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Abstract

Mesenchymal stem cells (MSC) are present in all organs and tissues. Several studies have shown the therapeutic potential 

effect of MSC or their derived products. However, the functional heterogeneity of MSC constitutes an important barrier for 

transferring these capabilities to the clinic. MSC heterogeneity depends on their origin (biological niche) or the conditions of 

potential donors (age, diseases or unknown factors). It is accepted that many culture conditions of the artificial niche to which 

they are subjected, such as  O2 tension, substrate and extracellular matrix cues, inflammatory stimuli or genetic manipulations 

can influence their resulting phenotype. Therefore, to attain a more personalized and precise medicine, a correct selection of 

MSC is mandatory, based on their functional potential, as well as the need to integrate all the existing information to achieve 

an optimal improvement of MSC features in the artificial niche.
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Abbreviations

2D  Two-dimensional

3D  Three-dimensional

AD  Adipose-derived

AD-MSC  Adipose-derived mesenchymal stem cell

Ad-FKN  Adenoviral vector fractalkine gene

BM  Bone marrow

BM-MSC  Bone marrow-derived mesenchymal stem 

cell

bBM-MSC  Bovine bone marrow-derived mesenchymal 

stem cell

BNDF  Brain-derived neurotrophic factor

CD  Cluster of differentiation

cGMP  Current good manufacturing practice

CIN  Cervical intraepithelial neoplasia

CM  Conditioned medium

CTL  Cytotoxic T lymphocyte

CXCR  C-X-C chemokine receptor

DAMPs  Damage-associated molecular patterns

DNA  Deoxyribonucleic acid

DPSC  Dental pulp stem cell

ECM  Extracellular matrix

EGF  Epidermal growth factor

EVs  Extracellular vesicles

EMA  European Medicines Agency

FDA  Food and Drug Administration

FGF  Fibroblast growth factor

GVHD  Graft-versus-host disease

hAFMSC  Human amniotic fluid mesenchymal stem 

cell

HGF  Hepatocyte growth factor

hMESC  Human endometrium-derived mesenchymal 

stem cell

hUCESC  Human uterine cervical stem cells

IDO  Indoleamin2,3-dioxygenase

IFNα  Interferon alpha

IFNβ  Interferon beta

IFNγ  Interferon gamma

IGF  Insulin-like growth factor
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IL  Interleukin

iNOS  Inducible nitric oxide synthase

KLF4  Kruppel-like Factor 4

LAP  Liver-enriched transcriptional activator 

protein

LIF  Leukemia inhibitory factor

LPS  Lipopolysaccharide

MAPK  Mitogen-activated protein kinase

MHC  Major histocompatibility complex

MMP  Matrix metalloproteinase

MSC  Mesenchymal stem cell

NK  Natural killer cell

NO  Nitric oxide

PAMPs  Pathogen-associated molecular patterns

PBMCs  Peripheral blood mononuclear cells

PDGF  Platelet-derived growth factor

PDGFR  Platelet-derived growth factor receptor

PGE2  Prostaglandin E2

PGN  Peptidoglycan

PIGF  Placenta growth factor

PDLSC  Periodontal ligament stem cell

O2  Oxygen

RNA  Ribonucleic acid

SCAP  Stem cells from the apical papilla

SHED  Stem cell from human exfoliated deciduous 

teeth

SWAT   Subcutaneous white adipose tissue

TGFα  Transforming growth factor alpha

TGFβ  Transforming growth factor beta

TIMP  Tissular inhibitor of metalloproteases

TLR  Toll-like receptor

TNF α  Tumor necrosis factor alpha

TRAIL  Tumor necrosis-factor-related apoptosis-

inducing ligand

UC  Umbilical cord

UC-MSC  Umbilical cord-derived mesenchymal stem 

cell

VEGF  Vascular endothelial growth factor

VLC  Vascular leukocytes

VWAT   Visceral white adipose tissue

Introduction

Among the various stem cell types, i.e., hematopoietic, 

embryonic, mesenchymal, and induced pluripotent, mesen-

chymal stem cells (MSC) are awakening an extraordinary 

interest.

The number of studies devoted to them has been increasing 

exponentially during the last decade [1]. MSC are implicated 

in basic functions, such as cell differentiation and prolifera-

tion, angiogenesis/vasculogenesis, regulation of the inflam-

matory process or control of oxidative stress [2]. Numerous 

pre-clinical studies, testing MSC or their secretome-derived 

products in animal models, have shown to have therapeutic 

effects on key pathological processes that are associated with 

alterations of the internal homeostasis [3–7]. In addition, they 

also exert antimicrobial effects, indicating that MSC possess 

an immune function independent of the host’s immune sys-

tem [8]. Likewise, mostly human clinical trials in phase I and 

phase II have confirmed a positive safety profile in a variety 

of indications including immunological, bone, heart, or neu-

rodegenerative disorders [9] and we have even results from 

phase III clinical trials in the case of graft-versus-host disease 

(GVHD), Crohn’s disease, myocardial infarction and liver cir-

rhosis [1]. A remarkable fact in this context is that no serious 

adverse effects have been reported following MSC transplanta-

tion, whereas the contrary has been the case after allogeneic 

hematopoietic stem cell transplantation, i.e., allergic reactions 

to cyclophosphamide, fever, infection, nausea, vomiting, eleva-

tion of liver enzymes, macrophage activation syndrome and 

GVHD [10].

2018 was a milestone in the field of MSC therapy with the 

first European Medical Agency (EMA) marketing approval 

of an MSC product. The TiGenix-sponsored phase III clinical 

trial NCT01541579, reported statistically significant improve-

ment of intra-lesional administration of allogeneic expanded 

adipose (AD) MSC (darvadstrocel, formerly Cx601) in the 

treatment of complex perianal fistulas in Crohn’s disease 

patients [11]. In September 2018, Mesoblast announced the 

positive results of its phase III trial (NCT02336230) with this 

treatment with allogeneic bone marrow (BM) MSC (remes-

temcel-L) in children with steroid-refractory acute GVHD, 

which resulted in the preparation of a licence application for 

use to the Food and Drug Administration (FDA) in the United 

States.

For all these reasons, 2019 could be the start of the thera-

peutic era of MSC [12], such as for example therapies based on 

MSC for acute respiratory distress syndrome (ARDS) associ-

ated to COVID-19 [13]. Nevertheless, many questions should 

be assessed with regard to this novel technology, including 

donor selection, cell harvesting, expansion and storage. The 

identification of predictive efficacy stratification biomarkers, 

the appropriate posology and route of administration for each 

indication still need to be determined. To consider all these 

technological aspects, we have to assume the concept of MSC 

heterogeneity.

