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A functional genetic screen using loss-of-function and gain-of-function alleles was performed to identify

modifiers of tau-induced neurotoxicity using the 2N/4R (full-length) isoform of wild-type human tau

expressed in the fly retina. We previously reported eye pigment mutations, which create dysfunctional

lysosomes, as potent modifiers; here, we report 37 additional genes identified from ∼1900 genes screened,

including the kinases shaggy/GSK-3beta, par-1/MARK, CamKI and Mekk1. Tau acts synergistically with

Mekk1 and p38 to down-regulate extracellular regulated kinase activity, with a corresponding decrease in

AT8 immunoreactivity (pS202/T205), suggesting that tau can participate in signaling pathways to regulate

its own kinases. Modifiers showed poor correlation with tau phosphorylation (using the AT8, 12E8 and

AT270 epitopes); moreover, tested suppressors of wild-type tau were equally effective in suppressing toxicity

of a phosphorylation-resistant S11A tau construct, demonstrating that changes in tau phosphorylation state

are not required to suppress or enhance its toxicity. Genes related to autophagy, the cell cycle, RNA-asso-

ciated proteins and chromatin-binding proteins constitute a large percentage of identified modifiers. Other

functional categories identified include mitochondrial proteins, lipid trafficking, Golgi proteins, kinesins

and dynein and the Hsp70/Hsp90-organizing protein (Hop). Network analysis uncovered several other

genes highly associated with the functional modifiers, including genes related to the PI3K, Notch, BMP/

TGF-b and Hedgehog pathways, and nuclear trafficking. Activity of GSK-3b is strongly upregulated due to

TDP-43 expression, and reduced GSK-3b dosage is also a common suppressor of Ab42 and TDP-43 toxicity.

These findings suggest therapeutic targets other than mitigation of tau phosphorylation.

INTRODUCTION

Tau is a microtubule-associated protein that is a major compo-
nent of paired helical filaments (PHFs), insoluble intracellular
aggregates, the presence of which defines a class of neurodegen-
erative diseases termed tauopathies. There are several neurode-
generative diseases in which PHFs are the sole or primary
neuropathological hallmark, including frontotemporal lobar
degeneration (FTLD), corticobasal degeneration (CBD) and
progressive supranuclear palsy (PSP). Some tauopathies
feature co-pathology with other protein aggregates, such as

b-amyloid in Alzheimer’s disease (AD) (1) or a-synuclein in
Lewy body dementia (2). Pedigree studies in hereditary cases
of frontotemporal dementia with parkinsonism linked to
chromosome 17 (FTDP-17) (3,4) identified mutations in the
MAPT gene, demonstrating that dysregulated or dysfunctional
tau can be a causative factor in inducing neurodegeneration.
However, most tauopathies are idiopathic and lack causative
mutations in MAPT, suggesting that other factors that regulate
or modify wild-type tau function must be involved.

Tau stabilizes microtubules and is thought to provide struc-
tural integrity to axons, although it is also present in dendrites
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and glia (5,6). TheMAPT gene can be alternatively spliced into
six isoforms that vary in the number of C-terminal microtubule
binding domain repeats (3R or 4R) and N-terminal exons
included (0N, 1N, or 2N) (7). Several post-translational modifi-
cations have also been reported, including phosphorylation,
acetylation (8,9), glycosylation and nitration (10–13). Tau
clearance may involve several processes, as it has been reported
that tau can be targeted to lysosomes or cathepsin-mediated deg-
radation (14,15), can be ubiquitinated and targeted to the prote-
asome (16,17) or can be digested by proteases such as
puromycin-sensitive aminopeptidase (PSA) (18,19).
Tau is found in a hyperphosphorylated state in PHFs

(20,21), and there are 79 putative serine/threonine sites for
phosphorylation of which at least 45 are known to be phos-
phorylated (22,23). Several tau kinases have been identified,
including glycogen synthase kinase-3b (GSK-3b; 24,25),
microtubule-associated protein/microtubule affinity-regulating
kinase (MARK; 26), cyclin-dependent kinase 5 (Cdk5; 27,28),
extracellular regulated kinase (ERK; 29,30), protein kinase A
(31,32), p38 (33) and c-Jun amino-terminal kinase (34).
Protein phosphatases 1, 2A and 2B (PP1, PP2A, PP2B) have
been shown to dephosphorylate tau (22). Hyperphosphorylated
tau dissociates from microtubules (35–37), and synaptic
impairment and neurodegeneration have been hypothesized
to be due to destabilized microtubules in axons. However,
despite the presence of hyperphosphorylated tau in PHFs,
the role of tau phosphorylation in neurodegeneration is
complex. As an example, phosphorylation at the Ser235,
Ser404 and Thr50 sites may in fact promote microtubule
binding, formation and stability at specific sites (38,39). Fur-
thermore, tau phosphorylation at specific sites has been
shown to ameliorate tau-induced deficits and toxicity (40),
and in vivo fly models of tau toxicity using phosphorylation-
resistant tau constructs show equivalent or even increased
toxicity when compared with wild-type tau (41,42).
Several invertebrate and vertebrate transgenic animal

models have shown that tau can induce neurodegeneration
and apoptosis (43–46). Our laboratory generated a model of
tauopathy in Drosophila melanogaster by expressing human
wild-type full-length (2N/4R) tau in the eye using a direct
fusion construct of the human tau cDNA to the eye-specific
glass (gl) promoter (gl-tau fly). This misexpression causes a
rough eye phenotype associated with abnormalities of photo-
receptor neurons and other cell types in the underlying
retina (47). The degree of roughness is intermediate and
more pronounced in the anterior eye, making it useful for
enhancer–suppressor modifier screens. A ‘suppressor’ of the
phenotype will produce a larger and more wild-type-like
eye, whereas an ‘enhancer’ of roughness will exacerbate the
tau-induced toxicity and produce a smaller and more rough
eye. This approach was used to validate the in vivo protective
effects of PSA, with genetic loss-of-function (LOF) mutations
in Drosophila PSA (dPSA) enhancing the tau phenotype and
overexpression of dPSA suppressing the roughness (48).
We report here the results of two genetic enhancer–sup-

pressor screens conducted with the gl-tau fly using published
collections of LOF and gain-of-function (GOF) transposon
insertions. The first screen utilized the ‘P lethal’ collection,
which consists of LOF alleles caused by LacZ containing
transposable P element insertions in essential genes (49).

The second screen utilized the ‘EY’ collection, which consists
of ‘empty’ UAS elements inserted in the promoters of
endogenous genes (50), and can be used to overexpress the
downstream gene if the UAS-binding transcription factor,
GAL4, is co-expressed. We refer to this as the ‘EY’ or ‘over-
expression’ screen; however, the UAS insertion can also block
transcription of the downstream gene if it is inserted in the
opposite orientation. These two collections were chosen for
several reasons. Both were generated by random insertion
of P elements throughout the fly genome, thus representing
a large, unbiased, genome-spanning assortment of genes:
≏1000 P lethal stocks and 900 EY stocks were screened.
The P lethal collection represents solely LOF alleles, and no
LOF screen with a tauopathic animal model has previously
been reported. Additionally, the use of published P element-
based mutations allows for the rapid identification of the modi-
fier genes by referencing the FlyBase database. Also, essential
genes in the fly are more likely to have a homolog in verte-
brates and thus may correspond to relevant human modifier
genes in tauopathies. The EY collection was chosen as a
GOF screen to complement the P lethal screen. A screen
using a similar enhancer-promoter collection—the Rørth EP
collection (51)—using a tau eye phenotype has been previously
reported (52); however, the EY collection represents
affected genes that are largely non-overlapping with those in
the EP collection. The screen described here also differs
from previously reported screens in that (i) tau expression
and the phenotype of gl-tau eye are not GAL4-dependent,
thus eliminating potential confounds of modifiers of GAL4
function and not tau toxicity, and (ii) the tau toxicity is
induced by wild-type (non-mutant) tau.
In total, 37 genes of the ≏1900 lines screened were uncovered

as strong modifiers of tau toxicity. From these genes, a computa-
tional network of highly associated genes was assembled that
encompasses a wide range of functional categories associated
with tau toxicity. Themodifiers were assayed for tau phosphoryl-
ation state; however, no consistent pattern of phosphorylation
correlated with suppression or enhancement of tau toxicity.
However, we demonstrate a novel synergistic capacity of tau
and p38 to regulate ERK activity, providing evidence for tau
regulation of its own kinases. We also demonstrate that GSK-
3b (shaggy) is a common suppressor of tau, Ab42 and TDP-43
toxicity, and that GSK-3b activity is strongly upregulated due
to mutant TDP-43 expression. These results provide novel asso-
ciations with genes and cellular processes that widen our under-
standing of tau function that may represent novel therapeutic
targets for tauopathies and other neurodegenerative proteinopa-
thies. Moreover, these data provide further evidence that tau
phosphorylation is not critical for tau toxicity.

RESULTS

Suppressors were selected if the eye was larger, less rough and
had a more wild-type-like ommatidial organization than
control eye phenotypes. Enhancers were identified if the eye
was smaller and had increased ommatidial fusion and bristle
loss. Additionally, a gene was called an enhancer if a necrotic
plaque was present even if the eye was not smaller when com-
pared with controls, as necrotic plaques were never observed
in controls.
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P lethal screen reveals 23 modifiers and EY screen
reveals 14 modifiers

The locations of the P element insertions in both the P lethal
and EY collections have been previously mapped and reported
in the online database FlyBase.org and can be referenced using
the stock number for each P lethal line. Our screen was carried
out with blinded phenotypic scoring, as P lethal lines were ini-
tially known only by their stock numbers; only after the F1
phenotypes were scored for modifying effect on the tau eye
phenotype was information on P element location and the
affected gene obtained. A total of 23 modifiers—11 suppres-
sors and 12 enhancers—were identified from the P lethal
screen of 920 stocks, with P element mutagens inserted on
the X, 2nd and 3rd chromosomes. Figure 1 depicts scanning
electron micrographs of representative eye phenotypes: all
panels (except ‘wild-type’) have a copy of the gl-tau transgene
in trans to one disrupted copy of the gene listed in the panel
(genes are listed alphabetically). Atg6 was included as an
enhancer due to large black plaques in the anterior region of
the eye that were commonly found in gl-tau/Atg6 progeny
(see arrows in Fig. 1) that were not present in controls. We
have termed these plaques as ‘necrotic’ due to the observation
of a lack of underlying tissue; however, we note that these
plaques may be due to increased melanization rather than
necrosis. No modifier stock showed an intrinsic effect on
eye morphology when crossed to w1118 in order to remove
any effects of balancer chromosomes (Supplementary Mater-
ial, Fig. S1). The modifier stocks were then crossed to a
GMR-hid line (53) in order to exclude suppressors of
general apoptosis. The hid gene is proapoptotic and produces
a near-complete ablation of the eye. No modifiers from the P
lethal screen showed any appreciable suppression of the hid
phenotype (Fig. 2).
Although the entire EY collection is a continually growing

library of over 3000 lines, only 895 of these stocks were asso-
ciated with named gene function at the time this screen was
initiated. To facilitate identification of relevant genes, only
these 895 annotated EY stocks were screened. Of these, 19
were putative modifiers. These putative modifiers were
crossed to GMR-GAL4 alone in order to determine whether
the modified eye phenotype was independent of tau toxicity;
of these, 16 modifiers showed no independent effect on eye
morphology. Finally, these modifiers were crossed to a
GMR-hid line expressed in trans to GMR-GAL4 on the X
chromosome (GMR-GAL4;GMR-hid) in order to exclude
modifiers of general apoptosis. Of the 16 lines screened, 12
showed no appreciable suppression of GMR-hid phenotype
(Fig. 2). Although Hr39 and CamKI demonstrated moderate
suppression of the hid phenotype, they showed enhancement
of tau toxicity; thus, their effect on tau toxicity is unlikely
related to any anti-apoptotic effects and they were included
as tau modifiers making for a total of 14 EY modifiers.
Finally, to ascertain whether the EY element insertion was a
GOF or LOF allele, the 14 modifier genes were crossed to
the original gl-tau fly without GMR-GAL4. If the insertion
induced a GOF, then crossing to gl-tau without GAL4 will
show either no modifier effect when compared with the
gl-tau control or will show a phenotype opposite to that of
the GMR-GAL4;gl-tau phenotype. If crossing the modifier

line to gl-tau alone showed the same phenotype as crossed
to gl-tau with GAL4, then we classified the insertion as an
LOF allele, although it is possible that such a result could
also be due to GAL4-dependent RNA antisense effects of
the insertion. Figure 3 depicts light micrographs of representa-
tive eye phenotypes of the 14 modifiers of the EY screen with
the gene symbol to identify the modifier gene; these images
were obtained using a Nikon AZ100M microscope using an
‘extended depth of focus’ (EDF) algorithm to display all
focal planes in one compressed image.

Suppressors and enhancers of the gl-tau eye phenotype
show strong changes in morphological eye volume, which
can be used as a quantitative metric of modification. Using
the EDF algorithm, three-dimensional reconstructions of the
eye can be rendered, which allows greater visualization and
measurement of eye volumes. Figure 4A shows the represen-
tative images of these 3D reconstructions, from both a
‘top-down’ view and rotated for a ‘side’ view, depicting a
typical wild-type eye and a gl-tau control eye with a volume
approximately half of a wild-type eye. Also shown is a repre-
sentative enhancer, Hop, which shows even further decrease in

Figure 1. Genetic modifiers of tau-induced neurotoxicity identified from P
lethal LOF screen. ‘Control’: w1118/+;gl-tau/+. All other panels, except wild-
type, contain one copy of gl-tau transgene in trans to one disrupted copy of the
gene listed in the panel. Genes are listed alphabetically; non-annotated genes
comprise the bottom row. Arrows point to necrotic plaques that were initially
identified by light microscopy.
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volume, and a representative suppressor, sgg, which shows
increased volume over control, approaching near wild-type
levels. Figure 4B shows the scatter plots of actual volumes
from samples of all modifiers and demonstrates that suppres-
sors show consistently higher volumes than control samples,
whereas enhancers show consistently lower volumes.

