immune regulatory factor (Hartmann & 

Meisel, 2007; McClements et al., 2009a,b). Some of these proteins have to reach the 

site of uptake in the small bowel in an intact conformation in order to exert a 

beneficial health effect (de Vos et al., 2010). Most peptides even require hydrolysis 

in the stomach and small intestine in order to release specific bioactive peptides or 

amino acids (McClements et al., 2009a,b). Thus whether encapsulation for proteins 

has to be considered depends on the type of protein, its envisioned health effect 

and the product that serves as vehicle for the bioactive protein (de Vos et al., 



2010). Carbohydrates that can benefit from microencapsulation are mainly 

bioactive carbohydrates that are found in dietary fibers (Redgwell & Fischer, 

2005). The fibers or its components that would benefit most from encapsulation 

are the soluble non-digestible polysaccharides. These fibers have been included for 

cholesterol reduction, reduction of glycemic fluctuations, prevention of 

constipation, prebiotic effects, and even for the prevention of cancer (McClements 

et al., 2009a,b; Redgwell and Fischer, 2005). The main challenge in this area is not 

to target the fibers to specific parts of the gut but to increase the amount of fibers 

in food in order to achieve the aforementioned health benefits (de Vos et al., 2010). 

The major encapsulation effort in this area is therefore improving the food load of 

fibers by packing enough fibers in capsules without interfering with the product 

quality such as changes in texture, mouth feel, or flavour (de Vos et al., 2010). 

Encapsulation methods have been also widely applied to enhance viability of 

probiotic bacteria in commercial products.  

Several authors studied the probiotic strain survival under simulated 

gastrointestinal conditions (Mokarram, Mortazavi, Habibi Najafi, & Shahidi, 2009) 

and similarly for liquidbased products such as dairy products (Kailasapathy, 

2006). Hou, Lin, Wang, & Tzen, in 2003 developed a technique to protect 

Lactobacillus delbrueckii ssp. bulgaricus by encapsulation of bacterial cells within 

artificial sesame oil emulsions. In 2004, Krasaekoopt, Bhandari, & Deeth, evaluated 

the influence of coating materials on some properties of alginate beads and 

survivability of microencapsulated probiotic bacteria. In the same way, Ross, 

Gusils, & Gonzalez, (2008) improved a microencapsulating method using non fat 

milk cell suspension mixed with sodium alginate solution to increase a strain 

survival. Mokarram et al., (2009) studied the influence of multi stage coating on 

the properties of alginated beads and the survivability of microencapsulated 

Lactobacillus bacteria in the beads coated with one or two layers of alginate. In 

2010, Weinbreck, Bodnár, & Marco, evaluated the use of microencapsulation to 

maintain probiotic Lactobacillus rhamnosus GG (LGG) viability during exposure to 

detrimentally high levels of water activity in order to lengthen the shelf-life of 

probiotic bacteria in dry products such as infant formula powder.   

Even if microencapsulation would be able to enhance the survival rate of 

probiotics this would not immediately imply that we will increase functional 

survival (de Vos et al., 2010). During recent years it has become clearer that 

probiotic effects are determined by the presence of specific bioactive molecules or 

effector molecules in the cell envelope of probiotic bacteria (van Baarlen, Troost, 

van Hemert, van der Meer, de Vos, de Groot, Hooiveld, Brummer, & Kleerebezem, 

2009; Kleerebezem & Vaughan, 2009; Konstantinov, Smidt, de Vos, Bruijns, Singh, 

Valence, Molle, Lortal, Altermann, Klaenhammer, & van Kooyk, 2008). These 

effector molecules are (glyco) proteins and have to be preserved in order to 

achieve functional effects (Konstantinov et al., 2008). The survival of these effector 

molecules in the product and during passage in the gastrointestinal tract is even 

more important than the survival of numbers of probiotics. The effector molecules 



 

 

that are presently identified (Konstantinov et al., 2008) are susceptible for the 

acidic circumstances and digestive enzymes in the stomach at beginning of the 

small bowel. Preserving and protecting these effector molecules will be a major 

challenge in the near future (Ledeboer, Nauta, Sikkema, Laudund, Niederberger, & 

Sijbesma, 2006).  

 

3.2 Edible films and coatings. 

 

Any type of material used for enrobing (i.e. coating or wrapping) various food 

to extend shelf life of the product that may be eaten together with food with or 

without further removal is considered an edible film or coating (Pavlath & Orts, 

2009). Edible films and coatings are applied on many products to control moisture 

transfer, gas exchange or oxidation processes. For film-forming materials 

dispersed in aqueous solutions, solvent removal is required to achieve solid film 

formation and control of its properties (Hernández-Izquierdo & Krochta, 2008). 

