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Abstract

This study presents several extensions of the most familiar models for
count data, the Poisson and negative binomial models. We develop
an encompassing model for two well-known variants of the negative
binomial model (the NB1 and NB2 forms). We then analyze some
alternative approaches to the standard log gamma model for intro-
ducing heterogeneity into the loglinear conditional means for these
models. The lognormal model provides a versatile alternative speci-
fication that is more flexible (and more natural) than the log gamma
form, and provides a platform for several “two part” extensions, includ-
ing zero inflation, hurdle, and sample selection models. (We briefly
present some alternative approaches to modeling heterogeneity.) We
also resolve some features in Hausman, Hall and Griliches (1984, Eco-
nomic models for count data with an application to the patents–R&D
relationship, Econometrica 52, 909–938) widely used panel data treat-
ments for the Poisson and negative binomial models that appear to
conflict with more familiar models of fixed and random effects. Finally,
we consider a bivariate Poisson model that is also based on the lognor-
mal heterogeneity model. Two recent applications have used this model.
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We suggest that the correlation estimated in their model frameworks
is an ambiguous measure of the correlation of the variables of interest,
and may substantially overstate it. We conclude with a detailed appli-
cation of the proposed methods using the data employed in one of the
two aforementioned bivariate Poisson studies.

Keywords: Poisson regression; negative binomial; panel data; hetero-
geneity; lognormal; bivariate poisson; zero inflation; two
part model; hurdle model.

JEL codes: C14, C23, C25
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1

Introduction∗

Models for count data have been prominent in many branches of the
recent applied literature, for example, in health economics (e.g., in
numbers of visits to health facilities1) management (e.g., numbers of
patents2), and industrial organization (e.g., numbers of entrants to mar-
kets3). The foundational building block in this modeling framework is
the Poisson regression model.4 But, because of its implicit restriction
on the distribution of observed counts — in the Poisson model, the
variance of the random variable is constrained to equal the mean —
researchers routinely employ more general specifications, usually the
negative binomial (NB) model which is the standard choice for a basic
count data model.5 There are also many applications that extend the

* This study has benefited from the helpful comments of Andrew Jones on an earlier version.
Any remaining errors are the author’s responsibility.

1 Jones (2000), Munkin and Trivedi (1999), Riphahn et al. (2003). See, as well, Cameron
and Trivedi (2005).

2 Hausman et al. (1984) and Wang et al. (1998).
3 Asplund and Sandin (1999).
4 Hausman et al. (1984), Cameron and Trivedi (1986, 1998), and Winkelmann (2003).
5 The NB model is by far the most common specification. See Hilbe (2007). The latent class
(finite mixture) and random parameters forms have also been employed. See, e.g., Wang

et al., op. cit., Deb and Trivedi (1997) and Bago d’Uva (2006).

1
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2 Introduction

Poisson and NB models to accommodate special features of the data
generating process, such as hurdle effects,6 zero inflation,7 and sample
selection.8 The basic models for panel data, fixed and random effects,
have also been extended to the Poisson and NB models for counts.9

Finally, there have been several proposals for extending the Poisson
model to bivariate and multivariate settings.10 This list includes a sub-
stantial fraction of the received extensions of the basic Poisson and NB
models. There have, however, been scores of further refinements and
extensions that are documented in a huge literature and several book
length treatments such as Cameron and Trivedi (CT) 1998, Winkel-
mann (2003), and Hilbe (2007).

This paper will survey some practical extensions of the Poisson and
NB models that practitioners can employ to refine the specifications
or broaden their reach into new situations. We will also resolve some
apparent inconsistencies of the panel data models with other more
familiar results for the linear regression model.

• There are two well known, nonnested forms of the negative
binomial model, denoted NB1 and NB2 in the literature. (See
CT (1986)). Researchers have typically chosen one form or
the other (typically NB2), but not generally formed a pref-
erence for one or the other. We propose an encompassing
model that nests both of them parametrically and allows a
statistical test of the two functional forms against a more
general alternative.

• The NB model arises as the result of the introduction of log
gamma distributed unobserved heterogeneity into the log-
linear Poisson mean. A lognormal model provides a suit-
able alternative specification that is more flexible than the

6 See, e.g., Mullahy (1986), Rose et al. (2006) and Yen and Adamowicz (1994) on separately

modeling participation and usage.
7 See, e.g., Heilbron (1992) and Lambert (1992) on industrial processes, Greene (1994) on

credit defaults and Zorn (1998) on Supreme Court Decisions.
8 See, e.g., Greene (1995) on derogatory credit reports and Terza (1998).
9 See, again, Hausman et al. (1984) on the relationship between patents and research and
development.

