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Abstract 

Mathematical models used for the representation of (bio)-chemical processes can be grouped 

into two broad paradigms: white-box or mechanistic models, completely based on knowledge 

or black-box data-driven models based on patterns observed in data. However, in the past two-

decade, hybrid modeling that explores the synergy between the two paradigms has emerged as 

a pragmatic compromise. The data-driven part of these have been largely based on 

conventional machine learning algorithm (e.g., artificial neural network, support vector 

regression), which prevents interpretability of the finally learnt model by the domain-experts. 

In this work we present a novel hybrid modeling framework, the Functional-Hybrid model, 

that uses the ranked domain-specific functional beliefs together with symbolic regression to 

develop dynamic models. We demonstrate the successful implementation of these hybrid 

models for four benchmark systems and a microbial fermentation reactor, all of which are 

systems of (bio)chemical relevance. We also demonstrate that compared to a similar 

implementation with the conventional ANN, the performance of Functional-Hybrid model is 

at least two times better in interpolation and extrapolation. Additionally, the proposed 

framework can learn the dynamics in 50% lower number of experiments. This improved 

performance can be attributed to the structure imposed by the functional transformations 

introduced in the Functional-Hybrid model.  

Keywords: Hybrid models, Symbolic regression, machine scientist, interpretability, (bio) 

chemical processes 
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1. Introduction 

The plethora of mathematical models in science and engineering available can be broadly 

classified into two paradigms: (i) data-driven, statistical or (Machine Learning (ML)) models, 

and (ii) first principle based (mechanistic, white box) models. Both approaches have their own 

advantages and disadvantages as summarized in [1,2] and a choice is made based on the prior 

understanding about the system and the availability of data. In chemical engineering [3–9] and 

biotechnology [1,10–16], hybrid modeling is emerging as a pragmatic solution to mathematical 

modeling, exploring the synergy between the two paradigms. Hybrid models have been very 

successful in systems that are only partially understood, and the availability of data is limited 

or/and costly.  

Most of the hybrid modeling work pose basic mass or energy balances and some preliminary 

dependencies and approximate unknown relationships with data-driven models. The most 

popular data-driven model used in such frameworks is a shallow (typically single layer) 

artificial neural network [6,8,9,13–16] with some literature also reporting use of subspace 

identification algorithms [17], non-linear Partial Least Squares [18], Adaptive regression 

splines [19], Support Vector Machine (for regression) [20,21], Gaussian Processes [22] and 

Recurrent Neural Network [7].  

However, such machine learning algorithms lead to hybrid models that are hard to interpret. In 

addition, there are also common domain expectation of functional forms that can be accounted 

for to further introduce expert knowledge in the hybrid modeling framework. For instance, in 

chemical reaction kinetics, typically power law models are expected or in biochemistry and 

biochemical network models hill kinetic type equations are predominant. Similarly, in cell 

culture applications, monod-type or haldane-kinetic equations are expected for metabolites. 

Incorporating these domain expert considerations in a strategic manner, while still ensuring 
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flexibility, is essential to develop more robust hybrid models while allowing some 

interpretability from the final hybrid model. 

One possible manner to achieve this is through symbolic regression, which attempts to 

simultaneously identify the model structure and the parameters defining the structure [23]. 

Symbolic regression has been applied in different fields such as chemical systems [23–25], 

fluid dynamics [26], and natural science [27,28], for the purpose of data-driven system 

identification. The symbolic regression problem can be tackled by applying genetic 

programming over a system of arithmetic operators (+, -, x, /) and functions (identity (), log (), 

exp (), trigonometric, polynomial) to choose the optimal order of operators represented through 

the so-called expression trees. An alternative approach to symbolic regression, developed in 

the recent times, involve the sparse regression method [29–32], which creates a candidate 

library of all possible functional transformations and their interaction terms and applies a 

LASSO regression to choose only a subset from the candidate library to best describe the 

observed data. Successful application of the SINDy based algorithms have been demonstrated 

for dynamic systems such as in biological networks [29] and to learn partial differential 

equations as well [32]. Here again simple functional transformations such as identity (), log (), 

exp (), trigonometric and polynomial with some variant also considering rational functions are 

used [29]. 

Still in most engineering applications, the general scope of modelling is to arrive to a 

mathematical formulation that explains the observations of a system sufficiently well, is as 

simple as possible and is interpretable by the domain-experts. With this in mind, here we 

present an approach for symbolic regression that employs functional transformations based on 

domain-expertise in a systematic procedure. Additionally, we remove the arithmetic operators 

used in symbolic regression and introduce a multiplicative and additive series (which is a 

common occurrence in all equations). Finally, instead of using genetic programming we used 
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genetic algorithms (GAs) to select and reject functions. A detailed description of the 

implementation used in this work can be found in Section 2.2.2.  The developed algorithm is 

first tested on four benchmark systems: (i) Reaction scheme identification of chemical species, 

(ii) Enzyme kinetics, (iii) Lotka-Volterra problem and (iv) FitzHugh-Nagumo (FHN) problem. 