This review addresses some aspects of MSC heterogene-

ity, as well in their natural niches as under culture conditions, 

one key aspect to keep in mind for future clinical applications 

(Fig. 1).
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MSC nomenclatures and de�nition

MSC were first described in the 1950s by the Russian hae-

matologist Friedenstein, as a rare population in the bone 

marrow [14]. Although in small amounts, MSC have been 

isolated from numerous organs and tissues [15]. Adipose-

derived MSC (AD-MSC) have been the most widely used 

ones in regenerative medicine, perhaps because of the ease 

in obtaining them [16, 17]. Compared with the relatively 

low yield in BM-MSC (from 0.001 to 0.1% in the mono-

nuclear fraction) [18], AD tissue can provide up to 500-

fold more MSC than from an equivalent amount of BM 

aspirates [19].

Morphologically MSC akin to fibroblasts and are capa-

ble of differentiating into mesenchymal lineages [20–22]. 

To refer to mesenchymal-like cells, various nomenclatures 

are used, such as “mesenchymal stem cells”, “mesenchymal 

stromal cells”, “multipotent stromal cells”, “marrow stromal 

cells” and “medicinal signalling cells [23], but the acronym 

MSC is now generally used to identify this class of cells. The 

“International Society for Cellular Therapy” established the 

minimum criteria required for MSC definition in 2006 as fol-

lows: (a) plastic-adherent cells when maintained in standard 

culture conditions; (b) simultaneous expression of CD105, 

CD73 and CD90, and lack of expression of CD45, CD34, 

CD14 or CD19, CD79a or CD11b, and HLA-DR surface 

molecules and (c) capacity to differentiate into osteoblasts, 

adipocytes and chondroblasts in vitro [22].

Fetal mesenchymal stem cells

Platelet-derived growth factor receptor alpha (PDGFRA) 

is a main marker of MSC in bone marrow [24, 25]. The 

expression of PDGFRA is critically important for fetal 

development, and PDGFRA knockout led to embryonic 

lethality in mouse [26]. Therefore, there is a large number 

of PDGFRA positive circulating cells in the embryo that 

decrease immediately after birth. Circulating MSC have 

rarely been found in the adult circulatory system [27, 28]. 

However, MSC are present in umbilical cord blood, indi-

cating that circulating MSC/stromal cells in the fetus origi-

nate from fetal blood cells [29–31], which exhibit high 

differentiation potential in mesenchymal lineages (adipo-

cytes, osteocytes, and chondrocytes) [32]. The importance 

of the original niche on the potentiality of MSC is reflected 

by the fact that adipose stem cells of embryonic origin 

show great multi-lineage potential [33]. However, ethi-

cal aspects derived from obtaining them do not allow to 

exploit their potential.

All these data suggest the existence of a migration, dis-

semination and functional specification of MSC to dif-

ferent niches during fetal development, which seems to 

represent the start of progressive MSC heterogeneity along 

the postnatal lifetime (Fig. 1).

Fig. 1  Schematic representation of MSC heterogeneity in their different niches and factors that could influence their fate
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Heterogeneity among MSC from di�erent 
postnatal niches

Although investigations into the lineage of these cells strongly 

suggest that progenitor cells of cultured MSC are of perivascu-

lar origin [34, 35], it has been also reported that MSC obtained 

from various sources differ in their biological features [36, 37]. 

This suggests that MSC heterogeneity mirrors the diversity of 

environments present in the natural stem cell niches, which are 

a consequence of the broad cellular communities that have var-

iable chemical and mechanical conditions. In addition, there is 

evidence that cultured cells retain biological behaviors related 

to their previous environments [38] (Fig. 1).

The heterogeneity of MSC is reflected through their dif-

ferent modes of action, such as proliferation capacity, trans-

differentiation, immunophenotype or by both paracrine and 

microvesicle mechanisms via secretome-derived products. 

Differences according to each one of these mechanisms have 

been report among MSC from different origins.

Proliferation and differentiation

There are many examples of differences in proliferation and 

differentiation among MSC according to their origin. AD-

MSC exhibit greater proliferative capacity than BM-MSC, but 

are similar in colony-forming efficiency [39]. Cell proliferation 

is higher for umbilical cord (UC) MSC compared with BM-

MSC or AD-MSC [40, 41], or for human uterine cervical stem 

cells (hUCESC) compared with AD-MSC [42].

With regard to differentiation, greater tendency of BM-

MSC and AD-MSC to differentiate toward osteoblasts have 

been observed, whereas there is a lack of differentiation of 

UC-MSC toward adipocytes [43, 44]. AD-MSC possess also 

a higher potential for angiogenesis and vasculogenesis [45], 

as well as a more powerful immunomodulatory potential than 

BM-MSC [39]. Instead, UC-MSC have the highest potential 

for chondrogenic differentiation, with a resulting potential for 

use in tissue engineering [46]. UC-MSC have a higher percent-

age of neuron-specific enolase-positive cells than BM-MSC 

after neuronal induction [41]. Placental-MSC have superior 

migratory capacity but less adipogenic potential [47–49]. 

MSC from dental origin such as dental pulp (DPSC), decidu-

ous exfoliated teeth (SHED), apical papilla (SCAP) or peri-

odontal ligament (PDLSC) can express several cell markers 

and differentiate into functionally active neurons, osteoblasts, 

chondrocytes or vascular cells [50].

Paracrine mechanisms

MSC secrete a wide range of paracrine factors collectively 

named as secretome, responsible for up to 80% of their 

therapeutic effect. This biological pool includes different 

bioactive factors such as soluble molecules (cytokines, 

chemokines and growth factors), but also membrane-

bound vesicles that contain biomolecules. These extracel-

lular vesicles (EVs) may be classified as: (1) exosomes 

(40–150 nm in diameter), originating in the endocytic 

pathway, (2) microparticles (50–1000 nm in diameter), 

formed by the outward blebbing of the plasma membrane 

and subsequent release after the proteolytic cleavage of the 

cytoskeleton, and (3) apoptotic bodies (500–2000 nm in 

diameter), which are released during the process of pro-

grammed cell death. EVs are phospholipid membrane-

bound particles secreted from cells that contain biomol-

ecules including growth factors, cytokines, lipids, DNA 

and various forms of RNAs. EVs represent an intercel-

lular communication pathway which plays major roles 

in mammalian cells in mechanisms such as the exchange 

of genetic material and the transfer of biologically active 

molecules as well as in the defense against viral attacks 

[51]. EVs interact with recipient cells by way of mecha-

nisms which resemble those involved in viral entry. These 

include binding to surface receptors in order to trigger 

signal cascades, internalization of surface-bound EVs, 

and fusion with the cell to deliver material directly to the 

cytoplasmic membrane and cytosol [52].

Due to all these bioactive factors, MSC have several 

biological effects, such as regenerative, proliferative, 

anti-apoptotic, anti-inflammatory, anti-oxidative stress, 

pro-angiogenic anti-fibrotic, anti-tumor or anti-microbial 

activities [15, 50, 53–60].