Additional alleles of each identified gene were also screened
where possible to validate the modifier gene. The complete list
and details of modifier genes from both screens are summar-
ized in Table 1. All the Bloomington stock numbers originally
screened along with all additional alleles tested are listed in
Supplementary Material, Table S1. In most of the cases, at
least two alleles were tested and confirmed to have the same
effect on tau toxicity, either through an LOF or a GOF
allele. However, for the following genes, only a single allele
was obtainable for screening through donated lines or lines
obtained from stock centers: Atg6, CamKI, Fs(2)Ket, Hr39,
mei-9, Mi-2/l(3)L1243, NC2a, par-1, Past1, smooth, smid,
Tango5; and the five non-annotated genes, l(3)j11B2,
l(3)j6A6, l(3)L0499, l(3)L6332 and CG31630. Thus, out of a
total of 40 modifier genes, 17 do not meet the more rigorous
criteria as applied to the other modifiers; identification of
par-1 confirms prior reports.

Modifiers show little to no effect on polyglutamine toxicity

The modifiers identified were further tested to determine their
specificity to tau toxicity by examining their ability to modify
another model of neurodegeneration—polyglutamine-induced
toxicity. We used a UAS-Q108 model of polyglutamine-
induced toxicity that encodes a polypeptide containing an
108 repeat glutamine tract in the eye, in combination with a
GMR-GAL4 driver (54). In this model, the eye is slightly
reduced with increased ommatidial fusion and loss of interom-
matidial bristles when compared with wild-type. The tau
modifier stocks were crossed to the Q108 stock, and the F1
progeny were examined for modification of the polyglutamine
eye phenotype. No hits from the P lethal screened showed any
robust effect on the Q108 phenotype; similarly, almost none of
the modifiers from the EY screen was appreciably different
from the control (Fig. 2). However, NC2a and SdhB did
show moderate suppression of the Q108 phenotype. Mitochon-
drial dysfunction may contribute to a number of neurodegen-
erative diseases, including AD and Huntington’s disease
(HD; 55–57); thus, it is not surprising that increased expres-
sion of Succinate dehydrogenase B (SdhB) would ameliorate
both tau- and polyglutamine-induced toxicity in the fly
retina. Indeed, reduction of succinate dehydrogenase (SDH),
a component of mitochondrial complex II, has been described
in HD brain; moreover, inhibition of SDH using 3-nitropropio-
nic acid has been used to model HD (58,59). NC2a is a tran-
scriptional regulator of the common ‘downstream-promoter
element’ containing promoters (60), and thus it is not surpris-
ing that altered expression of NC2a would affect the expres-
sion of many other genes that may act on tau toxicity and
some polyglutamine toxicity. Further work will be needed to
identify those genes modulated by NC2a that regulate tau
and polyglutamine phenotypes.

Computational network demonstrates wide range
of functional categories

Although the collection of genes screened was large and
spanned the genome, our screen was not saturating: less
than 20% of the ≏12 000 fly genes were screened. Our
screen was selective for dominant effects/haploinsufficiency

Figure 2. Modifiers of tau-induced neurotoxicity show little effect on apop-
tosis. The 37 modifiers identified from P lethal and EY functional screens
were tested for their ability to suppress the effects of the proapoptotic gene
hid. P lethal control: w1118;GMR-hid/+. All other P lethal genotypes have
one copy of GMR-hid in trans to one disrupted copy of the listed gene. EY
control: GMR-GAL4/w1118;GMR-hid/+. All other EY genotypes have one
copy of GMR-GAL4 on the first chromosome and one copy of GMR-hid in
trans to the affected listed gene. Genes are listed alphabetically. Nearly all
modifiers failed to show an effect on apoptosis when compared with controls.
CamKI and Hr39 showed a moderate suppression of apoptosis but enhanced
tau toxicity. Modifiers oho23B, Tango5 and Tis11 showed mildly increased
phenotypes when compared with hid.
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and for essential genes in the case of the P lethal screen.
Also, some modifiers may induce subtle changes in tau path-
ology, which would have been excluded based on our criter-
ion of robust suppression or enhancement of the gl-tau eye.
Thus, important modifiers might not have been detected by
our functional screen design. However, we constructed a

computational network of genes highly associated with modi-
fiers in order to extrapolate cellular processes, pathways and
other genes that may also have a role in modifying
tau-induced toxicity. Thirty-two of the 37 hits were annotated
with a described function. We incorporated genes white,
brown and rosy into the network, which we identified as

Figure 3. Genetic modifiers of tau-induced neurotoxicity identified from EY collection screen. ‘Control’: GMR-GAL4/+;gl-tau/+. All other panels contain one
copy of GMR-GAL4 on the X chromosome and one copy of gl-tau transgene in trans to the gene listed in the panel affected by the EY element. Genes are listed
alphabetically.

Figure 4. Quantification of eye volumes of modifiers. (A) Three-dimensional reconstructions of representative eyes of wild-type, control gl-tau (+/gl-tau),
enhancer (Hop) and suppressor (shaggy) phenotypes. (B) Estimated eye volumes of modifier phenotypes from P lethal and EY screens indicated in scatter
plots. Blue, suppressors; red, enhancers; black, control; green, wild-type. Black horizontal lines delineate range of control eye volumes; suppressors have
larger eye volumes, whereas enhancers have smaller eye volumes when compared with control.

Human Molecular Genetics, 2011, Vol. 20, No. 24 4951
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Table 1. Gene functions of hits from functional genetic screen

Gene symbol Drosophila ID En/Su; LOF/
OE

Collection Human ortholog Human ID Functional category

Atg6 Autophagy-specific gene 6 En; LOF PZ Beclin-1-like protein 1 BECN1 Autophagy/lysosomal
bl / hnRNP K bancal En; LOF LacW hnRNP K HNRNPK RNA processing
bw brown En; LOF n/a ATP-binding cassette transporter Autophagy/lysosomal
CamKI Calcium/calmodulin-dependent protein

kinase I
En; LOF EY Calcium/calmodulin-dependent protein kinase type 1D CAMK1D Kinases or phosphatases

cana CENP-ana En; LOF LacW Centromeric protein E CENPE Motor and cytoskeletal
proteins

crp cropped/AP4 En; OE EY Transcription factor AP-4 TFAP4 Transcription factors
CycE Cyclin E En; LOF LacW G1/S-specific cyclin-E2 CCNE2 Cell cycle/nuclear
Dlic2 Dynein light intermediate chain Su; LOF LacW Cytoplasmic dynein 1 light intermediate chain 1 DYNC1LI1 Motor and cytoskeletal

proteins
Elf Elongation1a-like factor Su; LOF EY Eukaryotic peptide chain release factor GTP-binding subunit

ERF3A
GSPT1 Ribosomal

eRF1 eukaryotic release factor 1 En; LOF PZ Eukaryotic peptide chain release factor subunit 1 ETF1 Ribosomal
frc fringe connection Su; LOF LacW UDP-N-acetylglucosamine/UDP-glucose/GDP-mannose

transporter
SLC35D2 Glycosylation

Fs(2)Ket Female sterile (2) Ketel Su; LOF EY Importin subunit beta-1 KPNB1 Nuclear trafficking
His2Av Histone H2A variant En; LOF PZ Histone H2A.Z H2AFZ Chromatin regulation
Hop Hsp70/Hsp90 organizing protein homolog En; LOF LacW Stress-induced phosphoprotein 1 STIP1 Proteases and chaperones
Hr39 Hormone receptor-like in 39 En; OE EY Steroidogenic factor 1 NR5A1 Autophagy/lysosomal
Klp61F Kinesin-like protein at 61F En; LOF PZ Kinesin-like protein KIF11 KIF11 Motor and cytoskeletal

proteins
ksr Kinase suppressor of Ras En; LOF LacW Kinase suppressor of Ras 2 KSR1 ERK pathway
l(3)L1243/

Mi-2
Mi-2 Su; LOF LacW Chromodomain-helicase-DNA-binding protein 3 CHD3 Chromatin regulation

mei-9 meiotic 9/XPF Su; OE EY DNA repair endonuclease XPF ERCC4 Chromatin regulation
Mekk1 Mekk1 En; OE EY Mitogen-activated protein kinase kinase kinase 1 MAP3K1 Kinases or phosphatases
NC2a NC2a Su; LOF EY Dr1-associated corepressor DRAP1 Transcription factors
Nrg Neuroglian Su; LOF LacW Neural cell adhesion molecule L1 L1CAM ERK pathway
oho23B Overgrown hematopoietic organs at 23B En; LOF LacW 40S ribosomal protein S21 RPS21 Ribosomal
par-1 par-1 En; LOF LacW MARK1 MARK1 Kinases or phosphatases
Past1 Putative Achaete Scute Target 1 Su; OE EY EH domain-containing protein 4 EHD4 Endosomal
RpLP0 Ribosomal protein LP0 En; LOF PZ 60S acidic ribosomal protein P0 RpLP0 Ribosomal
ry rosy Su; LOF n/a Xanthine dehydrogenase/oxireductase; aldehyde

oxidaseysosomal
SdhB Succinate dehydrogenase B Su; OE EY Succinate dehydrogenase SDHB Mitochondrial
sgg shaggy Su; LOF LacW GSK-3beta GSK3B Kinases or phosphatases
sm/hnRNP L smooth En; OE EY hnRNP L-like HNRPLL RNA processing
smid smallminded Su; LOF LacW Nuclear valosin-containing protein-like NVL Cell cycle/nuclear
Tango5 Transport and Golgi organization 5 En; LOF LacW Vacuole membrane protein 1 TMEM49 Endosomal
Tis11 Tis11 homolog En; LOF EY Tristetraproline ZFP36 RNA processing
Vha14 Vacuolar H+ ATPase 14 kDa subunit Su; LOF EY V-type proton ATPase subunit F ATP6V1F Autophagy/lysosomal
w white En; LOF n/a ATP-binding cassette sub-family G member 1 ABCG1 Autophagy/lysosomal
l(3)j11B2 Not annotated Su; LOF LacW
l(3)j6A6 Not annotated Su; LOF LacW
l(3)L0499 Not annotated Su; LOF LacW
l(3)L6332 Not annotated Su; LOF LacW
CG31630 Not annotated Su; LOF EY

Drosophila gene symbol and full names are listed along with human gene ortholog and symbol, if applicable. En, enhancer; Su, suppressor; LOF, loss-of-function allele; OE, overexpression allele. Human
orthologs were identified using the PANTHER classification system (www.pantherdb.org).
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modifiers independent of the collections we screened (61).
These 35 annotated modifiers were individually run through
the Endeavor-HighFly software analysis (62), a novel analyt-
ical program that assigns P-values to all other annotated
genes in the Drosophila genome (≏10 000 genes) based on
ontology, creating individual network profiles for all 35
hits. All 35 network profiles were then cross-referenced to

one another in order to determine the most significant
predicted genetic interactions with tau (see Materials
and Methods for criteria of network inclusion). A network
diagram (Fig. 5A) was created, showing a simplified inter-
action map and grouped by known functions that are color-
coded. It should be noted that certain genes are ascribed mul-
tiple functions, which we attempted to show by color-