Edible films can be formed via two main processes: a “wet process” in which 

biopolymers are dispersed or solubilised in a film-forming solution (solution 

casting) followed by the evaporation of the solvent, and a “dry process” which 

relies on the thermoplastic behaviour exhibited by some proteins and 

polysaccharides at low moisture levels in compression moulding and extrusion 

(Liu, Kerry, & Kerry, 2006).  

One major advantage of using edible films and coatings is that they have a high 

potential to carry active ingredients such as antibrowning agents, colorants, 

flavours, nutrients, spices and antimicrobial compounds that can extend product 

shelf-life, reduce the risk of pathogen growth on food surfaces and provide specific 

nutrients that affect beneficially one or more functions of the body. 

Some studies have reported the effect of the addition of active compounds in 

the functionality of edible films. For instance, Mei & Zhao (2003) evaluated the 

feasibility of milk protein-based edible films to carry high concentrations of 

calcium (5 or 10% w/v) and vitamin E (0.1% or 0.2% w/v). In contrast, Park & 

Zhao (2004) reported that the water barrier property of the chitosan-based films 

was improved by increasing the concentration of mineral (5-20% w/v zinc lactate) 

or vitamin E in the film matrix. Nevertheless, the tensile strength of the films was 

affected by the incorporation of high concentrations of calcium or vitamin E. 

Gómez-Estaca, Montero, Giménez, & Gómez-Guillén, (2007) studied the effect of 

functional edible film enriched with oregano or rosemary extract, a gelatine-

chitosan film-coating and/or high pressure processing on the microbiological and 

oxidative stability of cold-smoked sardine. Films enriched with oregano or 

rosemary extract were able to slow lipid oxidation, but they failed to slow 

microbial growth. Gómez-Guillén, Ihl, Bifani, Silva, & Montero, (2007) obtained 

edible films based on tuna-fish gelatine with extracts of two murta ecotypes leaves 

(Ugni molinae Turcz). The edible films of tuna-fish gelatine were transparent and 

showed acceptable mechanical properties and barrier properties to water vapour 



and UV light. In the case of films with Soloyo Grande ecotypes, it was possible to 

increase significantly the antioxidant properties of the film, when natural extracts 

with high polyphenols content were added, producing only minor modifications of 

the film properties. When using an extract with a bigger content of polyphenols, 

like the Soloyo Chico ecotype, the antioxidant capacity of the film was increased, 

but the mechanical properties were decreased, due to a greater interaction 

between polyphenols and proteins. 

Several researchers have endeavoured to incorporate minerals, vitamins and 

fatty acids into edible film and coating formulations to enhance the nutritional 

value of some fruits and vegetables, where these micronutrients are present in low 

quantities. Tapia, Rojas-Graü, Carmona, Rodríguez, Soliva-Fortuny, & Martin-

Belloso, (2008) reported that the addition of ascorbic (1% w/v) to the alginate and 

gellanbased edible coatings helped to preserve the natural ascorbic acid content in 

fresh-cut papaya, thus helping to maintain its nutritional quality throughout 

storage. Han, (2002) indicate that chitosan-based coatings had capability to hold 

high concentrations of calcium or vitamin E, thus significantly increasing their 

content in fresh and frozen strawberries and red raspberries. Similarly, 

Hernández-Muñoz, Almenar, Ocio, & Gavara, (2006) observed that chitosan-coated 

strawberries retained more calcium gluconate (3079 g/kg dry matter) than 

strawberries dipped into calcium solutions (2340 g/kg).  

The addition of probiotics to obtain functional edible films and coatings has 

been scarcely studied. Tapia, Rojas-Graü, Rodríguez, Ramírez, Carmona, & Martin-

Belloso, (2007) developed the first edible films for probiotic coatings on fresh-cut 

apple and papaya, observing that both fruits were successfully coated with alginate 

or gellan film-forming solutions containing viable 106 cfu/g bifidobacteria.  

 

3.3 Vacuum impregnation. 

 

Vacuum impregnation has been considered as a useful way to introduce 

desirable solutes into the porous structure of foods, conveniently modify their 

original composition as an implement for development of new products. 

Physiologically active compounds may be introduced into fruit and vegetable 

products using this technique without modifying their integrity. This so-called 

‘direct-formulation’ distinguishes it from other processing methods (Mavroudis, 

Gekas, & Sjoholm, 1998a,b; Torreggiani, 1993). 

The use of vacuum impregnation to develop functional foods can be orientated 

in two ways. On one hand, several studies use the vacuum impregnation technique 

to modify desirable the original composition of one porous food. Fito, Chiralt, 

Betoret, Gras, Cháfer, Martínez-Monzó, Andrés, & Vidal, (2001) first evaluated the 

feasibility of using vacuum impregnation for mineral fortification of fruits and 

vegetables from an engineering point of view. Mathematical models were 

developed to determine the concentration of different minerals in impregnation 

solutions required to achieve a 20–25% dietary reference intake (DRI) fortification 



 

 

in 200g of samples. Following the modelling prediction, experimental validation 

confirmed that VI could be an effective method for the enrichment of fruits and 

vegetables with minerals, vitamins or other physiologically active components. 

