Shantanu Das

Functional Fractional Calculus for System Identification and Controls

With 68 Figures and 11 Tables

Contents

1	Introduct	ion to Fractional Calculus	1	
1.1	Introd	Introduction		
1.2	Birth o	Birth of Fractional Calculus		
1.3	Fractio	onal Calculus a Generalization of Integer Order Calculus	2	
1.4	Histor	ical Development of Fractional Calculus	3	
	1.4.1	The Popular Definitions of Fractional Derivatives/Integrals in		
		Fractional Calculus	7	
1.5	About	Fractional Integration Derivatives and Differintegration	9	
	1.5.1	Fractional Integration Riemann–Liouville (RL)	9	
	1.5.2	Fractional Derivatives Riemann-Liouville (RL) Left Hand		
		Definition (LHD)	10	
	1.5.3	Fractional Derivatives Caputo Right Hand Definition (RHD)	10	
	1.5.4	Fractional Differintegrals Grunwald Letnikov (GL)	12	
	1.5.5	Composition and Property	14	
	1.5.6	Fractional Derivative for Some Standard Function	15	
1.6	Solutio	on of Fractional Differential Equations	16	
1.7	A Tho	ught Experiment!	16	
1.8	Quota	ble Quotes About Fractional Calculus	17	
1.9	Conclu	uding Comments	18	
2	Functions	Used in Fractional Calculus	19	
2.1	Introd	uction	19	
2.2	Functi	ons for the Fractional Calculus	19	
	2.2.1	Gamma Function	19	
	2.2.2	Mittag-Leffler Function	22	
	2.2.3	Agarwal Function	27	
	2.2.4	Erdelyi's Function	27	
	2.2.5	Robotnov–Hartley Function	27	
	2.2.6	Miller-Ross Function	27	
	2.2.7	Generalized R Function and G Function	28	
2.3	List of	f Laplace and Inverse Laplace Transforms Related to Fractional		
	Calcul	lus	30	
2.4	Conclu	Concluding Comments		

-

3	Observation of Fractional Calculus in Physical System Description 3	35
3.1	Introduction	\$5
3.2	Temperature–Heat Flux Relationship for Heat Flowing	
	in Semi-infinite Conductor 3	\$5
3.3	Single Thermocouple Junction Temperature in Measurement of Heat	
	Flux	\$8
3.4	Heat Transfer	10
3.5	Driving Point Impedance of Semi-infinite Lossy Transmission Line 4	13
	3.5.1 Practical Application of the Semi-infinite Line in Circuits 4	19
	3.5.2 Application of Fractional Integral and Fractional	
	Differentiator Circuit in Control System	52
3.6	Semi-infinite Lossless Transmission Line	54
3.7	The Concept of System Order and Initialization Function	50
3.8	Concluding Comments	51
4	Concept of Fractional Divergence and Fractional Curl	53
4.1	Introduction	53
4.2	Concept Of Fractional Divergence for Particle Flux	53
4.3	Fractional Kinetic Equation	55
4.4	Nuclear Reactor Neutron Flux Description	57
4.5	Classical Constitutive Neutron Diffusion Equation	57
	4.5.1 Discussion on Classical Constitutive Equations	58
	4.5.2 Graphical Explanation	59
	4.5.3 About Surface Flux Curvature	59
	4.5.4 Statistical and Geometrical Explanation for Non-local	
	Divergence	70
4.6	Fractional Divergence in Neutron Diffusion Equations	71
	4.6.1 Solution of Classical Constitutive Neutron Diffusion Equation	
	(Integer Order) 7	73
	4.6.2 Solution of Fractional Divergence Based Neutron Diffusion	
	Equation (Fractional Order)	74
	4.6.3 Fractional Geometrical Buckling and Non-point Reactor	
	Kinetics	16
4.7	Concept of Fractional Curl in Electromagnetics	16
	4.7.1 Duality of Solutions	17
	4.7.2 Fractional Curl Operator	17
	4.7.3 Wave Propagation in Unbounded Chiral Medium	17
4.8	Concluding Comments	19
5	Fractional Differintegrations: Insight Concepts	31
5.1	Introduction	31
5.2	Symbol Standardization and Description for Differintegration	
5.3	Reimann–Liouville Fractional Differintegral	32
	5.3.1 Scale Transformation	32
	5.3.2 Convolution	35

Contents

	5.3.3	Practical Example of RL Differintegration in Electrical	07	
~ ^	C		8/	
5.4	Grunwald–Letnikov Fractional Differinteration			
5.5	Unification of Differintegration Through Binomial Coefficients			
5.6	Short N	Memory Principle: A Moving Start Point Approximation and	~ -	
	Its Erro	Dr	95	
5.7	Matrix	Approach to Discretize Fractional Differintegration and Weights	97	
5.8	Infinitesimal Element Geometrical Interpretation of Fractional			
	Differi	ntegrations	98	
	5.8.1	Integration	99	
	5.8.2	Differentiation	100	
5.9	Advan	ce Digital Algorithms Realization for Fractional Controls	102	
	5.9.1	Concept of Generating Function	102	
	5.9.2	Digital Filter Realization by Rational Function		
		Approximation for Fractional Operator	103	
	5.9.3	Filter Stability Consideration	106	
5.10	Local I	Fractional Derivatives	106	
5.11	Conclu	ding Comments	107	
6 Ini	tialized	Differintegrals and Generalized Calculus	109	
6.1	Introdu	lction	109	
6.2	Notatio	ons of Differintegrals	110	
6.3	Requir	ement of Initialization	110	
6.4	Initiali	zation Fractional Integration		
	(Riema	nn–Liouville Approach)	112	
	6.4.1	Terminal Initialization	113	
	6.4.2	Side Initialization	114	
6.5	Initiali	zing Fractional Derivative		
	(Riema	ann–Liouvelle Approach)	115	
	6.5.1	Terminal Initialization	116	
	6.5.2	Side Initialization	117	
6.6	Initiali	zing Fractional Differintegrals (Grunwald–Letnikov Approach).	118	
6.7	Proper	ties and Criteria for Generalized Differintegrals	119	
	6.7.1	Terminal Charging	121	
	6.7.2	Side Charging	122	
6.8	The Fu	indamental Fractional Order Differential Equation	122	
	6.8.1	The Generalized Impulse Response Function	123	
6.9	Conclu	Iding Comments	127	
7 Ge	neraliz	ed Laplace Transform for Fractional Differintegrals	129	
7.1	Introdu	iction	129	
7.2	Recalli	ing Laplace Transform Fundamentals	129	
7.3	Lanlac	e Transform of Fractional Integrals	131	
	7.3.1	Decomposition of Fractional Integral in Integer Order	132	
	7.3.2	Decomposition of Fractional Order Integral in Fractional Order	135	