Figure 5. Computational tau toxicity modifier network can predict novel tau modifiers. (A) Computational predictions of tau interactors based on high associ-
ation with hits from the functional genetic screen. Hits from the functional screen are marked with asterisks. Size of the nodes is proportional to degree of con-
nectivity with other genes in the network. Although all genes selected for inclusion have high connectivity to many genes in the network (see Materials and
Methods for parameters of inclusion), for clarity only the strongest interactions with a quantified interaction (P-value ,0.001) are indicated in blue lines.
Each functional group is coded with a unique color; a node was color-divided to indicate whether multiple functions are attributed to that gene.
(B) Network association genes—mitochondrial gene, Tom34, and RNA trafficking gene, csul—both strongly modify tau toxicity, showing strong suppression
when overexpressed (GOF) and enhanced toxicity when expression is reduced (LOF). Tom34 and csul expression do not modify apoptosis (as assayed using
the GMR-GAL4;GMR-hid phenotype), nor show any intrinsic eye phenotypes (as assayed with GMR-GAL4 alone). However, both show effects on the
GMR-GAL4::UAS-Q108 phenotype—Tom34 suppresses Q108 toxicity, whereas csul enhances toxicity.
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dividing the relevant representative circle, but their placement
in the diagram represents a model felt to be most relevant in
discussing tauopathy. Genes from the functional screens and
from the computational analysis are depicted in the diagram,
with validated hits from the functional screens marked with
an asterisk. A comprehensive list of all genes in the
network is shown in Supplementary Material, Table S2.
The size of the circle representing the gene is proportional
to its connectivity in the network: the larger the circle, the
more the connections to other genes in the network. Note
that although only connections with the most significant asso-
ciations (P , 0.001) are shown in blue lines, many other sig-
nificant associations (0.05 . P. 0.001) are not depicted
with a line for the sake of simplicity. For all genetic associa-
tions with their computational P-values, see Supplementary
Material, Table S3.
As expected, kinases and phosphatases occupy the largest

functional group, and motor or cytoskeletal genes show a high
degree of connectivity to many genes in the network.
However, autophagy/lysosomal genes and genes related to
RNA processing were also surprisingly highly represented,
along with protein translation or ribosomal-associated genes.
Additionally, the ERK signaling pathway appears to be
relevant, with ksr and Nrg identified in the screen, but other sig-
naling pathways were also predicted to be relevant, including
the BMP/TGF-b, epidermal growth factor (EGF) and Hedge-
hog/Smoothened pathways, which are not commonly discussed
in relation to tau pathology. The PI3K is the largest represented
and the most highly connected signaling pathway in the
network. The kinase shaggy/GSK-3b is one of the most
highly connected genes in the network and is regulated by
several pathways, including PI3K and Wnt, although no other
Wnt pathway components were identified functionally or com-
putationally. Several cell-cycle or nuclear-associated genes also
have a high representation, which supports hypotheses of cell-
cycle-mediated neurodegeneration (discussed further below).
To determine whether this network could be used to predict

tau toxicity interactions, a few genes identified through
network association were empirically tested with the gl-tau
line. Tom34, identified in the Mitochondrial gene cluster, and
csul, identified in the RNA Trafficking cluster, showed very
strong effects on the gl-tau phenotype (Fig. 5B). Using both
GOF and LOF approaches, we observed that both Tom 34 and
csul suppress tau toxicity when overexpressed and enhance tox-
icity when expression is reduced. These alleles neither appear to
mitigate general apoptosis (assayed with GMR-hid) nor have
any intrinsic effects on eye morphology (assayed with
GMR-GAL4 alone). However, both genes also modify polyglu-
tamine toxicity. Overxpression of Tom34 suppresses Q108 tox-
icity, as evidenced by reduced ommatidial fusion and increased
pigment retention; however, csul overexpression increases
Q108 toxicity, as evidenced by a smaller and more collapsed
eye and increased pigmentation abnormalities.
Several genes encoding subunits to the Translocase of outer

mitochondrial membrane (Tom or Tomm) protein have recent-
ly been linked to neurodegenerative diseases. Most notably,
Tomm40 has been reported in several publications to be a
risk factor in AD (63). Additionally, Tom20 and Tom70
have been associated to Parkinson’s disease-linked parkin
and ALS-linked SOD1 (64,65). Although associated with

mitochondria, Tom34 is found more predominantly in the
cytosol and binds to the chaperone proteins Hsp90 and
Hsp70, as does Tom70 (66–68). This suggests that Tom34
and Tom70 function more as chaperone proteins which
would help to explain why increased expression of Tom34
suppresses tau toxicity. Indeed, mature protein substrates of
Tom70 were observed to be aggregate-prone in the absence
of Tom70, suggesting a crucial role of Tom70 in preventing
aggregation (69). The gene csul interacts with histones, splice-
sosomal proteins and other small ribonucleoproteins and can
affect protein–RNA affinity and intracellular localization of
certain mRNAs (70–72). A recent report observed that
mRNAs also associate with Tom70 (73), further establishing
a link between RNA and RNA-associated proteins and tau
toxicity. RNA regulation may also play a significant role
in polyQ toxicity as well, as the CAG repeats in polygluta-
mine-encoding RNAs can induce toxicity (74,75), and poly-
glutamine proteins can also bind RNA with an affinity
dependent on the polyQ expansion length (76). Other
genetic screens of polyQ toxicity have also uncovered RNA-
binding proteins (77–79), although those genes identified do
not overlap with the modifiers presented in this study. Given
this, however, it is peculiar that most other RNA-associated
genes uncovered in the screen did not also modify Q108
phenotype. However, no other genes that are directly involved
with RNA and protein localization or transport were screened,
which suggests a specific role of RNA trafficking or localiza-
tion in polyQ toxicity.
We also confirmed that the RNA Catabolism gene, armi,

modified tau toxicity, enhancing toxicity with both LOF and
GOF approaches. Alleles tested for RNA Catabolism gene,
Upf1, and the mitochondrial gene, Tom20, did not show sig-
nificant changes in the gl-tau phenotype (data not shown).
This may simply indicate that the eye and retina may not be
the ideal tissue to induce or observe effects of these genes
on tau toxicity. However, the ability to empirically validate
modification of toxicity of at least two genes identified by
network association, from two different gene categories, sug-
gests the potential of this network to identify future modifiers.
Although we emphasize that this network neither represents a
full genomic network nor includes all demonstrated or putative
modifiers, we believe this network does bring assistance in
discerning how the uncovered modifiers may interact, and
yields novel associations that may prove fruitful.

Phosphorylation of tau does not correlate
with enhancement or suppression of tau toxicity

PHFs are primarily composed of ‘hyperphosphorylated’ tau;
thus, increased tau phosphorylation is regarded as a key com-
ponent in tau-related pathogenesis. Tau phosphorylation at
S202/T205 as detected by the AT8 antibody (80) is commonly
found in tauopathies (38,81–84). On the basis of this hypoth-
esis, we predicted that suppressor genes would decrease tau
phosphorylation, whereas enhancer genes would increase tau
phosphorylation. Phospho-tau levels from protein extracts of
flies expressing gl-tau in trans to modifier genes were ana-
lyzed by immunoblot (Fig. 6). Unexpectedly, no significant
differences in AT8 levels were found for nearly all modifiers
from the P lethal screen when compared with controls. Six
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modifiers showed a significant decrease in phosphorylation:
three were enhancers (bl, Hop and Tango5) and three were
suppressors (ksr, l(3)j11B2 and l(3)L1243). On the other
hand, nearly all modifiers from the EY screen—suppressors
and enhancers alike—showed robust decreases in phosphoryl-
ation. Suppressor CG31630 did not show a change in phos-
phorylation, and the enhancer smooth was the only gene
from either screen that had a significant increase in its AT8
level. Thus, no consistent pattern of S202/T205 phosphoryl-
ation can be attributed to a suppressive or enhancing effect
of tau-induced toxicity. This result is reminiscent of that
obtained with the genetic modifiers white, brown and rosy
(61). The distribution of phosphorylation is depicted as a
scatter plot of the mean AT8 levels for all 40 modifiers

classified as either enhancer or suppressor (Fig. 6C). Modifiers
did not show a statistically significant difference in total tau
levels relative to controls (Supplementary Material, Fig. S3),
indicating that altered toxicity was not due to changing tau
expression. Only l(3)L6332 showed a significant increase in
tau expression but suppressed toxicity; thus, its modifying
effect is not attributable to any effect on tau expression.
Although at first surprising, this finding supports other recent
data from our laboratory that also demonstrates dissociation
of tau phosphorylation from neurodegeneration (42). We
also evaluated two other phospho-tau antibodies—12E8,
which detects pS262 and pS356 (85) and AT270, which
detects pT181 (86) with modifiers from the EY screen. No
significant differences in phospho-tau levels relative to

Figure 6. Modifying tau toxicity does not require altering tau phosphorylation state. (A) Immunoblots from tau toxicity modifiers probed for total tau (T46 or E178)
and tau phosphorylation at S202/T205 (AT8). b-Tubulin or b-actin shown as loading control. P lethal control: w1118/+;gl-tau/+. EY control: GMR-GAL4/+;-
gl-tau/+. Genes labeled in red designate enhancers, whereas genes labeled in blue are suppressors. Blots for EY hits were visualized by two-color immunoblots
with fluorescent secondaries and imaged with the Odyssey Near-IR Scanner (Li-Cor), but are shown in grayscale. Two-color immunoblots allowed for visualization
andmeasurement of total tau (E178, rabbit IgG) andAT8 (mouse IgG) simultaneously. (B) Quantification of phosphorylated tau.Modifiers did not significantly alter
total tau expression. AT8 levels were normalized to total tau; significant differences (P , 0.05) when compared with control are marked with asterisks. Approxi-
mately half (18 of 40) of the modifiers showed no significant differences in phospho-tau when compared with control. The other half (22 of 40) showed a significant
difference in AT8; however, no pattern of phosphorylation correlated with enhancement or suppression of the tau phenotype. (C) Scatterplot of the mean values for
AT8 signal of the 40 modifiers identified shows little difference in phosphorylation state between enhancers and suppressors.
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controls were observed (Supplementary Material, Fig. S4).
Taken together, these results show that modifying the
severity of tau-induced toxicity does not require altering the
phosphorylation state of tau.

Tau demonstrates synergy with Mekk1
and p38 to decrease ERK activity

In total, four kinases were identified in the functional screen—
sgg/GSK-3b, par-1/MARK1, CamKI and Mekk1. However,
sgg and par-1 mutations did not show any significant effect on
AT8 levels in trans to gl-tau, whereas CamKI and Mekk1,
both enhancers, showed significant decreases in AT8 levels.
To probe these unexpected results, we further investigated the
downstream effects of increased Mekk1 activity. Mekk1 is a
stress-induced MAP3K that leads to phosphorylation and
activation of the stress-activated kinase, p38 MAPK (87).
Using the GMR-GAL4 driver with theMekk1EY line, immuno-
blots showed modest but statistically significant increases in
activated p38 in GMR-GAL4/+;Mekk1EY/gl-tau fly heads

when compared with GMR-GAL4/+;gl-tau/+ flies (Fig. 7A).
This increase in p38 activity was comparable to overexpression
of Mekk1 alone (GMR-GAL4/+;Mekk1EY/+), indicating that
p38 activity is not tau-dependent. The p38 pathway has been
reported to interfere with ERK activity during apoptosis (see
88 for review); thus, ERK activity was assayed in these geno-
types by measuring phospho-ERK levels. Overexpression of
Mekk1 alone (GMR-GAL4/+;Mekk1EY/+) did not produce
any difference in phospho-ERK levels when compared with
gl-tau-only flies (GMR-GAL4/+;gl-tau/+). However, when
tau was co-expressed with Mekk1, a profound reduction
(≏60%) in phospho-ERK was observed (Fig. 7A). No change
in GSK-3b activity was observed with Mekk1 overexpression.
These data demonstrate a synergistic effect between Mekk1/
p38 and tau in down-regulating ERK activity and suggest
that tau has signaling properties to regulate the kinases or
phosphatases that in turn regulate tau itself.

GSK-3b phosphorylation state correlates with toxicity in
reduced ERK activity conditions. We were intrigued by the

Figure 7. p38 interacts synergistically with tau to regulate ERK activity and ksr decreases GSK-3b and ERK activities. (A) Immunoblots and (B) quantification
of kinase activity induced by Mekk1 overexpression, which enhanced tau toxicity. Mekk1 overexpression induced a modest significant increase in p38 activity
(phospho-p38) independent of human tau expression. ERK activity (phospho-ERK) was equivalent for tau expression alone (first lane) and Mekk1 expression
alone (third lane); however, tau and Mekk1 co-overexpression strongly reduced phospho-ERK levels (second lane). Overexpression of Mekk1 also strongly
reduced S202/T205 tau phosphorylation levels (AT8), but did not alter total tau levels (T46). No significant difference was observed for GSK-3b activity
(phospho-GSK-3b-Ser9). (C) Both enhancer bancal and suppressor ksr decrease ERK activity, but ksr also strongly reduced GSK-3b activity, while bancal
trended to increase GSK-3b activity.
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result that both ksr and bancal showed significant reductions
in pS202/T205 (AT8) levels, although ksr is a strong suppres-
sor, whereas bancal is a strong enhancer. As both genes have
reported interactions in the MAPK/ERK pathway, we exam-
ined the levels of activated ERK in gl-tau flies with ksr or
bancal alleles. As expected, both ksr and bancal showed sig-
nificantly decreased phospho-ERK levels, indicating reduced
ERK activity (Fig. 7B). Owing to ongoing experiments from
our laboratory and from the literature, we hypothesized that
bancal mutants would show increased GSK-3b activity.
When assayed for pGSK-3b[Ser9] (inactivated GSK-3b), we
did indeed see a reduction of inactivated GSK-3b in bancal
mutants when compared with control, although the result
was not statistically significant (Fig. 7B). However,
surprisingly, we observed a strong and statistically significant
increase in inactivated GSK-3b in ksr mutants. Given this
result, we assayed all the modifiers for GSK-3b phosphoryl-
ation state, as an indicator of GSK-3b activity, to determine
whether GSK-3b was a common final pathway for toxicity,

but no consistent pattern between suppressors or enhancers
was observed (data not shown). Together, we conclude from
these results that (1) ERK activity correlates with S202/T205
phosphorylation, but not toxicity; (2) ksr not only participates
in the MAPK/ERK pathway, but can also interact in the
GSK-3b pathway; and (3) in conditions of reduced ERK
activity, GSK-3b activity correlates with toxicity.