Gras, Vidal, Betoret, Chiralt, & Fito, (2003) evaluated calcium fortification of 

eggplants, carrots, and oyster mushroom using VI with sucrose solutions, and 

found that raw material variability induces significant differences in the final 

impregnation level. Xie & Zhao (2003a,b) studied calcium and zinc fortification of 

fruits using VI processing of high fructose corn syrup solution containing calcium 

and/or zinc in fresh-cut apples, strawberry slices, and whole marionberry. Cortés, 

Osorio, & García, (2007) developed apple products enriched with Vitamin E (100% 

IDR/200g fresh apple) and evaluated the shelf life of the products after drying at 

40ºC in function of colour, texture and stability of vitamin E at different storage 

conditions. Anino, Salvatori, & Alzamora, (2006) analyzed the ability of apple 

matrix for calcium incorporation by two different impregnation techniques (in 

vacuum or at atmospheric pressure) and determined the effect of these treatments 

on material compression behaviour. Some authors studied the effect of the mineral 

fortification of fruits on posterior osmotic dehydration operation (Barrera, Betoret, 

& Fito, 2004; Barrera, Betoret, Corell, & Fito, 2009; Moraga, Moraga, Fito, & 

Martínez-Navarrete, 2009).  

Betoret, Puente, Diaz, Pagán, García, Gras, Marto, & Fito, (2003) developed 

probiotic-enriched dried fruits using VI technique by applying VI process either 

with commercial apple juice containing Saccharomyces cerevisiae, or with whole 

milk or apple juice containing 107 or 108 cfu/ml of Lactobacillus casei (spp. 

rhamnosus). It was reported that dried apple samples could contain about 106 

cfu/g Lactobacillus casei (spp. rhamnosus), a similar level to that in commercial 

dairy products.  

More recently, some studies are focused on the protection this technology can 

provide to the active compounds. Watanabe, Yoshimoto, Okada, & Nomura, (2011) 

studied the effect of impregnation using sucrose solution on stability of 

anthocyanin in strawberry jam. Strawberry jam mixed with or produced from 

strawberry impregnated with sucrose from 0.29 to 1.46 mol/L was prepared, and 

the stability of anthocyanin in the jam was evaluated. Results obtained suggested 

that the impregnation of sucrose in advance of the jam preparation stabilized the 

anthocyanin in the jam more strongly than the mere addition of sucrose during the 

preparation. 

 

4. Recent technologies that contribute to a custom designed functional 

foods: Nutrigenomics. 

 

While a number of formal definitions exist; in essence nutrigenomics 

(sometimes called nutritional genomics) considers the interactions between foods 

or dietary supplements and an individual´s genome, and the consequent 

downstream effects on their phenotype. It recognizes that appropriate dietary 



advice for one individual may be inappropriate, or actual harmful, to another. The 

field has the potential to provide tailored nutritional advice or develop specialist 

food products for population or for individuals and is still considered as an 

emerging science (Ferguson, Philpott, & Barnett, 2010). 

The key steps involve the following considerations: 

1. Ferguson, 2009: 

- Evidence for bioactivity. 

- Mechanism of action. 

- Enhancing levels via diet. 

- Influence of genotype on bioactivity. 

2. Ferguson et al., 2010: 

- Identification of a genetic component to the disorder. 

- Size of the component in relation to other causes of diseases susceptibility. 

- Identification of the gene(s) associated with the effect. 

- Functional variants in those genes. 

- Interaction of those variants with diet and/or other environmental factors 

to cause the phenotype. 

Sutton, (2007) demonstrated that aqueous extracts of kiwifruit and avocado 

had very low cytotoxicity and high anti-inflammatory activity in a Crohn´s gene-

specific assay. Non-aqueous extracts of kiwifruit, blueberry, avocado and broccoli 

had similarly high anti-inflammatory activity, albeit with slightly higher 

cytotoxicity than the aqueous extracts. Also Sutton, in 2007 has used functional 

snack bar products to deliver targeted glycaemic impacts.  

Fenech, Baghurst, Luderer, Turner, Record, Ceppi, & Bonassi, (2005) carried 

out a study in which illustrate the strong impact of nine micronutrients and their 

interactions on genome damage depending on level of intake. The micronutrients 

were vitamin E, calcium, folate, retinol, nicotin acid, B-carotene, riboflavin, 

pantothenic acid and biotin.  