In particular, MSC-derived exosomes, which are com-

plex vesicles containing a large number of proteins and 

RNA molecules, have been shown to have beneficial 

therapeutic effects in various models, including those for 

cutaneous wound healing, diabetic wound healing, atopic 

dermatitis, corneal epithelial wound healing, traumatic 

and degenerative ocular disease, autistic-like behaviors, 

liver fibrosis, hepatic injury, endotoxin-induced acute lung 

injury, bronchopulmonary dysplasia, E. coli-pneumonia, 

unspecific lung injury, silica-induced lung fibrosis, oste-

onecrosis, myocardial infarction, periodontitis or muscle 

injury [15].

Heterogeneity of secretomes from MSC isolated from 

different tissues has also been shown. Thus, for example, 

it has been shown that AD-MSC secrete higher amounts of 

pro-angiogenic molecules, such as extracellular matrix com-

ponents and metalloproteinases (MMPs) [40] or vascular 

endothelial growth factor (VEGF) [61], compared with other 

MSC such as BM-MSC. This suggests that AD-MSC may be 

preferred over other MSC populations for augmenting ther-

apeutic approaches dependent upon angiogenesis. Instead, 

UC-MSC secrete the highest amount of immunomodulatory 

factors, such as IL-6, -7 and -10 as well as PDGF-AA and 

TGF-α [40].
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Antitumor effects

One of the most heterogeneous effects from MSC accord-

ing to their origin are those on tumors [62, 63]. Thus, the 

effects of MSC on tumors are still controversial [64–66]. 

While it has been shown that MSC are capable of enhanc-

ing progression and metastasis of some types of tumor, 

such as breast cancer and colon cancer [67–71], other 

studies show that MSC have tumoricidal effects on liver, 

lung cancer cell lines, and pancreatic tumors in vitro and 

in vivo [72–75]. Thus, for example, there are many data in 

the literature suggesting that the effect of MSC on tumors 

depends on the origin of MSC and the type of tumor. How-

ever, we cannot exclude other influences such as growth 

media, cancer models, host animal model and laboratory 

bias.

It has been reported that human BM-MSC promoted 

tumor growth of pancreatic cancer cells [76], osteosar-

coma and gastric cancer cell lines [77], and human AD-

MSC-induced metastasis of breast cancer cells [78]. Several 

mechanisms have been proposed for these actions, such as 

MSC recruitment into tumor sites, promoting tumor growth 

and angiogenesis through the secretion of cytokines [79–81], 

or protecting cancer cells from immune clearance through 

modulating regulatory T cells and inhibiting natural killer 

(NK) cells and cytotoxic T lymphocyte (CTL) functions 

[82].

However, it has been shown that the secretome of BM-

MSC is able to reduce the proliferation, viability and migra-

tion of certain types of cancer cells, such as non-small-cell 

lung carcinoma [83]. It has ben also reported that EVs 

obtained from BM-MSC inhibit proliferation and promote 

apoptosis in liver carcinoma, Kaposi’s sarcoma, and ovarian 

tumor cell lines [84]. The same effect was reported for EVs 

from AD-MSC, that inhibit prostate cancer [84], ovarian 

cancer cells [85], or glioblastoma [86].

On the other hand, it has been shown that certain MSC, 

such as those derived from reproductive tissues, have anti-

tumor effects. UC-MSC have a high tendency to move 

towards the tumor and to inhibit the growth of solid tumors 

such as breast [87–89] or HeLa cells [90]. The unique fea-

tures of these cells lead to the hypothesis that UC-MSC act 

as a natural defense against the migration of cancer cells 

from mother to fetus, and thus explains why tumors are very 

rare in the fetus [91]. Endometrial MSC show anti-cancer 

effects on human epithelial ovarian cancer cells in vitro and 

in vivo through paracrine factors [92]. Human amniotic fluid 

MSC (hAFMSC), which can be obtained by amniocentesis 

in the second trimester or at the end of pregnancy [93], have 

natural tumor tropism towards ovarian cancer cells, and by 

releasing soluble factors have an efficient anticancer effect 

on them [94]. More recently, human uterine cervical stem 

cells (hUCESC) or their secretome have shown a potent 

antitumor effect on HeLa cells, highly proliferating breast 

cancer cells and cancer-associated fibroblasts [42].

It has been shown that MSC may secrete high amounts 

of cytokines which induce the inhibition of tumor growth, 

such as IFNα [95], IFNβ [96], IFN-γ, DKK-1/3 [97], IL12 

[98], TRAIL (Tumor Necrosis- Factor-Related Apoptosis-

Inducing Ligand [99], tumor necrosis factor superfamily 

member 14 (TNFSF14) also known as LIGHT, Fms-related 

tyrosine kinase 3 (FLT-3) ligand, C-X-C motif chemokine 10 

(CXCL10) and liver-enriched transcriptional activator pro-

tein (LAP) [42]. It has been also reported that the antitumor 

effect of MCS may be partly related to the activity of tissu-

lar inhibitors of the matrix metalloproteinases TIMP-1 and 

TIMP-2 present in their secretome [100, 101], the inhibition 

of MMPs being associated with the inhibition of migration 

and invasion of cancer cells.

On the other hand, cancer cells have been shown to inter-

nalize a greater percentage of exosomes when compared to 

normal cells [102, 103]. These EV produced by MSC may 

be responsible for many of their antitumor effects. Accord-

ingly, it has been reported that EVs from human UC-MSC 

reverse the development of bladder carcinoma cells, possi-

bly by down-regulating the phosphorylation of Akt protein 

kinase and up-regulating cleaved caspase-3 [104]. Human 

AD-MSC suppress the proliferation of ovarian cancer cells 

through exosomal miRNA in vitro [85] and inhibit glioblas-

toma brain xenografts [86]. Likewise, intratumoral injection 

of miR-146b-expressing MSC-derived exosomes resulted in 

considerable reduction in glioma xenograft development in a 

rat brain tumor model and decreased the growth, migration, 

and invasion of tumor cells [105].

Heterogeneity of MSC in the same postnatal 
niche in the same individual

The situation of MSC heterogeneity is even more complex if 

we consider several findings inside the same postnatal niche. 

There are some individual factors that have been identified 

as responsible for this heterogeneity, such as sampling loca-

tion in the same niche or between individuals, among others.

Depending on sampling location

It has been found that subcutaneous white adipose tissue 

(SWAT)-derived MSC show greater proliferation, and are 

also more easily differentiated to adipose or osteogenic line-

ages than MSC obtained from visceral white adipose tissue 

(VWAT) [106]. In addition, AD-MSC isolated from subcu-

taneous regions show more osteogenic potential than those 

obtained from deep-layer adipose tissue [107].
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Depending on individuals

It is known that when comparing theoretically identical 

MSC populations from different individuals, they may dis-

play different secretome properties, depending on factors 

including age or health status of the individual [108].