Finally, its added value is demonstrated with a microbial fermentation bioreactor.  In-silico 

simulators were used to generate data for all the case studies. First, the ability of the algorithm 

to accurately represent the data generating equations while providing interpretability to finally 

converged hybrid model is highlighted for the different studies. Second, the comparison of the 

Functional-Hybrid model with the equivalent hybrid model framework using artificial neural 

network (Hybrid-ANN) is presented. Finally, practical implication of the Functional-Hybrid 

model in terms of number of experiments required and extrapolation capability is highlighted 

using the microbial bioreactor case study, which are both essential features in engineering 

applications. 

2. Materials and Methods 

2.1.Materials 

The proposed algorithm was tested on four benchmark problems and a system of relevance to 

biotech industry. The conditions used in the simulation of the different cases are described 

below and tabulated in Table 1, while the detailed equations used in the simulation can be 

found in the supplementary information.  

Table 1: Conditions used in the simulation of the different cases 

Case Study No. of 

states 

No. of 

experiments 

Time 

Span 

No. of 

Sampling 

Designed 

Variable 

  Train Test    

Reaction kinetics 5 1 1 [0, 167] min 14 CA,0, CB,0 

Enzyme kinetics 1 2 2 [0, 10] units 11 S0, F 
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Lotka-Volterra 2 10 10 [0, 2] units 20 𝐶!,# , 𝐶$,# 

FitzHugh-

Nagumo 

2 10 10 [0, 10] units 11 𝑉# , 𝑅# 

Microbial 

bioreactor 

3 20 10 [0, 12] h 25 𝑋# , 𝑆#, F 

 

2.1.1. Chemical reaction kinetics 

To study the reaction kinetics of two species A and B, we carried out an in-silico simulation of 

an experiment at different flowrates and fixed inlet concentration (CA,0 = CB,0 = 2 mol/L) in a 

Plug Flow Reactor (PFR) reactor of 500 L of volume. The system consists of 5 species namely, 

A, B, P, D and S, whose concentration is measured at the outlet. The evolution profile of each 

of the species, as a function of residence time, is used to predict the reaction kinetics using our 

algorithm. Data corresponding to 14 different residence times in the interval [0, 167] min are 

generated for all the 5 species. 

2.1.2. Enzyme Kinetics 

The Michaelis-Menten model is the most popular equation to describe enzyme kinetics. It 

captures enzyme binding and unbinding with substrate and subsequent irreversible formation 

of the product [29]. Time series data of the substrate S (one variable), simulated at two different 

initial condition (S0) and inlet fluxes (F), are used to extract the functional form using our 

algorithm. A white noise of 5% standard deviation was added to the true profile to generate 

measurements considering 11 time points in the time interval of [0, 10] units. The established 

model is then tested on two additional experiments measured at a different initial substrate 

concentration and inlet flux.  

2.1.3. Lotka-Volterra 
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The third system used in the study is the Lotka-Volterra system originally proposed in [33] and 

used as benchmark to study algorithms of parameter estimations such as in [34,35]. The 

problem describes the dynamics of two states (reported in SI), that was used to simulate data. 

20 experiments are planned using a Latin hypercube sampling method [36] for the initial 

condition of the two states (𝐶!,# , 𝐶$,#). Among the twenty, 10 randomly chosen experiments 

are used for training and 10 experiments are used for testing the model identified by the 

algorithm. Time profiles are simulated in the time interval of [0, 2] units and measurements 

perturbed with 10% gaussian noise at 20 equally space time points are used for modeling 

2.1.4. FitzHugh-Nagumo (FHN) model 

The FHN models, is a system proposed by FitzHugh [37] and Nagumo [38] for modeling giant 

squid neurons and often used to test parameter estimation robustness for spiky dynamics 

[34,35]. The dynamics is represented by a system of two ordinary differential equation (ODE), 

reported in SI. 20 experiments are planned using a Latin hypercube sampling method for the 

initial condition of the two states (𝑉# , 𝑅#) out of which 10 randomly chosen experiments are 

used for training and 10 experiments are used for testing the model identified by the algorithm. 

Time profiles are simulated in the time interval of [0, 10] units and measurements perturbed 

with 10% gaussian noise at 11 equally space time points are used for modeling. 