Suppressors of wild-type Tau toxicity also suppress S11A tox-
icity, while S2A is resistant to enhancers. To further explore
the role of tau phosphorylation and the modifiers identified,
we assayed two different phosphorylation-resistant isoforms
of tau that have opposing phenotypes. The TauS11A (or
simply S11A) isoform has 11 serines or threonines mutated
to alanines to prevent phosphorylation. The sites mutated
are ones commonly observed as hyperphosphorylated in tauo-
pathic tissue and are known to be phosphorylated by key
kinases such as GSK-3b and CDK-5. Instead of alleviating
toxicity, S11A demonstrates severe toxicity when expressed

Figure 8. GSK-3b/shaggy is a common suppressor of S11A, Ab42 and TDP-43 toxicity, whereas S2A is resistant to all enhancers. (A) Expression of the
phosphorylation-resistant TauS11A isoform shows strong toxicity, stronger than TauWT expression. However, select suppressors of gl-TauWT were also able
to suppress S11A toxicity. (B) Expression of the phosphorylation-resistant TauS2A isoforms shows no toxicity. All enhancers identified in the screen were
tested against S2A phenotype; five representative enhancers are depicted. No enhancer could induce a rough eye phenotype with TauS2A. Western blots
confirm robust expression of TauS2A protein with all enhancers assayed. (C) NC2a and SdhB, which suppressed both tau and polyglutamine toxicity, were
tested for their effects on Ab42 and TDP-43Q331K toxicity. Neither gene showed any significant effect on the GMR-GAL4::UAS-Ab42 phenotype, nor on
the GMR-GAL4::UAS-hTDP-43Q331K phenotype when compared with controls. However, shaggy/GSK-3b showed suppression of toxicity, as indicated by
increased size and eye volume of the Ab42 eye, and by increased color and pigment retention in the TDP-43 eye. Modifier ksr shows a mild suppression of
Ab42 and TDP-43 toxicity, although not as robust as sgg suppression. Scale bar, 100 mm. (D) Expression of hTDP-43Q331K shows a robust increase in
GSK-3b activity, as indicated by western blot of reduced Ser9 phosphorylation of GSK-3b (P ¼ 0.004).
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in the eye, producing an even smaller and rougher eye than
wild-type tau (42). We chose select suppressors to test for
suppression of this stronger form of tau toxicity (Fig. 8A).
All suppressors tested were able to suppress S11A toxicity.
Importantly, a sgg/GSK-3b LOF allele still showed suppres-
sion of the phosphorylation-resistant S11A construct, indicat-
ing that the role of GSK-3b in tau toxicity extends beyond
direct tau phosphorylation. The increased toxicity of S11A
may be due to increased microtubule binding, as suggested
by Chatterjee et al. (42). Alleles of Dynein light chain 2
(Dlic2) suppressed S11A toxicity, lending further credence
to the hypothesis that microtubule-binding protein dynamics
play a significant role in S11A and wild-type tau toxicity.
Conversely, the TauS2A (or S2A) isoform has only two serines

mutated to alanines (S262, S356), yet shows no toxicity in the
eye. All enhancers identified in the screen were assayed with
the S2A line to determine whether these enhancers could
induce toxicity with S2A. Surprisingly, no enhancer showed
any effect with S2A; robust expression of S2A with the enhan-
cer alleles was confirmed by western blot (Fig. 8B). We con-
clude from these results that these two select serines mutated
to alanines effectively make the tau protein inert in effecting
toxicity, even in conditions promoting degeneration. These
results also further validate the specificity of the enhancers in
acting on the toxic effects of tau and not simply on the effect
of misexpression of human tau protein.

GSK-3b suppresses Ab42 and TDP-43 toxicity, and mutant
TDP-43 induces increased GSK-3b phosphorylation activa-
tion state. Given that NC2a and SdhB suppressed both tau
and polyglutamine toxicity, we assayed the abilities of these
genes to suppress other neurodegenerative models: expression
of the 42 amino acid isoform of b-amyloid (Ab42) and an
amyotrophic lateral sclerosis-causing mutation in TAR DNA
Binding Protein-43, TDP-43Q331K. Similar to tau and to poly-
glutamine proteins, expression of Ab42 and TDP-43Q331K in
the fly eye driven by GMR-GAL4 leads to eye phenotypes.
The Ab42 eye produces a very rough and small eye, with
increased roughness and ommatidial fusion toward the poster-
ior of the eye (Fig. 8C; 89). The TDP-43 phenotype is more
subtle, with no obvious ommatidial fusion or roughness, but
with characteristic discoloration to a darker brown-like
color, and loss of pigmentation, starting in the periphery of
the eye and leading to a mosaic-like pattern with aging
(Fig. 8C). Although NC2a and SdhB suppressed tau and poly-
glutamine toxicity, neither gene had a significant effect on the
Ab42 or the TDP-43Q331K phenotype. We also tested other
identified suppressors of wild-type tau against Ab42 toxicity,
including Dlic2, Elf, Fs(2)Ket, mei-9, ksr, Past1, Nrg, smid,
sgg and Vha14. Of these suppressors, only sgg showed a
robust suppression of the phenotype, with increased size and
volume of the eye, best appreciated with 3D views of the
eye (Fig. 8C). The suppressor ksr also showed moderate sup-
pression of the Ab42 phenotype, but not as robust as seen with
sgg. Given the ability to suppress Ab42 toxicity, we also
assayed sgg and ksr against TDP-43Q331K toxicity and found
strong suppression with sgg. Pigment loss was highly
reduced, and the eye maintained a wild-type-like red color
with sgg. With ksr, there was reduced pigment loss around
the periphery of the eye, but discoloration was still observed,

from which we conclude that ksr partially suppressed the
TDP-43Q331K phenotype.
As the suppressive effects of GSK-3b/sgg on TDP-43

toxicity have not previously been reported, we examined
whether GSK-3b activity had indeed been altered due to
TDP-43Q331K expression. A very strong increase in GSK-3b
activity induced by TDP-43Q331K was observed, as indicated
by reduced levels of pGSK-3b [Ser9] (Fig. 8D). This result
helps to explain that the sgg mutation might suppress toxicity
by reducing levels of Sgg/GSK-3b and that ksr might exert its
suppressive effects by increasing inactivated GSK-3b, as
observed in gl-tau flies (Fig. 7B).

DISCUSSION

Here, two parallel functional genetic screens were performed to
identify modifiers of wild-type human tau-induced neurotox-
icity, using a collection of LOF alleles of essential genes, as
well as a collection of enhancer-promoter elements to drive ex-
pression of endogenous genes (EY screen). These collections
allowed for an unbiased, genome-spanning, blinded genetic
screen. In total, 37 hits were identified from ≏1900 lines
screened (Figs 1 and 3). Additionally, in the process of conduct-
ing this screen, the background genes white, brown and rosy
were also identified as modifiers (61), yielding a total of 40
modifier genes. These modifiers showed a high degree of speci-
ficity for tau-induced toxicity, as they (a) did not have independ-
ent effects on eye morphology, (b) did not have anti-apoptotic
effects (as assessed by their ability to suppress the proapoptotic
effects of hid; see Fig. 4) and (c) 38 of the 40 showed no effect on
polyglutamine toxicity, withNC2a and SdhB being the only two
exceptions (Fig. 9). To better understand the relationship of
these genes to each other and to find highly associated genes
that may also be relevant modifiers, a computational network
was constructed based on annotated gene ontology using the
Endeavor-HighFly software (Fig. 5A, Supplementary Material,
Tables S2 and S3). The genes identified cover a broad range of
functions that are consistent with known aspects of tau function
and regulation but also reveal many novel or underappreciated
associations.

Kinases and dissociation of tau phosphorylation
from tau toxicity

Tau phosphorylation is complex: numerous kinases and phos-
phatases target tau, there are numerous sites of tau phosphoryl-
ation, and cross-regulation is thought to occur between tau
kinases directly or indirectly. Twomodifiers identified in an un-
biased manner from these screens, par-1 and shaggy, are known
tau kinases (24,25,90–92), providing a proof of principle that
our approach can identify bona fide tau modifiers. However,
the opposing effects on tau toxicity exerted by reductions in
par-1, an enhancer, and sgg, a suppressor, emphasize the multi-
faceted relationship between kinase activity and tau toxicity.
This is further demonstrated by the modifiers Mekk1 and
CamKI, both kinases that enhance tau toxicity despite produ-
cing reductions in AT8 levels (phospho-tau at S202/T205).
Moreover, neither sgg nor par-1 loss of one copy produced
any change in AT8 signal (Fig. 6). GSK-3b, the mammalian
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homolog of sgg, is strongly implicated in AD (93), and many
investigators have shown that either inhibition or genetic reduc-
tion of GSK-3b ameliorates tau-related deficits (94–99). The
data presented here agree with these previous reports and repli-
cate a previous report from our laboratory that LOF of one copy
of shaggy suppresses tau toxicity (47). Furthermore, reduction
of shaggy was still able to suppress toxicity of the
phosphorylation-resistant S11A (Fig. 8A), strongly implicating
tau phosphorylation-independent effects of GSK-3b. This
suggests that reduced GSK-3b activity correlates with

reduced degeneration, but through mechanisms other than
direct tau phosphorylation at S202/T205.

The ability of shaggy to also suppress Ab42- and
TDP-43-induced toxicity (Fig. 8C) has further implications
in understanding neurodegenerative proteinopathies. Suppres-
sion of Ab42 toxicity supports previous reports in cell, mouse
and fly models in which Ab42 induces GSK-3b activity and
inhibition or reduction of GSK-3b ameliorates Ab42-induced
degeneration, either independent of or in concert with tau
toxicity (99–101). However, to our knowledge, this report is

Figure 9.Modifiers of tau-induced neurotoxicity do not modify polyglutamine toxicity. The 37 modifiers identified from P lethal and EY screens were crossed to
w1118;GMR-GAL4, UAS-Q108/CyO. Controls: w1118;GMR-GAL4, UAS-Q108/+. All other genotypes have one copy of GMR-GAL4, UAS-Q108. The gene
listed refers to the allele affected by P element or EY element; genes are listed alphabetically. Most tau modifiers showed no effect on polyglutamine toxicity;
only NC2a and SdhB showed suppression.
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the first to demonstrate that mutant TDP-43 expression strong-
ly induces GSK-3b activity (Fig. 8D) and that reduction in
GSK-3b/shaggy can suppress TDP-43 toxicity (Fig. 8C).
TDP-43 can be phosphorylated, which is hypothesized to
play a role in its toxicity (102,103). However, GSK-3b has
not been identified as a kinase of TDP-43, even when
specifically tested for TDP-43 phosphorylation (102); given
our data suggesting a tau phosphorylation-independent role
of GSK-3b in tau toxicity, it is likely that the effects of
GSK-3b in TDP-43 toxicity observed here also are TDP-43
phosphorylation-independent.
GSK-3b has several downstream targets and is a regulator

in many pathways, including Wnt, PI3K and Hedgehog signal-
ing (104–106). GSK-3b phosphorylates the transcription
factor Armadillo/b-catenin, which targets it for degradation
(107); thus a reduction in sgg may suppress tau toxicity by
allowing increased Armadillo to activate transcription of
target genes. Changes in expression of armadillo and Armadil-
lo’s transcriptional binding partner, dTCF, or increasing
Armadillo stability have previously been suggested to
modify tau-induced neurodegeneration (47). Our computation-
al approach found the Insulin/PI3K and Hedgehog/Smooth-
ened pathways to be highly associated with the modifiers
identified in the screen. The PI3K pathway is activated by
insulin, which leads to the inhibition of GSK-3b activity via
phosphorylation of its serine-9 residue by AKT/PKB
(108,109). Dysregulated insulin signaling is strongly impli-
cated in AD (110–112); thus, GSK-3b may regulate tau tox-
icity through its role in metabolic signaling and activation of
the FoxO class of transcription factors (113,114). Although
the Hedgehog/Smoothened pathway has not been previously
implicated in tauopathy, there is much cross-talk with the
Wnt pathway through GSK-3b and casein kinase I (115–
118); thus, it may be expected that Hedgehog is linked compu-
tationally to the tau modifier network.
GSK-3b also may regulate tau toxicity through regulation of

MARK-2/PAR-1. GSK-3b has recently been shown to phos-
phorylate a key regulatory Ser in PAR-1; however, it remains
unclear whether this activates (119) or inactivates PAR-1
(120,121). In the data presented here, reductions in sgg and
par-1 gene dosage have opposite effects on the tau phenotype,
supporting a GSK-3b-mediated inactivation of PAR-1 model,
i.e. reduced sgg leads to increased active par-1. There is add-
itional evidence of shared regulatory pathways between
GSK-3b and PAR-1. LKB-1 phosphorylates and activates
PAR-1 (120,122,123), but also phosphorylates the inactivating
Ser-9 on GSK-3b and may be the elusive GSK-3b kinase acti-
vated by Wnt signaling (124). AKT phosphorylates and
enhances PAR-1 activity (125). Together, these data suggest
a model of GSK-3b and PAR-1 antagonism, in which kinases
that inactivate GSK-3b also enhance PAR-1 activity. Con-
versely, it has been suggested that par-1 may regulate
GSK-3b activity by ‘priming’ the tau protein, whereby tau
phosphorylation by PAR-1 is required before GSK-3b or
Cdk5 can phosphorylate tau (92). However, our laboratory
observed that GSK-3b phosphorylation of tau was independent
of phosphorylation by PAR-1 (42).
Hyperphosphorylated tau dissociates from microtubules

(35–37), leading to the hypothesis that synaptic impairments
and neurodegeneration are due to destabilized microtubules

in axons. PAR-1/MARK-2 (mammalian homolog micro-
tubule-associated protein/microtubule affinity-regulating
kinase 2) has been shown to phosphorylate tau at the S262/
S356 sites, causing a significant reduction in binding affinity
of tau for microtubules (26). This finding would support the
hyperphosphorylation/microtubule instability hypothesis.
However, studies of the role of PAR-1 in tau toxicity have
yielded, in part, contradictory results.
Both Nishimura et al. (92) and Chatterjee et al. (42)

reported that increased par-1 expression increases tau toxicity,
whereas Shulman and Feany (52) found that increased par-1
expression suppressed mutant tau-induced toxicity; the latter
finding agrees with the results from the P lethal screen
reported here. Furthermore, MARK-2 overexpression in
primary neurons reduces tau-induced deficits by alleviating or-
ganelle and vesicle transport blockade (40,126).
It is possible that other phosphorylation sites on tau may be

more relevant to GSK-3b-related toxicity; however, when
either 5 (41) or 11 (42) putative GSK-3b phosphorylation
sites were mutated to alanine, tau toxicity either comparable
to or more robust than the toxicity induced by wild-type tau
was still observed. To further examine potential phospho-site
dependence, we examined phosphorylation at S262/S356 and
T181 (using 12E8 and AT270, respectively; 85,86) for the
EY screen-derived modifiers. There were no significant differ-
ences between suppressors and enhancers at either 12E8 or
AT270 epitopes (Supplementary Material, Fig. S4).
The presence of hyperphosphorylated tau in PHFs under-

scores that phosphorylation is an important regulatory
feature of tau function. Indeed, the S2A mutant tau construct,
with only two residues (S262 and S356) made resistant to
phosphorylation, exhibits no toxicity at all in the eye and fur-
thermore cannot be rendered toxic by genetic enhancers of
wild-type tau toxicity (Fig. 8B). This result underscores the
role phosphorylation can play in tau toxicity. However, the
difference between lack of toxicity with the S2A mutant and
the severe toxicity observed with S11A highlight that it is
the functional consequences of phosphorylation that determine
toxicity and not simply increased levels of phosphorylation.
Furthermore, the lack of correlation we observed between
tau modifiers and their effects on phosphorylation suggest
that this post-translational modification is not the only deter-
minant of tau toxicity. Apart from its effects on microtubule
binding, phosphorylation can alter tau subcellular localization
to dendritic spines (127) or can alter its affinity for the plasma
membrane (128), thereby causing alterations in synaptic func-
tion (127,129). The results presented here support a plethora of
data that show phosphorylation can affect tau toxicity but
demonstrate that alteration of tau phosphorylation state is
not required to modify tau toxicity.