Donor age

It is known that capabilities from MSC, such as their mul-

tilineage differentiation, homing, immunomodulatory and 

wound-healing capacities, role of oxidative stress regula-

tion or intrinsic changes in telomere shortening, gradually 

disappear [109–112]. In fact, the properties of BM-MSC 

are strongly associated with the age of the donor. These 

cells collected from older donors are characterized by an 

increased percentage of apoptotic cells and slower prolifera-

tion rate, associated with an increased population doubling 

time. It has also been reported that BM-MSC from older 

donors have weakened ability to differentiate toward osteo-

blasts [113] and less reparative capacity [114]. In addition, 

BM- and AD-MSC obtained from aged individuals pos-

sess reduced immunomodulatory properties [115, 116] and 

reduced capacity to handle oxidative stress [117], compared 

to those from younger ones.

Recently, interesting data on MSC from cervical intraepi-

thelial neoplasia (CIN) were reported [118]. CIN is a precan-

cerous lesion of the uterine cervix that can regress or pro-

gress to cervical cancer, and where inflammation seems to 

play a pivotal role in CIN fate. Patients from a younger age 

group (mean age 28 ± 2) express a higher level of cytokines 

related to acute inflammation than older groups of patients 

(mean age 45 ± 3). The mechanisms to explain these differ-

ences between MSC are not completely known. Neverthe-

less, analysis of gene expression related to stemness, such 

as OCT4, SOX2, NANOG, and KLF4, revealed one dis-

crepancy between young and old MSC. MSC from young 

women express a higher value of KLF4 than those from old 

patients. It is known that KLF4 directly binds to the pro-

moter of NANOG to help OCT4 and SOX2 in regulating the 

expression of NANOG [119]. Considering the critical role 

of KLF4 in stem cell self-renewal as well as pluripotency, 

the expression of this factor may contribute to explain the 

functional differences of MSC depending on women’s age.

Obesity

Adipose tissue is considered an important reservoir for stem 

cells. However, their function and “stemcellness” has been 

questioned. This may be, in part, because the influence of 

obesity as a chronic pathological condition, is a risk factor 

for cardiovascular disease. In fact, several studies identified 

changes due to obesity in isolated stem cells from adipose 

tissue niches. Certainly AD-MSC from obese patients 

show less differentiation potential and less proangiogenic 

capacities than those from non-obese individuals [120]. In 

addition, it was reported that the transcriptomic profile of 

the stem cells reservoir in obese subcutaneous adipose tis-

sue is highly modified, with significant changes in genes 

regulating stemcellness, lineage commitment and inflam-

mation [121]. However, the mechanisms of how obesity 

affects MSC functionality remain unclear. Therefore, func-

tional analysis of MSC from this origin should be performed 

before clinical application.

Depending on diseases

A large amount of evidence supports the importance of age 

on the deterioration of stem cells in adulthood. They can 

become an important player in the onset of various diseases 

during aging, such as the metabolic syndrome [122], diabe-

tes [123, 124], rheumatoid arthritis [125], systemic lupus 

erythematosus [126] or ageing syndromes [127, 128]. Thus, 

these clinical situations, by perpetuation of inflammatory 

states, constant emission of “alarm signals,” proliferation, 

mobilization, and finally an endless sequestration of MSC 

into the damaged tissues, could lead to a decrease in the 

endogenous pools of progenitor cells, especially MSC, 

which are probably the most important specialized repair-

ing cells [129, 130]. Nevertheless, there are also evidences 

indicating acquired MSC dysfunctions in systemic diseases. 

This concept arose after the observation of patients with 

autoimmune diseases such as systemic lupus erythemato-

sus, diabetes, or rheumatoid arthritis, who entered disease 

remission when treated with mesenchymal or hematopoietic 

stem cells after allogenic transplants, but not after autolo-

gous transplants. Today, MSC dysfunctions are found in 

patients with diseases such as lupus, diabetes, rheumatoid 

arthritis, Parkinson disease, amyotrophic lateral sclerosis, 

psoriasis, idiopathic pulmonary fibrosis or myelodysplastic 

syndromes. In these diseases, dysfunctional MSC from bone 

marrow, adipose tissue, umbilical cord or dermis were found 

[2]. These MSC dysfunctions include multiple alterations 

such as cytoskeleton-related defects, decreased proliferation 

and capacity for pluripotency, lower expression of trophic 

factors, increased cell senescence, apoptosis, activation 

of the p53/p21 and p16INK4a pathways, reactive oxygen 

radicals, pro-inflammatory cytokines, impaired potential for 

differentiation and migration, angiogenesis/vasculogenesis, 

mitochondrial dysfunction or alterations in metalloproteases 

[2].

Unknown factors

Even MSC isolated from young and healthy donors exhibit 

stark differences in their proliferation rate, differentiation 
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capacity, and clinical utility. Thus, for example, in mar-

row aspirates of 17 healthy donors, it was found that MSC 

populations showed significant differences in growth rates, 

alkaline phosphatase enzyme activity or bone-specific 

gene induction [131]. In addition, it was reported differ-

ent proliferative rates in MSC cultures from multiple bone 

marrow aspirates isolated from the same donor over dif-

ferent periods, or bilaterally from a donor at a single time 

point, yield MSC [131].

All these data on MSC heterogeneity should be con-

sidered in the development and application of MSC or 

their secretome-derived products, possibly using specific 

functional tests to ensure homogeneity of action.

Heterogeneity of MSC depending 
on sampling mode

AD-MSC are an example of heterogeneity of MSC depend-

ing on a specific sampling mode. In general, comparison of 

procedures indicates that a higher surface-to-volume ratio 

is the most efficient method. Thus, a higher yield of viable 

AD-MSC is obtained through lipoaspiration, in compari-

son with those obtained through tissue block resection 

[132, 133]. In addition, power-assisted liposuction meth-

odologies show higher proliferative potential and resist-

ance to senescence in isolated AD-MSC than laser-assisted 

liposuction and surgical biopsy [134]. Also, microaspira-

tion of fat with micro-cannulas has been reported to be 

more efficient than the usual procedures, as expressed in 

higher yields, greater viability, better adhesion rates, and 

greater secretion of growth factors, such as insulin-like 

growth factor (IGF) and platelet-derived growth factor 

(PDGF) [135].

Interestingly, other MSC types which show differences 

with regard to mode sampling are UC-MSC. Thus, it was 

recently reported that MSC isolated from the UC of babies 

born vaginally had higher proliferative potential than those 

obtained from the cord of babies born by Caesarean section, 

although the reasons are not perfectly clear yet and more 

studies are underway for clarification [87].

Heterogeneity of MSC depending 
on the arti�cial niche

The possible modifications of MSC culture and their effects 

are summarized in Table 1. When MSC are placed in an 

artificial niche, there are several factors which influence 

their heterogeneity, both under basal conditions and after 

manipulation.