7.4	Laplac	e Transformation of Fractional Derivatives	136
	7.4.1	Decomposition of Fractional Order Derivative in Integer Order	138
	7.4.2	Decomposition of Fractional Derivative in Fractional Order	141
	7.4.3	Effect of Terminal Charging on Laplace Transforms	142
7.5	Start P	oint Shift Effect	143
	7.5.1	Fractional Integral	143
	7.5.2	Fractional Derivative	143
7.6	Laplac	e Transform of Initialization Function	144
	7.6.1	Fractional Integral	144
	7.6.2	Fractional Derivative	144
7.7	Examp	bles of Initialization in Fractional Differential Equations	144
7.8	Proble	m of Scalar Initialization	147
7.9	Problem of Vector Initialization		
7.10	Laplac	e Transform $s \rightarrow w$ Plane for Fractional Controls Stability	151
7.11	Ration	al Approximations of Fractional Laplace Operator	153
7.12	Conclu	iding Comments	155
•			
8 A]	pplicatio	on of Generalized Fractional Calculus in Electrical Circuit	157
Alla	Iysis Introdu	· · · · · · · · · · · · · · · · · · ·	157
0.1	Flaster	uction Constantion of American Circuits	157
8.2		Or sustional Amplifer Circuits	157
	0.2.1 8 2 2	Operational Amplifier Circuit with Lumped Components	15/
	0.2.2	Operational Amplifier Integrator with Distributed Element	150
	8.2.3	Operational Ampliner Integrator with Distributed Element	159
	8.2.4	Operational Ampliner Differential Circuit	1/1
	075	Operational Amplifer Differentiator with Distributed Element	101
	0.2.3	Operational Amplifier on Zero Order Coin	102
	0.2.0	with Lympod Components	162
	077	Operational Amplifor of Zero Order Cain	105
	0.2.1	with Distributed Elements	162
	010	Operational Amplifus Circuit for Sami different amplifus	105
	0.2.0	by Semi-infinite Lease Line	161
	0 2 0	Or sortional Annalifan Cinemit fan Sami internation	104
	0.2.9	Operational Amplifier Circuit for Semi-Integrator	103
	0.2.10	Operational Ampliner Circuit for Semi-differentiator	167
	0.2.11	Cascaded Semi-Integrators	107
07	0.2.12 Dottom	Semi-integrator Series with Semi-differentiator Circuit	10/
0.5	Dattery	Detters on Exection of Order System	100
	0.3.1	Battery as Fractional Order System	100
	0.3.2	Dattery Charging Phase	100
0 /	0.3.3 Teaslai		174
0.4		Observations	174
05	ð.4.1 En	UDSERVATIONS	177
8.J	Fractic	onal Order State vector Representation in Circuit Theory	1//
0.0			

9 Ap	plication of Generalized Fractional Calculus in Other Science and		
Engiı	neering Fields		
9.1	Introduction		
9.2	Diffusion Model in Electrochemistry		
9.3	Electrode–Electrolyte Interface Impedance		
9.4	Capacitor Theory		
9.5	Fractance Circuit		
9.6	Feedback Control System		
	9.6.1 Concept of Iso-damping		
	9.6.2 Fractional Vector Feedback Controller		
	9.6.3 Observer in Fractional Vector System		
	9.6.4 Modern Aspects of Fractional Control		
9.7	Viscoelasticity (Stress-Strain)		
9.8	Vibration Damping System		
9.9	Concluding Comments		
10 Svs	stem Order Identification and Control		
10.1	Introduction		
10.2	Fractional Order Systems. 205		
10.3	Continuous Order Distribution 207		
10.4	Determination of Order Distribution from Frequency Domain		
	Experimental Data		
10.5	Analysis of Continuous Order Distribution		
10.6	Variable Order System		
	10.6.1 RL Definition for Variable Order		
	10.6.2 Laplace Transforms and Transfer Function of Variable Order		
	System		
	10.6.3 GL Definition for Variable Order		
10.7	Generalized PID Controls		
10.8	Continuum Order Feedback Control System		
10.9	Time Domain Response of Sinusoidal Inputs for Fractional Order		
	Operator		
10.10	Frequency Domain Response of Sinusoidal Inputs for Fractional		
	Order Operator		
10.11	Ultra-damped System Response		
10.12	Hyper-damped System Response		
10.13	Disadvantage of Fractional Order System		
10.14	Concluding Comments		
Biblio	graphy		

\$°