Signal transduction and tau signaling properties

In addition to the PI3K and Wnt signaling pathways discussed
above, our screen implicates other key pathways in tauopathy,
including the ERK/MAPK and p38/MAPK pathways. ERK
can phosphorylate tau (29), and elevated activity of MAPK/
ERK has been reported in several tauopathies and may play
a role in early stages of neurofibriliary tangle (NFT) formation
(82,130,131). However, reduced ERK activity has also been
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shown to enhance tau-induced toxicity (132); thus, the role of
ERK in neurodegeneration remains incompletely understood.
LOF alleles of ksr and Neuroglian (Nrg), both of which
promote ERK signaling (133–136), suppress tau toxicity, sug-
gesting that reducing ERK activity is beneficial.
The effects of ERK activity on toxicity, however, may be

secondary to effects on GSK-3b activity. Two genes—
bancal and ksr—intrigued us as they showed similar reduc-
tions in AT8 levels (Fig. 6) but had opposite effects on tox-
icity. Both are involved in the ERK pathway and, as
expected, both bancal and ksr showed significantly reduced
levels of pERK (Fig. 7B), which correlates well with the
reduced AT8 levels seen with both genes. However, ksr
showed a significantly higher level of inactivated GSK-3b,
whereas bancal trended to lower levels of inactivated
GSK-3b (Fig. 7B). To our knowledge, this is the first report
that kinase suppressor of Ras (ksr), classically identified in
the Ras-Raf-MAPK/ERK pathway, can also influence the
GSK-3b pathway. This difference in GSK-3b activity corre-
lates well with the difference in toxicity modification, with
reduced GSK-3b activity induced by ksr suppressing toxicity
and marginal increased GSK-3b activity induced by bancal
enhancing toxicity. However, when we assayed for GSK-3b
activity among all other modifiers, we could not observe a
consistent pattern between suppressors or enhancers (data
not shown). This may indicate that the role of GSK-3b in
tau toxicity may be more prominent in conditions where
ERK activity is reduced. We conclude that the suppressive
effect of ksr on Ab42 and TDP-43 is due to reduced
GSK-3b activity, however, the effect of ksr may not be as
robust as sgg suppression due to decreased ERK activity
also found with ksr. This also indicates that the modifiers iden-
tified in this screen operate at different levels in tau toxicity,
providing a diverse range of therapeutic targets.
It is interesting to note that both KSR and NRG (137–139)

are involved in scaffolding membrane-associated proteins;
thus their effects on tau toxicity may not be directly related
to their role in ERK signaling. LOF of Nrg causes significant
reduction in microtubules at synaptic terminals (140,141), and
previous efforts have suggested that tau toxicity may be par-
tially due to ‘hyperstabilization’ of microtubules (42); there-
fore, an increase in cytoskeletal instability caused by
reduced Nrg in a tau-induced hyperstabilized environment
may result in alleviation of tau toxicity.
Mekk1 is a MAP3K that leads to the phosphorylation and

activation of p38/MAPK (87), which is activated in response
to cell stress (142–144). Overexpression of Mekk1 was
found to strongly enhance tau toxicity in this screen (Fig. 3)
and increases p38 activity in our model (Fig. 6). Elevated
p38 activity is found in brains from patients with tauopathies
(145–147) and in transgenic AD mice models expressing
human tau (148–150) or mutant APP (151), both of which
correlate with tau aggregation. Furthermore, there is abundant
evidence linking p38 to tau pathology. Phospho-p38 is found
exclusively in cells with NFT or tau aggregates in AD cases
(152,153), co-localizes with tau aggregates in tauopathic
brains (145,154) and co-precipitates with insoluble tau in
both human cases and transgenic AD mouse models
(145,148). Furthermore, tau can be phosphorylated by p38,
which can induce microtubule assembly in vitro (33,39).

We report novel synergy between tau and Mekk1 through
p38 that has potent effects on ERK activity. NeitherMekk1 ex-
pression nor tau expression alone affects ERK activity,
whereas co-expression leads to marked reduction of
phospho-ERK levels (Fig. 6). Phospho-p38 is increased rela-
tive to phospho-ERK in AD, CBD and PSP (155), in AD
mouse models (151) and tauopathy mouse models (156). It
has also been reported that the extracellular domain of
L1-CAM, the mammalian homolog of Neuroglian (Nrg),
reduces p38 activity (157). These data indicate that an antag-
onistic cross-talk takes place between ERK and p38 activities,
with tau playing a modulatory role. The function of the N-
terminus of the tau protein has long been elusive; however,
a recent report observed that the N-terminus can activate
protein phosphatase 1 (PP1) (158–175). In combination with
our data, we hypothesize that phosphorylation of tau by p38
causes a specific conformational change that allows for
increased exposure of the N-terminus of tau, which activates
PP1, thereby reducing phospho-ERK levels. Furthermore, if
tau has the ability to regulate its own kinases, and if this regu-
lation is phosphorylation-dependent and potentially conforma-
tionally dependent, this would broaden our understanding of
the role of tau phosphorylation, which to date has been primar-
ily associated with reduced microtubule-binding affinity. This
may also give insights into functions of specific phosphoryl-
ation sites in regulating kinases, as well as the reasons that
certain sites are more responsible for causing toxicity.

The general transcription factors NC2a/DRAP-1 and
cropped/AP4 were identified in this screen. NC2a binds to
and represses TATA-driven promoters and activates down-
stream promoter element containing promoters (60), both of
which are very common genomic elements. Thus, it is not
trivial to pinpoint the genes regulated by NC2a that modifies
tau toxicity; however, it has been shown that cellular stress
induced by hypoxia upregulates NC2a activity (159). The cel-
lular stress induced by tau overexpression may activate a
similar response. NC2a did not affect apoptosis or general
eye morphology, but did suppress Q108-induced toxicity,
which can also be considered a model of cellular stress. The
transcription factor AP4 is activated by myc and may be acti-
vated by Notch signaling. Several other transcription factors
were network-associated, including b-catenin/armadillo
(arm). Armadillo is cytosolic but translocates to the nucleus
and binds to the co-activator T-cell factor/lymphoid enhancer
factor, inducing transcription of target genes (160–162). Two
of these target genes are c-myc and cyclin D1, both of which
converge to positively regulate the Cyclin E/CdK2 complex
(163), complementing the observation that Cyclin E reduction
enhances tau toxicity.

Autophagy/lysosomal pathways, proteases and chaperones

Autophagy (technically macroautophagy) is a pathway for
molecular degradation in which autophagosomes engulf orga-
nelles or large quantities of protein and later merge with lyso-
somal bodies to form autolysosomes, wherein contents are
degraded due to conditions such as reduced pH and activated
cathepsins. Nearly all neurodegenerative diseases character-
ized by protein aggregates show increased number and abnor-
mal autophagic vacuoles (164–167). There are several points
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at which autophagy may become impaired: autophagosome in-
duction and formation, protein entry into autophagosomes,
trafficking and fusion of autophagosomes to lysosomes and
improper lysosomal activity due to imbalanced pH or non-
functional cathepsins (see 168 for a review). A growing
body of evidence suggests that autophagy is protective in neu-
rodegeneration. Genetic deletions of autophagic genes are suf-
ficient to induce neurodegeneration with ubiquitin-positive
neuronal inclusions (169–171). Transgenic mice expressing
human mutant tau isoforms exhibit an increased number of
autophagic vacuoles and increased number of lysosomes that
show aberrant AD-like morphology (172–179). Tau has
been shown to be degraded by lysosomes and autophagic
vacuoles (173,174), and inhibition of lysosomal activity
leads to increased levels of tau and aggregation of tau frag-
ments (15,175,176). PHFs are seen in certain lysosomal
storage disorders, such as Niemann–Pick disease type C and
Sanfillipo syndrome type B (177–180). Abnormally enlarged
lysosomes associated with LOF mutations of benchwarmer/
spinster (181) or cathepsin D (182) are associated with
enhanced tau toxicity in fly models of tauopathy.
We uncovered an LOF allele of Autophagy-specific gene 6

(Atg6), the Drosophila homolog of mammalian Beclin-1, that
increases tau toxicity, further implicating autophagy as a pro-
tective process. Several other reports have also found Atg6/
Beclin-1 to be protective in degenerative conditions. Pickford
et al. (171) found reduced levels of Beclin-1 in brains of early-
stage AD and demonstrated that Beclin-1-deficient mice have
enhanced APP-mediated neurodegeneration and reduced clear-
ance of APP and APP cleavage products; these deficiencies
were rescued by the expression of Beclin-1. Our screen also
identified Vha14, a subunit of the V1 head group of the vacuolar
ATPase (v-ATPase) complex that is required for lysosomal
acidification (183). Recent reports have demonstrated that dis-
ruption of the v-ATPase complex, through LOF of the V0 trans-
membrane domain, leads to increased number of lysosomes that
are impaired in proteolysis (184) and causes progressive neuro-
degeneration (185) and enhanced sensitivity to Ab or tau (186).
Furthermore, we previously identified mutations in the
pigment-associated genes white, brown and rosy that enhance
tau toxicity (61). Mutations in white and brown lead to abnor-
mally large pigment granules that become abnormal autolyso-
somes (187,188), and we observe a decrease in phospho-S6K
in white homozygotes when compared with white hetereozy-
gotes, suggesting that target of rapamycin-regulated autophagy
is activated dose-dependently by white mutations (189).
Interestingly, we also observe a strong decrease in GSK-3b

activity in white and brown mutants and a strong increased ac-
tivity in a rosy mutant (61). These observations suggest that
dysregulation of autophagy-lysosomal pathway and GSK-3b
activity is related; however, the nature of this relation
appears to be very complex. Our results suggest that disruption
of lysosomal function leads to increased GSK-3b activity.
However, other reports claim GSK-3b activity is upstream
of autophagy activity, and if so, it is unclear whether GSK-
3b inhibits (190,191) or initiates autophagy (192). Although
unclear now, the relationship between GSK-3b and autophagy
may prove to be very relevant in understanding the role of
GSK-3b in tauopathies and other neurodegenerative diseases.
GSK-3b may be a checkpoint enzyme where both apoptotic

and autophagy pathways converge, and either allows for con-
tinued autophagy to maintain cell survival, or initiate apop-
tosis if autophagy has failed to suppress cellular toxicity.
Two modifiers of tau toxicity—Atg6 and Dlic2 (dynein light

chain 2)—were also recently identified as modifiers of lyso-
somal/autophagic vacuole trafficking (193), and dynein
appears to be the motor protein most responsible for this traf-
ficking (194,195). Autophagosomes are trafficked through the
cell along microtubules for fusion with lysosomes (196).
Blocking microtubule trafficking slows down this fusion and
allows for the accumulation of autophagic vacuoles similar
to those seen in AD brain (197). Tau impedes kinesin and
dynein motors on microtubules via competition for micro-
tubule binding (198); thus tau may also block proper traffick-
ing and fusion of autophagosomes to lysosomes, causing
impaired autophagy. Neurensin-1 (or Neuro-p24) is a lyso-
somal membrane protein that is enriched in neurons, specific-
ally in neuritic processes, and has a cytosolic tail that contains
a microtubule-binding domain homologous to binding repeats
found in tau (199). Hence, tau may block neurensin-1 from
microtubule binding, leading to impaired lysosomal trafficking
when tau is over-abundant.
In other animal models of neurodegeneration, co-expression

of chaperone proteins with disease-associated proteins signifi-
cantly reduces degeneration (99,200). The loss of chaperones
may lead to protein misfolding and therefore increased activity
of the ubiquitin-proteasome system (UPS) or autophagy to
degrade the dysfunctional proteins. Hsp70/Hsp90 organizing
protein homolog (Hop) is a chaperone-binding protein that
binds to both Hsp70 and Hsp90, brings them together to
form a large complex and regulates the activity of both
(201–203). In our screen, LOF of Hop enhances tau toxicity,
providing further evidence for the role of chaperones in tauo-
pathy. The E3 ubiquitin ligase CHIP (carboxyl terminus of the
hsp70-interacting protein) ubiquitinates phosphorylated tau
and mediates its degradation (16,17,204). CHIP, Hsp70,
Hsp90 and tau have been identified as binding partners
(205), which strongly positions Hop as a regulator to facilitate
clearance of tau via the UPS. Hop may also facilitate clearance
through autophagy. Autophagy can be induced as a compensa-
tory degradation system when the UPS is impaired (206,207),
and hsp70 chaperones tau to lysosomes via chaperone-
mediated autophagy (208).
The computational network independently identified the

protease PSA as highly associated with tau modifiers. It has
been reported that PSA directly cleaves tau (18), although a
recent report has challenged this finding (209), and the protect-
ive effects of PSA may instead be mediated through activation
of autophagy (210). Whether by cleavage or by autophagy,
genetic manipulation of PSA expression in our model was pre-
viously shown in a candidate genetic approach to strongly
modify tau toxicity (48). The network identification of PSA
helps to validate the applicability of the network and suggests
that calpains A, B and C are highly relevant proteases. Indeed,
calpain A has been shown to cleave tau and is reported to be
responsible for producing a 17 kDa fragment that may be a
highly toxic tau derivative (211,212).
The gene Psn, which encodes the single fly presenilin, was

highly associated with tau modifiers in our computational
network. Mutations in presenilins are the most common