Basal conditions

Theoretically, just obtained MSC have morphologic homo-

geneity and uniform expression of certain surface antigens 

which are conserved on high-density culture for several pas-

sages [22, 136]. However, obtained MSC often represent a 

mixture of phenotypically, functionally and biochemically 

diverse cells [137, 138]. In parallel, from passage to passage, 

the clonogenicity of MSC decreases and proliferation slows 

down [139, 140].

Several studies have shown that single-cell-derived colo-

nies of human MSC contain at least three morphologically 

disparate cell types: (1) extremely small and rapidly self-

renewing cells; (2) elongated spindle-shaped fibroblast-like 

cells; and (3) large, cuboidal and slowly replicating cells, 

[141, 142]. In addition, there exists a clear clonal variability 

in cell differentiation, proteomic, transcriptomic and epige-

netic status.

It has been observed that clones show different poten-

tial to differentiation (either osteo-chondro, osteo-adipo or 

osteoprogenitors) [143]. Probably, these variations in clone 

differentiation reflect biophysical variation among clones. 

Cellular mechanical properties reflect the underlying struc-

ture of the cell, including the cytoskeleton and nucleus. 

Mechanical differences of similar magnitude have been 

noted among individual, undifferentiated MSC isolated and 

passaged together [144]. Several studies suggest that cellular 

mechanics can be prospectively used to predict differentia-

tion capacity in individual clones to adipogenic, chondro-

genic or osteogenic potentials [145, 146].

On the other hand, it has been shown that fast- and slow-

growing clonal populations of MSC differ proteomically, 

with differential expression of proteins including intermedi-

ate filaments, calcium-binding proteins and glycolytic pro-

teins [147]. Epigenetic modifications, such as DNA methyla-

tion, is associated stem cell differentiation. Investigation of 

clonal MSC adipogenesis shows that while adipogenesis-

associated promoters are hypomethylated in MSC clones, 

the specific pattern of methylation varies among clonal sub-

populations [148].

Manipulation of MSC in the artificial niche

The dose or frequency of MSC therapy cannot be increased 

infinitely in terms of cost and safety. Thus, there is a need for 

novel strategies to enhance the capability of survival, hom-

ing to the site of damage and improving their therapeutic 

potency. There are several conditions which may contribute 

to evolutionary changes and heterogeneity of MSC at the 

artificial niche, such as culture conditions  (O2 tension, sub-

strate and extracellular cues, inflammatory stimuli or type of 

culture medium), genetic manipulations or exosome modi-

fications (Fig. 2).
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Table 1  Artificial niche factors that influence heterogeneity of MSC

* animal model

Culture condition MSC source Type of study Effect on MSC References

Low  O2 tension hBM-MSC In vitro Better retention of their proliferative capacity 

and differentiation potential. Expression of 

surface antigen genes Oct4, Sox2 and Nanog

[149, 152]

hAD-MSC In vitro Increased expression of AD-MSC stemness 

markers Oct3/4 and Nanog, of secreted 

angiogenesis growth factors and increased 

proliferation rate. Enhancement of the 

chondrogenic differentiation ability. Protec-

tion against damaging factors, replicative 

senescence and cryopreservation. Increased 

immunomodulatory effect by inhibition the 

proliferation of mitogen-stimulated CD4 and 

CD8 T lymphocytes

[59, 151, 153, 154, 156, 157, 163]

hBM-MSC

hAD-MSC

In vivo* Significantly earlier restoration of blood flow. 

Healing of ischemic lesions. Enhanced of 

paracrine effect of MSC in diabetes, cancer, 

liver failure and irradiation-mediated salivary 

gland damage

[90, 150, 158–162, 164–167]

Three-dimensional 

(3D) aggregates 

(spheroids)

Neural

Embrionic and

hAD-MSC

In vitro Changes in cell shape and polarity. Improve-

ment of cell–cell interactions. Enhanced 

differentiation capacity into osteocytes, 

chondrocytes and non-mesenchymal lineages. 

Increased production of angiogenic factors and 

anticancer proteins (TRIL, IL-24 and CD82)

[170, 172–174, 181–183, 256]

In vitro

In vivo*

Increased migration and homing efficiency of 

MSC to the damaged site with an enhanced 

engraftment ratio. Improvement of reparative/

regenerative and anti-inflammatory properties

[174, 176–180]

Mechanical stimuli bBM-MSC

hMSC

In vitro Varying stiffness and mechanical loading of 

MSC result in changes on biochemical signal-

ling, gene expression, cell phenotype and 

paracrine stimulation

Soft environments and low contractility favor 

adipogenesis. Stiff milieu and high contractil-

ity promote osteogenic potential

[185, 187–190, 192]

Inflammatory stimuli hBM-MSC

UC-MSC

hAD-MSC

In vitro

In vivo*

IFN-γ on MSC culture upregulate the synthe-

sis of indoleamine 2,3-dioxygenase (IDO), 

cyclooxygenase 2 (COX-2), transforming 

growth factor beta (TGF-α), and hepatocyte 

growth factor (HGF)

AD-MSC pre-conditioned with IFN-γ, TNF-α 

and IL-6, show enhanced immunosuppres-

sive properties, anti-inflammatory effects, 

increased proliferation, mobilization and 

osteogenic differentiation

TLR2 and TLR4 dose-dependent activation 

enhances AD-MSC osteogenic differentiation, 

while triggering TLR9 inhibits osteogenesis 

and proliferation

AD-MSC with IFN-γ enhances experimental 

obliterative bronchiolitis. AD-MSC with 

TNF-α increases the secretion of interleukin-6 

(IL-6) and IL-8, stimulating angiogenesis

AD-MSC primed with IFN-γ, TNF-α, and IL-17 

enhances immunosuppressive effects

[194–197, 200–202, 204, 206, 207]

[198, 199, 203, 205]
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Culture conditions

O2 tension The cells are generally cultured in vitro under 

a  O2 tension such as the one present in our atmosphere 

(~ 21%). However, there are models evidencing that MSC 

in their niches are adapted to lower O2 tensions (from 1 to 

7%) [149, 150]. As an example, the adipose niche is known 

to be hypoxic, usually with around 5%  O2, compared to 

highly perfused organs [151]. In addition, several studies 

have shown that MSC cultured under low O2 conditions 

retain better their proliferative capacity, surface antigen 

expression profile, expression of “stemness” genes (Oct4, 

Sox2, and Nanog), and differentiation potential in compari-

son with those cultured in atmospheric O2 [152–155]. It has 

been also shown that hypoxic culture conditions could pro-

tect AD-MSC against the most common in vitro damaging 

factors, replicative senescence and cryopreservation [156, 

157].

On the other hand, it has also been reported that MSC 

under low  O2  could drive facilitated release of sev-

eral trophic factors [59], and especially angiogenesis 

growth factors such as VEGF and HGF, contributing to 

an improvement of ischemic lesions [150, 158–162]. In 

addition, it has been shown that MSC cultured under 1% 

 O2  display an increased immunomodulatory effect by 

inhibiting efficiently the proliferation of mitogen-stimu-

lated CD4 and CD8 T lymphocytes [163].