10 See King (1989), Munkin and Trivedi (1999) and Riphahn et al. (2003).
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3

log gamma form, and provides a platform for several use-
ful extensions, including hurdle, zero inflation, and sample
selection models.11 We will develop this alternative to the
NB model, then show how it can be used to accommodate in
a natural fashion, e.g., sample selection, hurdle effects, and
a new model for zero inflation.

• The most familiar panel data treatments, fixed effects (FE)
and random effects (RE), for count models were proposed
by Hausman et al. (HHG) (1984). The Poisson FE model is
particularly simple to analyze, and has long been recognized
as one of a very few known models in which the inciden-
tal parameters problem (see Neyman and Scott (1948) and
Lancaster (2000)) is, in fact, not a problem. The same is not
true of the NB model. Researchers are sometimes surprised to
find that the HHG formulation of the FE NB model allows an
overall constant — a quirk that has also been documented
elsewhere. (See Allison (2000) and Allison and Waterman
(2002), for example.) We resolve the source of the ambigu-
ity, and consider the difference between the HHG FE NB
model and a “true” FE NB model that appears in the famil-
iar index function form. The true FE NB model has not been
used by applied researchers, probably because of the absence
of a computational method. We have developed a method of
computing the true FE NB model that allows a comparison
to the HHG formulation.

• The familiar RE Poisson model using a log gamma het-
erogeneity term produces the NB model. We consider the
lognormal model as an alternative, again, as a vehicle for
more interesting specifications, and compare it to the HHG
formulation. The HHG RE NB model is also unlike what

11 The Poisson lognormal mixture model has a long history, apparently beginning with

Pielou (1969) and Bulmer (1974), both of whom build on a Gaussian model proposed
by Preston (1948). Hinde (1982) describes the context of “generalized linear models.” It
appears in the econometrics literature with Greene (1994, 1995), Terza (1998), Million

(1998), Geil et al. (1997), and several recent applications including, e.g., Winkelmann
(2003), Van Ourti (2004), and Riphahn et al. (2003).
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4 Introduction

might seem the natural application in which the heterogene-
ity term appears as an additive common effect in the condi-
tional mean. Once again, this was a practical solution to the
problem. The lognormal model provides a means of specify-
ing the RE NB model in a natural index function form. We
will develop this model, and, once again, compare it to the
HHG formulation.

• Two recent applications, Munkin and Trivedi (1999) and
RWM (2003), have used a form of the bivariate Poisson model
in which the correlation is introduced through additive cor-
related variables in the conditional mean functions. Both of
these studies have misinterpreted (and overstated) the corre-
lation coefficient estimated in their model frameworks. What
they have specified is correlation between the logs of the con-
ditional mean functions. How this translates to correlation
between the count variables themselves is quite unclear. We
will examine this in detail.

The study is organized as follows: Section 2 will detail the basic
modeling frameworks for count data, the Poisson and NB models and
will propose models for observed and unobserved heterogeneity in count
data. This section will suggest a parameterization of the NB model that
introduces measured heterogeneity into the scaling parameter. We then
develop the NBP model to encompass NB1 and NB2. Finally, we pro-
pose the lognormal model as an alternative to the log gamma model
that produces the NB specification. Section 3 will extend the lognor-
mal model to several two part models. Section 4 will examine the fixed
and random effects models for panel data. Section 5 will consider appli-
cations of the Bivariate Poisson model. The various model extensions
proposed are applied to the RWM panel data on health care utilization
in Section 6. Some conclusions are drawn in Section 7.

As documented in a vast literature, there are many aspects of
modeling count data. This study is focused on two large issues, first,
the accommodation of overdispersion and heterogeneity in the basic
count framework and, second, the functional form of the conditional
mean and the extension of models of heterogeneity to models for panel

Full text available at: http://dx.doi.org/10.1561/0800000008
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data and sources of correlation across outcomes. The first of these
is more straightforward. In principle, these are elements of the con-
ditional variance of the distribution of counts that can be analyzed
apart from the conditional mean. Robust inference methods for basic
models can be relied upon to preserve the validity of estimation and
inference procedures. The second feature motivates the development of
more intricate models such as the two part, panel and bivariate models
presented in what follows.
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