4962 Human Molecular Genetics, 2011, Vol. 20, No. 24

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/h
m

g
/a

rtic
le

/2
0
/2

4
/4

9
4
7
/5

9
0
4
8
0
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



causes of familial AD (213), and the classical role of presenilin
is as a member of the g-secretase complex, which cleaves
amyloid precursor protein along with b-secretase (214) to
make b-amyloid peptides. However, recent reports have identi-
fied novel functions of presenilin, e.g. as a calcium leak channel
(215,216) and a regulator of vacuolar ATPase required for
establishing proper lysosomal pH (184). The presenilin/
g-secretase complex cleaves other type I transmembrane pro-
teins, including Notch (217). The Notch signaling pathway
was computationally associated with the tau modifiers, and
fringe connection (frc), a gene required for Notch glycosylation,
was found as a tau modifier. However, Notch glycosylation is
mediated by two proteins: fringe (fng), an endoplasmic reticu-
lum (ER) glycotransferase that directly attaches sugars onto
Notch, and frc, an ER membrane-bound protein that transports
the sugars used as substrates by fng for glycosylation (218,219).
A second allele of frc (frc0073) confirmed its suppressive
effects on tau toxicity; however, none of the fng alleles tested
(fngrG554, fng13, fngM69, fngL73, fng52) showed any effect on
the tau phenotype, suggesting that altered Notch signaling
does not underlie frc suppression of tau toxicity. Many other
receptors require glycosylation of their extracellular domains
for functional activity; thus frc suppression of tau toxicity
may be mediated through altered glycosylation of such other
transmembrane proteins.

Microtubule, endosomal and lipid trafficking proteins

We demonstrate in vivo differential effects of kinesins (cana
and Klp61F) and dynein (Dlic2) with tau-induced neurotox-
icity. Several investigators have reported that increased tau ex-
pression results in axonal transport defects (94,158,220–222),
specifically kinesin-mediated anterograde transport to synaptic
terminals, whereas dynein-mediated retrograde transport to the
soma is relatively undisturbed. Tau, kinesin and dynein all
compete for the same binding site on b-tubulin (223);
however, tau has a 10-fold increased preference over kinesin
(198) and binds to the kinesin heavy chain (224–226). Recent-
ly, reductions in kinesin in vivo have been reported to exacer-
bate tau-induced axonopathies and cargo accumulation
(227,228), consistent with our findings. As kinesin is critical
for axonal transport, it may be expected that reducing
kinesin would exacerbate tau toxicity. Unexpected is the sup-
pression of tau toxicity due to reduction in dynein. As tau,
dynein and kinesin compete for the same tubulin-binding
sites, and as tau preferentially outcompetes kinesin, a reduc-
tion in dynein may reduce the competition for microtubule
binding and increase kinesin availability for microtubule
binding in a milieu of abundant tau, which could improve
axonal transport and suppress toxicity.
Two modifiers identified from this study, Transport and

Golgi organization 5 (Tango5) and Klp61F, were also recently
identified as key regulators of Golgi apparatus (GA) structure
and organization (229). Dynein has also been demonstrated to
participate in Golgi organization (230); thus Dlic2 may also
function with Klp61F or other kinesins in GA maintenance
and endosomal fusion and fission. Tau mediates interactions
between microtubules and the GA to maintain structure of
the latter (231), and tau may function in regulating transport
of Golgi-derived endosomes and vesicular organelles such as

peroxisomes and lysosomes (232,233). Golgi fragmentation
is observed in several tauopathies (234,235) and in animal
models (233,236,237). This fragmentation appears to be an
early step in neurodegeneration and may function as a
‘trigger’ for apoptosis (237,238). Klp61F LOF causes the
GA to aggregate and swell, whereas Tango5 LOF fuses the
GA with the endoplasmic reticulum (ER; 230). Collapse of
the GA with the ER may induce the ER stress response,
which is associated with AD and other neurodegenerative dis-
eases (239,240). GA fragmentation is also associated with
decreased AKT activity and concomitant increased activity
of GSK-3b, which may itself induce GA fragmentation (241).

Three genes identified as tau modifiers were also recently
found to be regulators of lipid droplet biogenesis and regula-
tion—RpLP0, Dlic2 and His2Av (242,243). In addition, white
and rosy, two modifiers of tau toxicity identified earlier from
this study (61), also are important in lipid trafficking. The
gene rosy regulates lipid droplet coupling to the plasma mem-
brane during lipid secretion (244), and the mammalian
homolog of white—ABCG1—is a major effector in lipid traf-
ficking (245). Additionally, expression of both ABCG1 and
APOE is regulated by PPARg (246), and both may function
as part of a common lipid trafficking pathway (247). Apolipo-
protein E (APOE) is necessary for cholesterol transport and
plasma membrane metabolism in the brain, and the epsilon 4
variant (APOE4) is the most well-established genetic risk
factor for sporadic AD (248,249), although several other
genetic association studies for AD have produced several
other candidate genes (250). Several association studies have
shown a synergistic effect between APOE4 and certain haplo-
types or polymorphisms of MAPT in increasing susceptibility
to AD and frontotemporal dementia (251,252). Transgenic
mice that express full or truncated human APOE4 show
increased tau phosphorylation and PHF-like filaments (253–
255), and APOE knockout mice show tau-dependent neurode-
generation (256). Thus tau and APOE interaction may be neces-
sary for functional cholesterol trafficking; however, the APOE4
variant has a much lower affinity for tau when compared with
other APOE isoforms (257,258), which may impair lipid trans-
port. Dysregulation in the metabolism and trafficking of choles-
terol and other lipids is strongly implicated in several
tauopathies, including AD and Niemann–Pick Type C (NPC;
259), which is caused by mutations in the gene, NPC1. In
NPC, the inability to transport lipids, including cholesterol,
out of late endosomes/lysosomes leads to engorgement of
these organelles (260). Our computational network identified
Npc1, the Drosophila homolog of NPC1, as highly associated
with the modifier network, further validating the network to
identify relevant tauopathic genes. The Patched receptor—part
of the Hedgehog signaling pathway—recruits lipoproteins to
destabilize plasma membrane–protein interactions through a
homologous sterol-sensing domain of NPC-1 (261). Direct
chemical inhibition of cholesterol transport in neurons itself
leads to increased tau phosphorylation (262), providing
further evidence of tau involvement in lipid regulation. It is
also interesting to note that increased activity of AKT also
leads to increased lipid droplet size (263,264).

These observations would suggest dietary cholesterol also
influences tauopathies. Reports in both wild-type and in
human tau transgenic mammals indicate that diets with
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increased cholesterol do indeed increase tau phosphorylation
(265–267). However, these reports do not provide any mechan-
istic insights regarding the means by which increased choles-
terol leads to increased tau phosphorylation; nor do they
report increased neurodegeneration as a result of increased
phosphorylation. It does seem clear that increased cholesterol
intake leads to cognitive impairments (268), of which increased
tau phosphorylation may contribute. From these reports and our
data, it is reasonable to speculate that tau has direct involvement
in lipid trafficking and may even bind directly to cholesterol. In-
direct evidence for this comes from observations that tangle-
bearing neurons contain more free cholesterol than tangle-free
neurons in both AD and NPC brains (269), suggesting that
when tau is sequestered into tangles it is unable to bind its
normal substrates (e.g. cholesterol).

Cell cycle/nuclear/chromatin binding

A surprising number of modifiers identified from the screen
play a role in regulating the cell cycle or chromatin binding,
lending further credence to the mitotic failure/cell-cycle
re-entry hypothesis of neurodegeneration. This hypothesis
posits that cell signaling cues required for synaptic plasticity
in post-mitotic neurons are erroneously transduced to re-induce
proliferation (270,271); this concept is supported by several
studies in models of tauopathy (272–275). The modifier
Cyclin E (CycE) is necessary for Cdk2 activity (276,277), and
Cyclin E and Cdk2 have been reported to interact directly
with tau (278). Cyclin E has been shown previously to
modify toxicity in fly models induced by both mutant (241)
and wild-type tau (41). Cdk5 is a known tau kinase (28,279),
which may indicate a common regulatory mechanism
between Cdk5 and Cyclin E/Cdk2. Phosphorylation of tau
increases during mitosis (280), which may be dependent on
tau phosphorylation by cdc2-like kinase/Cdk5 (281). Klp61F
is phosphorylated and activated by Cdc2 (282), which was re-
cently found to associate with Cyclin E (283). CamKI is also
involved in regulating the cell cycle, particularly the G1
phase (284,285), and in transcriptional regulation (286–288).
Reduction in smallminded (smid) gene dosage showed a

dramatic suppression of tau-induced toxicity. The primary
phenotype of homozygous smid mutants is a reduction in the
number of neurons found in the central nervous system.
Smid is a member of the AAA (ATPases associated with
diverse cellular activities) superfamily of proteins, which all
share a highly conserved nucleotide-binding domain (AAA)
(289). Smid is predicted to be a serine-type endopeptidase, al-
though no substrates have been identified, and total tau protein
levels and AT8 signal show no differences in trans to smid
when compared with control, indicating that tau is not a sub-
strate. Interestingly, similar to CycE, Smid is also required for
induction of S phase in neurons, and it contains four potential
sites for phosphorylation by cyclin-dependent kinases. These
sites also overlap putative bipartite nuclear localization
signals (290), further implicating a role in cell division-related
processes. Although smid has no obvious mammalian
homolog, it contains a duplication of the AAA module that
places it in the same Cdc48p/VCP/p97 (valosin-containing
protein) subfamily of AAA proteins, which also regulate the
cell cycle (291). VCP is a chaperone protein involved

specifically in extracting misfolded proteins from the ER,
but has also been implicated in a wider range of other cellular
functions (292). Mutations in VCP have been linked to several
neurodegenerative diseases, such as inclusion body myopathy
associated with page disease of bone and frontotemporal de-
mentia (IBMPFD), body myopathy associated with Paget
disease of bone and frontotemporal dementia (IBMPFD) that
presents with cytoplasmic PHFs (293), as well as FTLD
(294), and most recently to ALS (295). VCP has also been
found to be significantly down-regulated in AD brains but
co-localizes with NFT-positive neurons (296). VCP also
co-localizes with nuclear inclusions in HD brains and with
Lewy bodies in patient brains of sporadic Parkinson’s
disease and Lewy body dementia (297). LOF alleles of
VCP/ter94 in Drosophila suppress polyglutamine toxicity
(298) and retinal degeneration (299), similar to our finding
of LOF of smid suppressing tau toxicity. Torsin proteins are
also a subfamily of AAA proteins in which disease-causing
mutations have been linked to the movement disorder,
torsion dystonia and also appear to function as a molecular
chaperone (300). The torsin A protein has also been found
to co-localize with a-synuclein-positive inclusions in Parkin-
son’s disease brains (301). Overexpression of torsin A in Cae-
norhabditis elegans can suppress cellular toxicity of
dopaminergic neurons (302) and polyglutamine protein aggre-
gation (303). Despite similarities in being members of the
AAA protein family and both being molecular chaperones,
torsin A and VCP have different phenotypes. Reductions in
VCP expression appear to suppress neurodegenerative
effects, while increased torsin A expression is beneficial, sug-
gesting different functional pathways, of which our data
suggest smid may be more closely related to VCP functions.
Tau has the capacity to bind DNA (281,304) and may protect

it from oxidative damage (305). Tau also has the ability to nick
DNA and affect its helicity (306). Microtubule motor proteins
and tau modifiers cana, Klp61F and Dlic2 all have critical
roles in regulating microtubule dynamics, centrosome and
spindle organization in the nucleus during mitosis (272,307–
309). Several modifiers identified from this screen interact dir-
ectly with chromatin: Histone H2A variant (His2Av), Mi-2,
mei-9, NC2a and the heterogeneous nuclear ribonucleoproteins
bancal/hnRNP K and smooth/hnRNP L. Bancal/hnRNP K can
bind to chromatin and may protect it from damage during
stress (310). Homozygous LOF mutations in bancal also
cause cell proliferation impairments that cause reductions in
cell number and size of appendages (311). It is possible that
tau binding facilitates the interaction between chromatin and
microtubules and may facilitate chromatin remodeling during
transcriptional activation or inhibition. It is interesting to note
that only the shortest tau isoform (0N/3R) is expressed during
fetal development (7), which may prevent tau from disrupting
cell division and transcriptional dynamics in the nucleus neces-
sary for proper development.