In concordance with all these in vitro data, several in vivo 

studies showed the advantages of hypoxic pre-conditioning 

in MSC culture in therapeutic terms. In fact, there are studies 

reporting that the enhanced paracrine effect of MSC after 

hypoxic treatment would be beneficial to diabetes [164], 

liver failure [165, 166], irradiation-mediated salivary gland 

damage [167] or anticancer effects [90]. Nevertheless, 

despite all these potential therapeutic advantages, there are 

issues which should be resolved. For example, hypoxia cul-

ture conditions might include a wide range of  O2 tensions 

from 5% to < 1%, which may have different biological effects 

on MSC. Therefore, the optimal  O2 concentration for maxi-

mizing each therapeutic effect in each MSC type should be 

determined prior to clinical application.

Substrate and  extracellular matrix cues Aspects related 

with the specific platform on which the cells are grown 

and different culture conditions are of key importance. 

Conventional cell culture is generally conducted in a two-

dimensional (2D) system (tissue culture flasks—T-flasks) 

in which cells grow as monolayers. However, under these 

conditions, the large number of T-flasks needed can lead 

to flask-to-flask variability, it may increase the chances 

for contamination, and is certainly very labour intensive 

[168]. In addition, the 2D system is highly deficient in 

cell-to-cell or extracellular interactions, which lead to a 

decrease of stemness of adult stem cells and less thera-

peutic potential [169]. One alternative is to induce MSC 

Fig. 2  Factors related to modifiable culture conditions which may influence the quality of MSC to obtain tailor-made secretome-derived prod-

ucts (paracrine factors, microvesicles or exosomes)
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to grow as three-dimensional (3D) aggregates (spheroids). 

Spheroids are multicellular structures in which adherent 

cells are forced to aggregate with each other using a sus-

pension culture system [170, 171]. Therefore, cell sphe-

roids change the microenvironment to provide cells with 

3D context and induce changes in cell shape and polarity 

whilst encouraging cell–cell interactions, which is con-

sidered more physiologically adequate. This method was 

widely applied to culture neural stem cells (neurospheres), 

embryonic stem cells (embryonic bodies), cancer cells 

(tumoroids), and other cells to study developmental and 

physiopathological cell-to-cell dynamics in  vitro [170, 

172].

It has been reported that MSC cultured as 3D spheroids 

have properties far superior to those of 2D MSC cultures, 

such as enhanced differentiation capacity into osteocytes, 

chondrocytes [173] and non-mesenchymal lineages (ecto-

dermal or endodermal) [174, 175], increase of the migration 

and homing efficiency of MSC into the damaged site with an 

enhanced engraftment ratio after in vivo application [174, 

176, 177], increase in reparative/regenerative [177, 178] and 

anti-inflammatory properties [179, 180], and an increased 

production of angiogenic factors [181, 182] or anticancer 

proteins (TRIL, IL-24 and CD82) [183].

Despite all these advantages of 3D cultures, there are 

several technical questions to clarify in order to improve 

their therapeutic potential, such as optimal size and total cell 

number of each spheroid, and culture duration [171, 184].

Mechanical cues The elasticity of the microenvironment 

and exogenous forces are found have been as determinants 

of stem cell fate [185]. These cues elicit changes in bio-

chemical signalling, gene expression, cell phenotype and 

function. Cell response is most uniform in extremely soft 

or stiff environments, which favor adipogenesis and osteo-

genesis, respectively [186–188]. In addition, subpopulations 

of undifferentiated MSC encapsulated in hydrogels respond 

differentially to compression: calcium signalling is upreg-

ulated in one subset of cells, while it is downregulated in 

another [189].

On the other hand, it seems that the MSC secretome may 

also vary in response to different mechano-transduction 

events. In a recent study, conditioned medium from mechan-

ically loaded MSC promoted angiogenesis within human 

dermal microvascular endothelial cells, and that these find-

ings led to significantly increased levels of MMP2, TGFβ, 

and FGF [190]. Similarly, when MSC are cultured on poly-

acrylamide hydrogels of increasing stiffness, VEGF and IGF 

are upregulated, whilst EGF, IL-6 and IL-8 show biphasic 

secretory profiles [191]. It has also been shown that after 

chondrogenic induction through multiaxial mechanical load-

ing, the resulting secretome composition includes soluble 

factors such as VLC, VEGF, and MMP13 [192].

Inflammatory stimuli Interferon gamma (IFN-γ), a pro-

inflammatory cytokine against viral and bacterial infec-

tions, is a known source for MSC priming for functional 

enhancement [193]. Thus, for example, it has been shown 

that treatment of MSC with IFN-γ upregulates the synthesis 

of several anti-inflammatory transcription factors, includ-

ing indoleamine 2,3-dioxygenase (IDO), cyclooxygenase 

2 (COX-2), transforming growth factor beta (TGF-α), and 

hepatocyte growth factor (HGF) [194–197]. It has been 

shown that pre-treatment course of AD-MSC with IFN-γ 

improves experimental obliterative bronchiolitis via IDO-

dependent suppression of T cell infiltration and induction 

of regulatory T cells (Tregs) [198], shows pronounced anti-

proliferative effects on activated peripheral blood mononu-

clear cells (PBMC) along with a significant upregulation 

of PD-L1 expression and COX-2-derived PGE2 secretion 

[199].

Tumor necrosis factor-alpha (TNF-α) pre-conditioning of 

MSC exhibit anti-inflammatory effects through upregulation 

of several immunomodulatory factors [200, 201] can pro-

mote bone generation by increasing proliferation, mobiliza-

tion, and osteogenic differentiation [202], promote endothe-

lial progenitor cell homing and stimulate angiogenesis in a 

murine ischemic hindlimb model [203].

There are studies conducted to elucidate the optimal 

combination of cytokines that can maximize the thera-

peutic effect of MSC. Activation of MSC with TNF-α and 

IFN-γ has been also shown to increase the production of 

IL-6, HGF, VEGF, and TGF- and to promote bone forma-

tion [204]. Murine AD-MSC primed with IFN-γ, TNF-, 

and IL-17 attenuates hepatitis through inducible nitric 

oxide synthase (iNOS)-mediated higher T-cell suppression 

[205]. Human AD-MSC pre-conditioned with IFN-γ, TNF-α 

and IL-6, shows enhanced immunosuppressive properties 

in vitro [206].

Other inflammation inducers used as to maximize their 

therapeutic capabilities of MSC are toll-like receptors 

(TLRs). TLRs represent a subgroup of pattern recognition 

receptors (PRRs) that contribute to the defense mechanism 

via the innate immune system in response to pathogen-asso-

ciated molecular patterns (PAMPs) or damage-associated 

molecular patterns (DAMPs). The expression of TLR1–6, 

and 9 have been reported in human MSC [207, 208], and 

these TLR expression patterns may vary depending on the 

origin of MSC. It has been shown that activation of TLR2 

and TLR4 significantly enhances osteogenic differentiation, 

whereas triggering TLR9 inhibits osteogenesis and ASC 

proliferation [207].