Ferguson et al., (2010) studies aimed to understand how different foods or food 

components might interact with a particular genotype to cause the chronic 

intestinal inflammation which is a hallmark of Crohn´s disease. The model 

Interleukin-10 Gene-Deficient (IL10-/-) Mouse has been used to test the efficacy of 

potential food components including polyunsaturated fatty acids (Knoch, Barnett, 

McNabb, Park-Ng, Zhu, Nones, Dommels, Knowles, & Roy, 2009), fish oils (Hegazi, 

Saad, Mady, Matarese, O´Keefe, & Kandil, 2006), flaxseed oil (Cohen, Moore, & 

Ward, 2005), and some probiotics (McCarthy, O´Mahony, O´Callaghan, Sheil, 

Vaughan, Fitzimons, Fitzgibbon, O´Sullivan, Kiely, Collins, & Shanahan, 2003). The 

Multidrug Resistance Gene-Deficient (mrd1a-/-) Mouse model is another tool 

(Ferguson et al., 2010) used to understand the development of intestinal 

inflammation (Dommels, Butts, Zhu, Davy, Martell, Hedderly, Barnett, Broadley, & 

Roy, 2007), and to test the efficacy of food components such as curcumin and rutin 

(Nones, Dommels, Martell, Butts, McNabb, Park-Ng, Zhu, Hedderley, Barnett, & Roy, 



 

 

2009) and green tea (Nones, Dommels, Martell, Butts, McNabb, Park-Ng, Barnett, 

Zhu, Hedderley,  & Roy, 2008) on the prevention of this phenotype.  

While nutrigenomics can suppose a wide window of opportunities in the area 

of functional foods the field itself is still in its infancy and there are some aspects 

not well clarified yet. For example Ronteltap, van Trijp, Renes, & Frewer, (2007) 

affirmed the nutrigenomics area is not well demarcated yet. Also, Ronteltap et al., 

(2007) showed that there is no unanimity among experts concerning the definition 

of nutrigenomics, its development over time and the critical factors that determine 

its success or failure. Furthermore, by its very nature, nutrigenomics gives rise to a 

number of ethical and legal issues. Experts recognize this as a critical factor for its 

development (Chadwick, 2004; Penders, Horstman, Saris, & Vos, 2007).  

Being more accurate in practical problem science has, Ferguson et al., (2010) 

affirmed the Nutrigenomics New Zealand model provides an approach towards 

personalized, genotype-based nutrition that has the potential to provide food 

products and personalized advice to benefit health at the individual or population 

level. There is convincing evidence that SNPs (Single Nucleotide Polymorphisms) 

in certain genes may profoundly influence the biological response to nutrients. 

However, effects of single-gene variants on risk or risk factor levels of a complex 

disease tend to be small and inconsistent. Increased sensitivity of current 

biological measurements, plus methods of integrating information on com-

binations of relevant SNPs or CNVs (Copy Number Variations) in different genes, 

will become necessary to move the field to a higher dimension. Many of the 

challenges are in bioinformatics, especially in relation to reducing the complexity 

of multidimensional data sets (Kaput & Dawson, 2007). To date, there are only 

sporadic examples of clinical trials utilizing these technologies, and we have not 

investigated potential adverse effects of a genotype-derived dietary intervention. 

There are a considerable number of issues to be addressed before genomic 

approaches can become an acceptable method to guide food development or 

nutritional recommendations. 

 

5. Conclusions. 

 

There is no doubt that functional food development has a great interest from 

consumers, industries, governments and universities. From the research and 

development point of view functional foods represent an opportunity to obtain 

innovative products that satisfy considerably this demand that already exists. The 

technologies mainly used as it is possible to see in the figure 2, has changed 

considerably over the years. Thus, while traditional techniques are the most 

commonly used for development of functional foods, from years 2000 until 2010 

the techniques aimed towards personalized nutrition have grown greatly.  

There is a group of technologies, which have grown significantly, that form a 

structure aimed to prevent the deterioration of physiologically active compounds. 

In this way, it is important to note the importance of the relationship “structure-



property”. The functional effect of a food or food component depends on the active 

component gaining access to the functional target site. However, foods are mostly 

complex mixtures of macro- and micro- components that can trap active 

compound, modulate its release or inhibit its activity (Chen, Remondetto, & 

Subirade, 2006; Chen & Subirade, 2007). Thus, the food matrix both in its raw 

state, after storage or culinary preparation can have a significant influence on the 

activity or release on the key components. Selection and development of an 

appropriate food vehicle that maintain the active molecular form until the time of 

consumption, and deliver this form to the physiological target within the organism, 

is an important step to the success of a functional food. As an example, it has been 

demonstrated that plant sterol efficacy differs across various matrices, the milk 

matrix being almost three times more effective than in bread or cereal (Jones & 

Jew, 2007). 
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