RNA binding and ribosomal proteins

Another large category of tau modifiers is comprised of RNA-
binding proteins or other proteins associated with ribosomes
and protein translation. Previous reports have shown that
AT8-immunoreactive tau co-localizes predominantly with free
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and endoplasmic reticulum-bound ribosomes in PSP and CBD
(312), co-localizes with free ribosomes in FTDP-17 mutant tau
in pretangle neurons (313) and with ribosomes in aged sheep
that present with NFT in dendritic branches (314). Our data
further support an interaction between tau and ribosomes. Tau
binds preferentially to rRNA gene regions in which the
nucleolar-organizing region is situated (315), which may in
fact stabilize nucleolar organization (316,317). RNA has long
been recognized as a factor that induces tau aggregation
(318,319), and RNA is sequestered in PHFs in the brain in
many tauopathies, including AD, Pick’s disease, CBD and
PSP (320,321), as well as PHFs in muscle (322). Interestingly,
this RNA sequestration is limited to PHF and senile plaques,
and not to Lewy bodies of a-synuclein aggregates nor Hirano
bodies containing actin (323), suggesting that RNA sequestra-
tion is a not a common feature of all amyloidogenic proteins.
In nearly all RNA-associated modifiers identified in this
screen, an LOF led to increased toxicity; this may be due to
a reduced number of proteins able to sequester RNA away
from the tau protein.
Several functions have been attributed to RpLP0 and

bancal/hnRNP K. RpLP0 regulates the translocation of a
nuclear laminar protein from the cytosol to the nucleus
(323), and RpLP0 associates tightly with the nuclear matrix
and may play a role in DNA repair (325). RpLP0 was also
identified as a regulator of phagocytosis (324), and both
RpLP0 and Dlic2—two modifiers from this screen—were
also found to regulate lipid droplet formation and distribution
(216). Interestingly, RpLP0 and Dlic2 regulate lipid-droplet
formation in opposing directions, similar to their effects on
tau toxicity. RpLP0 also regulates white expression (325),
another tau modifier that may also play a role in lipid traffick-
ing through interaction with APOE, further demonstrating
genetic connectivity between tau modifiers.
Bancal/hnRNP K is involved in nearly all aspects of protein

synthesis, including transcription, translation and mRNA sta-
bility and splicing, and it can shuttle between the cytosol to
nucleus (see 326 for a review). Bancal is also a component
of the nuclear matrix (327) and can bind to promoter regions
to actively promote or repress transcription (326). hnRNP K
is highly expressed in the mammalian nervous system during
development and remains high in the peripheral nervous
system in adults, but becomes restricted to the hippocampus
and retina in the adult central nervous system (328). HnRNP
K binds mRNAs of neurofilaments during development
(329). Bancal/hnRNP K is also regulated by EGF signaling
through ERK phosphorylation (330,331). It also interacts
with Fyn kinase, another known tau kinase implicated in AD
and FTLD (332–337), and is phosphorylated through the
insulin-signaling pathway (338). This appears to be a recipro-
cal regulation, as knockdown of hnRNP K leads to decreased
activity of ERK and ERK kinase (339), perhaps accounting for
the decrease in AT8 levels due to a reduction in bancal in
trans with gl-tau (Fig. 5).
Intriguingly, an hnRNP K homology domain is found in

FMRP (Fragile X mental retardation protein), which is
involved in trafficking mRNA from the nucleus to dendrites
and axons and regulates their translation (340,341), suggesting
similar functions between hnRNP K and FMRP. Fmr1, the
Drosophila homolog of FMRP, and TBPH, the fly homology

of TDP-43, were identified through the computational
network as highly associated and are both RNA-binding pro-
teins causing neurological diseases (342–346). Ribonucleo-
proteins are also responsible for the trafficking of
non-translated RNA species, which are packaged into either
processing bodies (P bodies) or stress granules (347). Stress
granules are complexes of mRNAs stalled in translation with
ribonucleoproteins, and as the name suggests, are induced by
several kinds of cellular stress or when translation is inhibited.
FMRP, TDP-43 and hnRNP K have all been shown to interact
with stress granules (348–351). As FMRP1-bound RNA gran-
ules require kinesins and microtubules for trafficking
(352,353), it is reasonable to predict that hnRNP K and
TDP-43 do, as well. Given the large number of RNA
binding and ribosomal modifiers of tau toxicity found in this
screen, in conjunction with a known role for tau in micro-
tubule binding, collectively these data suggest that tau may
have a significant role in RNA trafficking that has not previ-
ously been documented.

Relation to other modifier screens of tau-induced
neurodegeneration

Here we report novel modifiers distinct from those identified
in two recent reports that also screened for genetic modifiers
of tau-induced neurodegeneration in Drosophila (52,98). The
differences in modifiers obtained may be attributed to
several differences in study design, namely (i) the use of
mutant tau (tauV337M), (ii) tau overexpression driven by
GAL4/UAS constructs and (iii) different collections of P
element insertion lines used for screening, i.e. P{EP} and
P{Mae-UAS.6.11}. Our modifiers were also largely distinct
from those identified in a C. elegans model of tauopathy
(97). Despite these differences, common results were found
with kinases, specifically GSK-3b and PAR-1/MARK-2 or
MARKK, and with chaperone proteins and cytoskeletal pro-
teins, demonstrating the significance of these proteins in tau
pathology. Our screen was designed to identify only dominant
modifiers. However, the haploinsufficient basis of modifiers
identified suggests that relatively small changes in key pro-
teins or other gene products can strongly modify tau toxicity,
which is encouraging for the development of therapeutic
treatments and may assist in identifying biomarkers that are
predictive of neurodegenerative tauopathies.

CONCLUSION

The experiments described here were intended to identify
novel modifiers of tau-induced neurodegeneration in order to
better understand the function of tau and the processes
involved in tau-associated pathogenesis in neurodegenerative
tauopathies. In sum, 40 genetic modifiers were identified as
strong modifiers of tau toxicity (Table 1); of these, sgg/
GSK-3b and par-1/MARK-2 are known tau kinases, validat-
ing the design of the screen to identify modifiers of tau or
tau toxicity. The functions of the remaining modifiers, in com-
bination with application of a novel computational network
approach to extrapolate other highly associated genes, cover
a broad range of functional categories. Some of these
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categories, such as kinases or phosphatases and motor and
cytoskeletal proteins, have been associated with tau previous-
ly, whereas other categories emphasize novel or poorly char-
acterized aspects of tau function, including lipid storage and
trafficking, Golgi or endosomal, several RNA-related categor-
ies, including RNA splicing, metabolism, trafficking or protein
translation, and interactions with chromatin and the nucleolus.
Categories such as cell-cycle/nuclear, PI3K signaling, and
proteases and chaperones contribute to a growing body of
evidence that associates these processes with tau toxicity or
neurodegeneration. Tau phosphorylation at S202/T205 (AT8
epitope), S262/S356 (12E8 epitope) or T181 (AT270
epitope) did not correlate with toxicity, arguing against tau
phosphorylation as an indispensable factor in tauopathy. Add-
itionally, suppressors of wild-type tau are equally able to sup-
press the phosphorylation-resistant but more toxic S11A tau
isoform, from which we conclude that mechanisms independ-
ent of tau phosphorylation can alter toxicity. However, the
non-toxic S2A tau isoform could not be induced to show tox-
icity with genetic enhancers, indicating that the S262 and S356
sites are particularly important in producing toxicity. We
observe that tau functions synergistically with Mekk1 and
p38 to down-regulate ERK activity, with a corresponding de-
crease in AT8-positive phosphorylation. This observation sug-
gests that tau can be induced to regulate its kinases, providing
evidence for signaling properties of tau. We observe that
GSK-3b activity highly correlates with toxicity, but its
effects are most pronounced under conditions of low ERK ac-
tivity. In addition, we demonstrate that ksr can signal through
the insulin/GSK-3b pathway as well as through the MAPK/
ERK pathway, and may function as a link between both
signal transduction systems. Finally, we report that mutant
TDP-43Q331K strongly increases GSK-3b activity and that re-
ducing GSK-3b (sgg) expression strongly suppresses
TDP-43 and Ab42 toxicity. As alternatives to therapeutics
that mitigate tau phosphorylation are developed, such as
improved microtubule stability (354,355), the data presented
here provide further evidence that such approaches may be
productive and identify a novel set of targets for such alterna-
tives.

MATERIALS AND METHODS

Stocks and genetics

A direct fusion construct of the human full-length (2N/4R) tau
cDNA to the eye-specific glass promoter induces a rough eye
phenotype (gl-tau line), as previously described in Jackson
et al. (47). In the course of performing the P lethal screen, it
was discovered that the common background mutation white
(w) was itself a modifier of tau-induced neurotoxicity and
that the w+ marker gene in the P elements used in the P
lethal and EY collections modified the tau phenotype in a
w+ dose-dependent manner (61). The gl-tau transgene has
one w+ marker gene in a w1118 homozygous background. To
match w+ copy number between control and experimental
crosses, the F1 gl-tau control was on a white heterozygous
background: w1118/+;gl-tau/+. For the EY screen, a
GMR-GAL4 transgene on the X chromosome (356) was
placed in trans to gl-tau (GMR-GAL4;gl-tau/CyO) to

provide a source of GAL4 to drive expression of the gene
downstream of the EY insertion. The F1 control genotype
for the EY screen was GMR-GAL4/+;gl-tau/+. The EY
stocks are in a y1w67c23 background, and GMR-GAL4/
y1w67c23;gl-tau/+ has a suppressed phenotype versus
GMR-GAL4/+;gl-tau/+ (not shown); thus, a candidate
modifier was identified as a suppressor if it suppressed when
compared with the GMR-GAL4/y1w67c23;gl-tau/+ control.
Enhancers were scored when compared with the
GMR-GAL4/+;gl-tau/+ control, ensuring that only the most
robust and reliable modifiers of toxicity were included. The
LOF screen utilized the ‘P lethal’ library of ≏1000 genes
and is comprised of the LacW and PZ collections, created as
part of the Berkeley Drosophila Gene Disruption Project
(49). Each stock contains one P element that disrupts the
expression of a gene and causes recessive lethality. These
stocks are only viable as heterozygotes and are maintained
over a balancer. For P elements on the X chromosome,
virgin females were collected from each stock and crossed
to gl-tau males. The EY screen utilized ‘empty UAS’ insertion
lines from the EY collection (50). The P lethal, EY and the
GMR-hid stocks were obtained from the Bloomington Dros-
ophila Stock Center at Indiana University. In most cases, the
P element database reported a single gene affected; however,
three of the hits had two or more affected genes listed: Bloo-
mington stock numbers 10448 (loci U2af38 and Hop), 10151
(loci Tango5, G0145a and G0145c) and 10691 (loci bancal
and rig). Independent alleles for U2af38, Hop, Tango5,
bancal and rig were screened—U2af3806751, Hopk00616,
Tango5BG02353, bancalkG02524 and rig05056. Hop but not
U2af38 enhanced toxicity, and Tango5BG02353 produced an
enhanced rough eye phenotype similar to that observed with
stock No. 10151; thus, Tango5 was the causative gene.
Allele rig05056 had little effect on the tau phenotype,
whereas bancalkG02524 and blG13574 showed enhanced toxicity
often with necrotic plaques; thus, bancal was considered to be
the causative gene. Stock number 19628 of the EY collection
lists two affected genes: milton and CG31630; EY stock
number 22422, which only affects milton, was screened and
had no effect on the tau phenotype, thus CG31630 was consid-
ered as the modifying gene. The Q108 stock was provided by
Thompson (University of California, Irvine, CA, USA) (54)
and was placed in cis to GMR-GAL4 (357) using mitotic re-
combination. Crosses for the LOF screen were performed at
22–238C, whereas crosses for the overexpression screen
were performed at 258C in order to maximize expression
under control of the GMR-GAL4 transgene. All crosses
were maintained on standard cornmeal/molasses media
(Applied Scientific Jazzmix, Fisher Scientific, Pittsburgh,
PA, USA).
The UAS-S11A and UAS-S2A lines developed in our la-

boratory (42) were crossed to GMR-GAL4 on the X to estab-
lish the stable GMR-GAL4;UAS-S11A or UAS-S2A lines.
The S11A line has the following sites mutated from serine/
threonine to alanine: S46, S50, S199, S202, S205, S212,
T214, T231, S235, S396 and S404. The S2A has the following
sites mutated from serines to alanines: S262 and S356. Female
virgins of each line were crossed to candidate modifier males
and reared and eclosed at 258C. Ab42 toxicity was assayed
using the w1118;GMR-GAL4, UAS-Ab42/CyO line generously
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provided by Diego Rincon-Limas (University of Florida) (89).
Female virgins were collected and crossed to candidate sup-
pressor males and kept at 298C through eclosion. Suppression
was scored 1–3 days after eclosion. For TDP-43Q331K toxicity,
the w1118;Sp/CyO;UAS-TDP-43Q331K donated by Fen-Biao
Gao (University of Massachusetts, Worcester, MA, USA)
was used (358). The markers on the second chromosome
were removed and the transgene was placed in trans to
GMR-GAL4 on the X to establish the stable line
GMR-GAL4;+;UAS-TDP-43Q331K. Female virgins from this
line were crossed to candidate suppressor males and reared
at 258C. After eclosion, the F1 generation was transferred to
298C and kept there for 2 weeks before scoring for suppres-
sion. All crosses were maintained on standard cornmeal/mo-
lasses media (Applied Scientific Jazzmix, Fisher Scientific,
Pittsburgh, PA, USA).