Culture medium and new technologies Culture media and 

new technologies may also influence MSC phenotype. 

Today different media are used, such as fetal bovine serum, 

xeno-free or chemically defined media. There have already 
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been significant trends towards chemically defined media 

that remove the batch-to-batch variability associated with 

foetal bovine serum [209]. Different defined-media formu-

lations are currently commercially available and have been 

shown to alter secretion of TGFβ and Ang1 [210], indicat-

ing that choice of medium is important.

The 3D self-organized tissue models based on stem cell-

derived organoid provide biological models to serve as 

semiphysiological model. Organoids reproduce biological 

parameters including the cell–cell and cell–matrix interac-

tions, spatial organization and physiological functions [211].

On the other hand, an alternative for expanding large 

populations of MSC with higher homogeneity and scalable 

conditions are suspension bioreactors [212]. These tech-

niques are based on the concept of using dynamic suspen-

sion cultures of MSC attached to beads to maximise surface 

area [213].

Genetic manipulation

AD-MSC transduced with Sox2 and Oct4 show remarkable 

benefits in their proliferation capability. Nevertheless, this 

manipulation may inhibit differentiation potential and may 

have possible adverse effects such as tumor formation during 

clinical applications [214].

There are data suggesting that the incorporation of 

anti-inflammatory genes such as IL-10 [215], HGF [216], 

IDO [217], or Foxp3 [218], could improve the therapeutic 

potential of MSC. Similarly, MSC transfected with Bcl-2 

present better apoptotic tolerance, cell survival and more 

VEGF secretion [219]. While MSC overexpressing bFGF or 

platelet-derived growth factor-BB (PDGF-BB) lead to highly 

proliferating MSC and increased osteogenesis [220]. Other 

MSC were genetically modified to increase their survival, 

overexpressing factors such as PI3K [221, 222], SDF1 [223], 

CXCR4 [220, 224], HGF [225] and IGF [226].

In the central nervous system, BDNF is the predominant 

neurotrophin complemented by the substantial expression 

of TrkB [227]. Several studies have shown the involvement 

of BDNF in the pathogenesis of neurodegenerative diseases 

and psychiatric disorders, like depression and schizophre-

nia [228]. Additionally, BDNF acts on cholinergic neurons, 

which are depleted in Alzheimer’s disease [229] and on 

dopaminergic neurons of the substantia nigra, which are lost 

in Parkinson’s disease [230]. However, recombinant BDNF 

delivery in clinical trials has not been therapeutically suc-

cessful [231]. Nevertheless, BDNF overexpressing hMSC 

protect neurons significantly better from degeneration than 

native MSC. hMSC were lentivirally modified to overex-

press BDNF, and which was more neuroprotective [232].

To enhance anticancer effects, in vitro studies have shown 

that the expression of interferon-beta (IFN-β) in MSC trans-

fected by adenovirus can effectively kill glioma cells [233]. 

In a model of lung metastasis of prostate cancer, MSC 

expressing IFN-β could prolong the survival period, and its 

possible mechanism is that IFN-β could promote tumor cell 

apoptosis, inhibit angiogenesis, and increase the activity of 

natural killer cells [234]. Similarly, adenovirus-transfected 

MSC expressing interferon-γ (IFN-γ) inhibit proliferation 

and induce apoptosis in leukemia cells in vitro [235]. On the 

other hand, it has also been shown that MSC engineered to 

express IL-12 prevent metastasis and increased tumor cell 

apoptosis in mice bearing preestablished metastases of mela-

noma, breast, and hepatoma tumors [236, 237].

Despite all these positive data on genetic manipulation 

of MSC, several limitations remain still limiting their clini-

cal application. The main concern has to do with the fact 

that the application of replication-defective viral vectors, 

such as lenti- and adenoviruses, is closely associated with 

safety issues including potential tumorigenicity, toxicity, and 

immunogenicity [238]. A summary of verified MSC genetic 

modifications and their effects is shown in Table 2.

Several studies demonstrated that the Clustered Regu-

larly Interspaced Short Palindromic Repeats (CRISPR)-

Cas system is highlighted as a simple and effective tool for 

genetic engineering with applicability to the edition of the 

mammalian cell genome, and which was tested in clinical 

trials. It has been recently proposed perspectives on how 

the CRISPR-Cas system may improve the therapeutic poten-

tial of MSCs [239, 240]. In this context, there are today the 

first evidences of successful and effective MSCs secretome 

managing via CRISPR/Cas9 genome editing technology. 

Thereby, using CRISPR-Cas9 knockout and transcriptional 

activation systems, we were able to create both PAI-1 knock-

out and PAI-1 over-expressing human endometrium-derived 

mesenchymal stem cells (hMESCs), respectively [241]. It 

was also reported the use of engineered BM-MSC overex-

pressing IL-10 using CRISPR activation to treated myocar-

dial infarction in diabetic mice [242].

Exosome modification

MSC are the only human cell type known to have a scal-

able capacity for the mass production of exosomes for drug 

delivery [243]. They are smaller, less complex, less immu-

nogenic and their production and have easier storage than 

their parental cells [244]. In addition, other advantages of 

exosomes include long circulating half-time [245] or better 

crossing through the blood–brain barrier [246]. Therefore, 

exosomes can be easily manipulated and can be modified 

with certain ligands or proteins on their surface to improve 

their targeting capability.

Exosomes encapsulated with miR-379 have been admin-

istered for breast cancer therapy in vivo and migrated to the 

tumor site showing antitumor effects [247]. It has also been 

shown that methotrexate-loaded EVs functionalized with a 
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synthetic multifunctional peptide facilitated the membrane 

receptor-mediated internalization procedure both in vitro 

and in vivo in a glioma model [248].

To enhance vesicle release from cells, other strategies 

have also been proposed, such as prolonged culture and 

maintaining cells at low pH [249, 250]. Establishment 

of immortalized MSC is another strategy to scale up EV 

production [251]. Overexpression of the c-myc oncogene, 

finally, has been reported to increase EV production in MSC 

[252].

On the other hand, it has been shown that exosomes 

derived from MSC cultured under hypoxia provide better 

Table 2  Influence of genetic manipulation on heterogeneity of MSC

* animal model

Genetic modification MSC source Type of study Effect on MSC/therapeutic benefits References

Sox2

Oct4

transduction

hAD-MSC In vitro Benefits in their proliferation capability, but may inhibit differentiation 

potential. Could have adverse effects for clinical applications, such 

as tumor formation

[214]

IL-10

HGF

IDO

Foxp3 incorporation

hBM-MSC In vitro

In vivo*

Attenuates the severity of acute GVHD. Enhanced immunosuppres-

sive properties of MSC. Promotes liver allograft tolerance through 

the generation of regulatory T cells

[215–218]

Bcl-2

engineered

hBM-MSC In vitro

In vivo*

Better apoptotic tolerance, improved cell survival, VEGF secretion 

and reduced heart infarct size

[219]

bFGF

PDGF-BB

TGF-β1 overexpressed

hBM-MSC In vitro bFGF or PDGF-B lead to highly proliferating MSC and increase 

osteogenesis. Conversely, adipogenesis is affected.

TGF-β1 blocks both osteogenic and adipogenic differentiation, induc-

ing the formation of stress fibers

[220]

PI3K-C2α overexpressed BM-MSC

rat

In vitro

In vivo*

The level of apoptotic proteins is downregulated. Increased cell viabil-

ity of MSC and enhanced myocardial regeneration. Reduction of 

infarct size and fibrosis area

[221, 222]

SDF-1α overexpressed BM-MSC

rat

In vitro

In vivo*

MSC differentiation into endothelial cells. Reduction of infarct size 

and fibrosis. High vascular density and thicker left ventricular wall. 

Improvement of left ventricular performance

[223]

CXCR4 overexpressed hBM-MSC In vitro

In vivo*

Enhanced MSC chemokinesis. Improved cell trafficking and tis-

sue repair. Enhancement of relevant trophic signals. No adverse 

effects on proliferation and differentiation

[220, 224]

HGF overexpressed hBM-MSC In vitro

In vivo*

Inhibited collagen deposition and improved cystometric parameters in 

bladder outlet obstruction

[225]

IGF-I overexpressed BM-MSC

mice

In vitro

In vivo*

Paracrine support to EPO-secreting MSC in anemia. Hematocrit 

elevation. Improvement of Heart function

[226]

BDNF overexpressed hBM-MSC In vitro Lentivirally MSC modification provides significantly neuroprotective 

effect from degeneration compared to native hMSC

[232]

IFN-β hMSC engineered hBM-MSC In vitro

In vivo*

In vitro, promotion of tumor cell apoptosis, inhibition of angiogenesis, 

and increased NK activity

In vivo, significantly increased survival in a human U87 intracra-

nial glioma xenograft model. Prolonged survival in a prostate cancer 

lung metastasis model, compared to controls

[233, 234]

IFN-γ hMSC engineered hBM-MSC In vitro Inhibition of proliferation and induction of apoptosis in leukemia cells [235]

Ad-FKN engineered adenoviral vec-

tor fractalkine 

gene

In vitro

In vivo*

Ad-fractalkine mediates antitumor effects by induction of both innate 

and adaptive immunity

[236]

IL-12 expressed hBM-MSC In vitro

In vivo*

Prevention of breast cancer metastasis into the lymph nodes and 

internal organs as well as increased tumor cell apoptosis and an 

antiangiogenic effect on tumor stroma

[237]

(CRISPR)/Cas9 hMESCs

BM-MSC

In vitro

In vitro

In vivo

Obtain PAI-1 knockout and PAI-1 overexpressing hMESCs, provides 

evidence of successful and effective MSCs secretome managing via 

CRISPR/Cas9 genome editing technology

Overexpression of IL-10 in BM-MSCs. Transplantation of BM-MSCs 

overexpressing IL-10 inhibited inflammatory cell infiltration and 

pro-inflammatory cytokines production, improved cardiac functional 

recovery, alleviated cardiac injury, decreased apoptosis of cardiac 

cells and increased angiogenesis

[241]

[242]
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protection in a mouse acute lung injury model than those 

derived from normoxic MSC [183]. Ischemic precondition-

ing of MSC has also been to produce EV which reduce car-

diac fibrosis and apoptosis compared to control EV [253].

There are recent reports on the use of several human MSC 

populations treated with sub-lethal concentrations of taxol 

for 24 h, after which exosomes were isolated and applied 

to different human cancer populations including A549 lung 

cancer, SK-OV-3 ovarian cancer, and MDA-hyb1 breast 

cancer cells. While MSC control exosomes had little or no 

effect on growth inhibition of the tumor cells, taxol-loaded 

MSC-derived exosomes were associated with 80–90% cyto-

toxicity. Highly metastatic MDA-hyb1 breast tumors were 

induced in NODscid mice, and systemic intravenous applica-

tion of MSC-derived taxol exosomes revealed a more than 

60% reduction of subcutaneous primary tumors. Moreover, 

the amount of distant organ metastases in lung, liver, spleen, 

and kidney was reduced by 50% with MSC taxol exosomes, 

similar to the effects observed with taxol, although the con-

centration of taxol in the exosomes was about 1000-fold 

reduced [254].

Conclusions and future perspectives

MSC are widely distributed throughout the human body and 

an increasing amount of evidence suggests a significant role 

for MSC in the regulation of tissue homeostasis. In addition, 

MSC and products derived from their secretomes, such as 

CM or exosomes, need development because of their broad 

spectrum of therapeutic potentials, such as regenerative, 

anti-inflammatory, pro-angiogenic, anti-tumor and antimi-

crobial activities, already demonstrated in several experi-

mental models in vivo. However, one limiting factor in the 

clinical translation of the therapeutic potential of MSC is 

related to their heterogeneity.

MSC demonstrate many dimensions of heterogeneity. 

They differ with regard to their origin among biological 

niches, donors, as well as among and within clonal popula-

tions. Based on this, we may consider that it will probably 

be necessary in the future to establish stem cell banks based 

on the heterogeneity of MSC subpopulations. In addition, to 

screen for cells prior to their use in the clinic, the properties 

of the cells being used should be better understood.

It is also relevant to consider that once MSC are iso-

lated, their capabilities can vary widely depending on the 

culture conditions, including physical and chemical ones. 

This opens new possibilities to modify the potential of MSC 

through preconditioning of their cultures or genetic manip-

ulation. In particular, advances in bioengineering and our 

understanding of how the extracellular environment affects 

MSC paracrine activity will play a pivotal role in the gen-

eration of widespread, successful, clinical MSC therapies. 

This aspect of the artificial niche represents an opportunity 

to adapt the possibilities of therapies based on MSC and 

their derivatives towards personalized medicine tailored to 

the needs of each patient.

We consider that the most appropriate type of MSC 

should be chosen for each type of therapeutic application, 

according to its origin and the result of functional tests 

after its expansion “in vitro”. Likewise, the use of prod-

ucts derived from MSC, such as the secretome, seems to 

be the most convenient alternative. In this manner, the dis-

advantages of administering living cells would be avoided, 

such as thrombosis and possible microembolism [255], 

and it implies practical and economic advantages [15]. On 

the other hand, the production of these biological products 

should be supported by the development of bioreactor tech-

nology, which will allow a strict control and optimization of 

the culture conditions adapted for each type of MSC, as well 

as the scalable production of large amounts of secretomes 

for therapeutic use.
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