Microscopy and volume analysis

Scanning electron microscope (SEM) images were taken using
a Hitachi S-2460N SEM. Flies were dehydrated in hexam-
ethyldisilazane prior to mounting for SEM as described previ-
ously (47). All light photomicrographs of the EY modifiers
were taken using a Nikon AZ100M light microscope and
Nikon DS-Fi1 digital camera. Z-stack planar images were
compiled and compressed using an EDF algorithm to
compile a single image from all focal planes (Nikon
NIS-Elements AR 3.0 Software). All photomicrographs of
the P lethal modifiers were taken with a digital camera
equipped Zeiss dissecting microscope without EDF algorithm
capability. Volume analysis was performed on Z-stack images
of all genotypes using the Nikon NIS_Elements AR 3.0 Soft-
ware. Scatter plots were constructed using SigmaPlot 9.0
(Systat, San Jose, CA, USA) and modified with Photoshop
CS4 (Adobe, San Jose, CA, USA).

Immunoblotting

Protein from fly heads was collected by homogenizing in tris-
buffered saline (TBS) buffer with protease cocktail inhibitors
(Roche Diagnostics, Manheim, Germany). Pooled samples
were run on either 10% or 10–20% sodium dodecyl
sulfate—polyacrylamide gel electrophoresis gels (Bio-Rad,
San Diego, CA, USA) and transferred to nitrocellulose mem-
branes. Total Tau protein was detected with the mouse mono-
clonal T46 antibody (1:3000 dilution; Invitrogen, Carlsbad,
CA, USA) or rabbit monoclonal E178 (1:2000 dilution; Epi-
tomics, Burlingame, CA, USA). Phosphorylated tau at S202/
T205 was detected with the mouse monoclonal AT8 antibody
(1:1000 dilution; Pierce/Thermo Scientific, Rockford, IL,
USA). Tubulin was detected with b-tubulin antibody from
either Accurate Chemical (Westbury, NY, USA) or from the
Developmental Studies Hybridoma Bank (DSHB, E7 clone,
University of Iowa), whereas actin was detected by
anti-b-actin mouse monoclonal (Ambion/Applied Biosystem,
Austin, TX, USA). Blots for P lethal hits were visualized
with horseradish peroxidase-conjugated secondaries and
enhanced chemiluminescence; total tau levels were measured
using blots separate from those used for AT8. Blots for EY
hits were visualized by two-color western with fluorescent

secondaries and imaged with the Odyssey Near-IR Scanner
(Li-Cor), which allowed visualization and measurement of
total tau (E178, rabbit IgG) and phospho-tau (AT8, 12E8, or
AT270, all mouse IgG) on the same blot. The following anti-
bodies were also used: phospho-GSK3b-Ser9 (1:500)
(GeneTex, Irvine, CA, USA), phospho-p38 (1:500) (Cell Sig-
naling, Danvers, MA, USA) and phospho-ERK (1:500) (Invi-
trogen/Biosource, Carlsbad, CA, USA). Optical densities were
measured with ImageJ (http://rsb.info.nih.gov/ij). Statistical
analysis was performed with SigmaStat 11.0 and graphical
representations were performed with SigmaPlot 9.0 (Systat,
San Jose, CA, USA) and Excel 12.1.5 (Microsoft, Seattle,
WA, USA). Error bars represent +SEM (n ¼ 3–5).
One-way analyses of variance (ANOVAs) with Bonferroni
analysis compared with control were analyzed for measure-
ments of total tau, AT8, 12E8 and AT270 levels. One-way
ANOVAs were used to analyze measurements of phosphory-
lated p38, ERK and GSK-3b, if three genotypes were com-
pared; Student’s t-test was used when two genotypes were
compared.

Computational network analysis

Of the 40 modifier genes or ‘hits’ identified, 35 were annotated
and individually run through the Endeavor-HighFly software
analysis (62), which assigns P-values to all other annotated
genes in the Drosophila genome (≏10 000 genes) based on
ontology, creating individual network profiles for all the 35
hits. To determine themost significant predicted genetic interac-
tions with tau, all genes with P, 0.05 from all 35 networks
were compiled together. If a genemet one of the following para-
meters, it was considered to be highly associated with the tau
modifier network and is included in the network diagram:
(a) P-value of ,0.001 in at least two different ‘hit’ networks;
(b) P-value of ,0.01 in at least four different hit networks; or
(c) P-value of ,0.05 in at least six different hit networks. The
network diagram was created using Cytoscape (v. 2.7; 359)
and Adobe Photoshop CS4. Only interactions of P, 0.001
are depicted using blue lines. Human orthologues were identi-
fied using the PANTHER classification system10 (www.pa
ntherdb.org) (360).

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG online.
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Avila, J. (2001) FTDP-17 mutations in tau transgenic mice provoke
lysosomal abnormalities and Tau filaments in forebrain. Mol. Cell
Neurosci., 18, 702–714.

173. Murakami, N., Oyama, F., Gu, Y., McLennan, I.S., Nonaka, I. and Ihara,
Y. (1998) Accumulation of tau in autophagic vacuoles in chloroquine
myopathy. J. Neuropathol. Exp. Neurol., 57, 664–673.

174. Oyama, F., Murakami, N. and Ihara, Y. (1998) Chloroquine myopathy
suggests that tau is degraded in lysosomes: implication for the formation
of paired helical filaments in Alzheimer’s disease. Neurosci. Res.,
31, 1–8.

175. Bendiske, J. and Bahr, B.A. (2003) Lysosomal activation is a
compensatory response against protein accumulation and associated
synaptopathogenesis—an approach for slowing Alzheimer disease?
J. Neuropathol. Exp. Neurol., 62, 451–463.

176. Bi, X., Zhou, J. and Lynch, G. (1999) Lysosomal protease inhibitors
induce meganeurites and tangle-like structures in entorhinohippocampal
regions vulnerable to Alzheimer’s disease. Exp. Neurol., 158, 312–327.

177. Blanchette-Mackie, E.J., Dwyer, N.K., Amende, L.M., Kruth, H.S.,
Butler, J.D., Sokol, J., Comly, M.E., Vanier, M.T., August, J.T. and
Brady, R.O. (1988) Type-C Niemann–Pick disease: low-density
lipoprotein uptake is associated with premature cholesterol accumulation
in the Golgi complex and excessive cholesterol storage in lysosomes.
Proc. Natl Acad. Sci. USA, 85, 8022–8026.

178. Sokol, J., Blanchette-Mackie, J., Kruth, H.S., Dwyer, N.K., Amende,
L.M., Butler, J.D., Robinson, E., Patel, S., Brady, R.O. and Comly, M.E.
(1988) Type C Niemann–Pick disease: lysosomal accumulation and
defective intracellular mobilization of low-density lipoprotein
cholesterol. J. Biol. Chem., 263, 3411–3417.

179. Suzuki, K., Parker, C.C., Pentchev, P.G., Katz, D., Ghetti, B.,
D’Agostino, A.N. and Carstea, E.D. (1995) Neurofibrillary tangles in
Niemann–Pick disease type C. Acta Neuropathol., 89, 227–238.

180. Ohmi, K., Kudo, L.C., Ryazantsev, S., Zhao, H.-Z., Karsten, S.L. and
Neufeld, E.F. (2009) Sanfilippo syndrome type B, a lysosomal storage
disease, is also a tauopathy. Proc. Natl Acad. Sci. USA, 106, 8332–8337.

181. Dermaut, B., Norga, K.K., Kania, A., Verstreken, P., Pan, H., Zhou, Y.,
Callaerts, P. and Bellen, H.J. (2005) Aberrant lysosomal carbohydrate
storage accompanies endocytic defects and neurodegeneration in
Drosophila benchwarmer. J. Cell Biol., 170, 127–139.

182. Khurana, V., Elson-Schwab, I., Fulga, T.A., Sharp, K.A., Loewen, C.A.,
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Halliday, G. and Götz, J. (2006) b-Amyloid treatment of two
complementary P301L tau-expressing Alzheimer’s disease models
reveals similar deregulated cellular processes. Proteomics,
6, 6566–6577.

297. Kimura, Y. and Kakizuka, A. (2003) Polyglutamine diseases and
molecular chaperones. IUBMB Life, 55, 337–345.

298. Higashiyama, H., Hirose, F., Yamaguchi, M., Inoue, Y.H., Fujikake, N.,
Matsukage, A. and Kakizuka, A. (2002) Identification of ter94,
Drosophila VCP, as a modulator of polyglutamine-induced
neurodegeneration. Cell Death Differ., 9, 264–273.

299. Griciuc, A., Aron, L., Roux, M.J., Klein, R., Giangrande, A. and Ueffing,
M. (2010) Inactivation of VCP/ter94 suppresses retinal pathology caused
by misfolded rhodopsin in Drosophila. PLoS Genet., 6, e1001075.

300. Granata, A., Schiavo, G. and Warner, T.T. (2009) TorsinA and dystonia:
from nuclear envelope to synapse. J. Neurochem., 109, 1596–1609.

301. Sharma, N., Hewett, J., Ozelius, L.J., Ramesh, V., McLean, P.J.,
Breakefield, X.O. and Hyman, B.T. (2001) A close association of torsinA
and alpha-synuclein in Lewy bodies: a fluorescence resonance energy
transfer study. Am. J. Pathol., 159, 339–344.

302. Cao, S., Gelwix, C.C., Caldwell, K.A. and Caldwell, G.A. (2005)
Torsin-mediated protection from cellular stress in the dopaminergic
neurons of Caenorhabditis elegans. J. Neurosci., 25, 3801–3812.

303. Caldwell, G.A., Cao, S., Sexton, E.G., Gelwix, C.C., Bevel, J.P. and
Caldwell, K.A. (2003) Suppression of polyglutamine-induced protein
aggregation in Caenorhabditis elegans by torsin proteins. Hum. Mol.
Genet., 12, 307–319.

304. Krylova, S.M., Musheev, M., Nutiu, R., Li, Y., Lee, G. and Krylov, S.N.
(2005) Tau protein binds single-stranded DNA sequence specifically—
the proof obtained in vitro with non-equilibrium capillary electrophoresis
of equilibrium mixtures. FEBS Lett., 579, 1371–1375.

305. Wei, Y., Qu, M.-H., Wang, X.-S., Chen, L., Wang, D.-L., Liu, Y., Hua,
Q. and He, R.-Q. (2008) Binding to the minor groove of the
double-strand, tau protein prevents DNA from damage by peroxidation.
PloS ONE, 3, e2600.

306. Padmaraju, V., Indi, S.S. and Rao, K.S.J. (2010) New evidences on
Tau-DNA interactions and relevance to neurodegeneration. Neurochem.
Int., 57, 51–57.

307. Heck, M.M., Pereira, A., Pesavento, P., Yannoni, Y., Spradling, A.C. and
Goldstein, L.S. (1993) The kinesin-like protein KLP61F is essential for
mitosis in Drosophila. J. Cell Biol., 123, 665–679.

308. Goshima, G., Wollman, R., Goodwin, S.S., Zhang, N., Scholey, J.M.,
Vale, R.D. and Stuurman, N. (2007) Genes required for mitotic spindle
assembly in Drosophila S2 cells. Science, 316, 417–421.

309. van den Wildenberg, S.M.J.L., Tao, L., Kapitein, L.C., Schmidt, C.F.,
Scholey, J.M. and Peterman, E.J.G. (2008) The homotetrameric
kinesin-5 KLP61F preferentially crosslinks microtubules into antiparallel
orientations. Curr. Biol., 18, 1860–1864.

310. Prasanth, K.V., Rajendra, T.K., Lal, A.K. and Lakhotia, S.C. (2000)
Omega speckles—a novel class of nuclear speckles containing hnRNPs
associated with noncoding hsr-omega RNA in Drosophila. J. Cell Sci.,
113, 3485–3497.

311. Charroux, B., Angelats, C., Fasano, L., Kerridge, S. and Vola, C. (1999)
The levels of the bancal product, a Drosophila homologue of vertebrate
hnRNP K protein, affect cell proliferation and apoptosis in imaginal disc
cells. Mol. Cell Biol., 19, 7846–7856.

312. Piao, Y.-S., Hayashi, S., Wakabayashi, K., Kakita, A., Aida, I., Yamada,
M. and Takahashi, H. (2002) Cerebellar cortical tau pathology in
progressive supranuclear palsy and corticobasal degeneration. Acta
Neuropathol., 103, 469–474.

313. Iseki, E., Matsumura, T., Marui, W., Hino, H., Odawara, T., Sugiyama,
N., Suzuki, K., Sawada, H., Arai, T. and Kosaka, K. (2001) Familial
frontotemporal dementia and parkinsonism with a novel N296H
mutation in exon 10 of the tau gene and a widespread tau accumulation
in the glial cells. Acta Neuropathol., 102, 285–292.

Human Molecular Genetics, 2011, Vol. 20, No. 24 4975Human Molecular Genetics, 2011, Vol. 20, No. 24 4975

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/h
m

g
/a

rtic
le

/2
0
/2

4
/4

9
4
7
/5

9
0
4
8
0
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



314. Nelson, P.T. and Saper, C.B. (1995) Ultrastructure of neurofibrillary
tangles in the cerebral cortex of sheep. Neurobiol. Aging, 16, 315–323.
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