2.1.5. Microbial fermentation bioreactor 

A microbial fed-batch bioreactor is simulated using a system of ODE of three variables, namely 

the biomass, the substrate and the product. The system of equations is adapted from [39] and 

is reported in the SI. For the base case (discussed in section 3.2), 30 experiments are planned 

using a Latin hypercube sampling method, varying the feed flowrate (F) and the initial 

concentration of biomass (𝑋#) and substrate (𝑆#). The concentration of feed stream is kept 

constant at Sf = 150 g/L. 20 experiments are used to train the model and 10 experiments are 
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used to test the model. Time profiles are simulated in the interval of [0, 12] h and measurements 

perturbed with 15% gaussian noise at 25 equally spaced time points are then used for modeling. 

It is here noted that, for the case study discussed in section 3.3 wherein minimum number of 

experiments required to develop the hybrid models is evaluated, 50 experiments are simulated 

using the same procedure stated above. Subsequently. among these, the test set consisting of 

10 experiments is randomly chosen and kept fixed. With the remaining 40 runs, training sets 

of different sizes are prepared with randomly chosen runs.  

For the extrapolation case study (discussed in section 3.3), in addition to the 50 experiments, 

10 experiments are simulated also using a LHS method but with the initial concentration of all 

the species being outside the ones used to train the model.  

2.2.Method 

All the simulations and modeling are performed in MATLAB 2019b. For all the models, 

concentrations normalized to the maximum value of the respective states in the training set are 

used as inputs. The different models are compared based on the Root Mean Squared Error in 

prediction (RMSEP), computed with respect to the true values (not the perturbed 

measurements), of individual states involved in each case study. Additionally, when a single 

overall metric (aggregating the performance across different runs, time points and state 

variables) is required to represent model performance, the overall normalized Mean Squared 

error in prediction (𝑀𝑆𝐸𝑃%&'(,()*) is used. The formula for the 𝑀𝑆𝐸𝑃%&'(,()* calculation is 

as follows: 

 

𝑀𝑆𝐸𝑃%&'(,()* =
!

(,-./-∙,-1(.	∙,.3)
∑ ∑ ∑ (𝐶1,-,%)5- −	𝐶1,-,%

6'.7)$,.3
18!

,-1(.
-8!

,-./-
%8!                                       (1) 

 

where 𝐶1,-,%)5-  and 𝐶1,-,%
6'.7 are, respectively, the true and predicted concentration of the i-th species 

at t-th time point of the n-th run in the test set, normalized to the maximum value of the 
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respective species in the training set. The details about the framework and the implementation 

of the Functional-Hybrid model and the benchmark hybrid model with ANN (Hybrid-ANN) 

are presented in the following sections. 

2.2.1. Functional-Hybrid model 

Functional-Hybrid models are inspired by the common patterns observed in all the formalized 

equations. In other words, each equation can be decomposed in blocks that are combined 

additively (addition or subtraction). Subsequently, each block is constituted by certain entities 

that are multiplied. Finally, these entities can be represented as functional transformations of 

the system variables including the states representing the system, process conditions (Z) and 

control variables (W). This is encoded in the Functional-Hybrid model as represented 

schematically in Figure 1A, and illustrated through an example in Figure 1B. The algorithm 

takes as input the variables (X) and all the possible functional transformations (f) to be applied 

to each variable, together with the ranking of likely functions. Currently, the prior expectations 

of likely transformations are hardcoded as rankings but in the future, a Bayesian approach with 

prior probability distributions could be considered to encode these beliefs.  

The chosen transformations are applied to the respective variables to create the so-called 

entities, E. These entities then interact in a multiplicative manner to produce the blocks (B) that 

are then additively combined using coefficients to give the final equations (Eq). These 

equations could represent the right-hand-side of a dynamic system of ordinary differential 

equation, as done in all the examples, but can also give rise to a standalone system of algebraic 

equations.  
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Figure 1: (A) Schematic flowchart of the conceptual workflow and the different 

components involved in the set-up of the Functional-Hybrid model. (B) Workflow 

indicated through an example. 

Overall, the system of equations representing the Functional-Hybrid model are as follows: 

𝐸. =	𝑓1(𝑋9 , 𝑘.)                                                                                                                                (2) 

where 𝐸. is the e-th entity and e = 1, 2, 3, …., 	𝑁.%-1-:.  𝑁.%-1-: is defined by the total number 

of transformations (f’s) applied to the different variables (X). k is the vector of all the parameters 

used in the different functional transformations and, thus, 𝑘. is a subset of values of the 
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parameters involved in defining entity 𝐸.. The entities are combined multiplicatively into 

blocks as follows: 

𝐵; =	∏ 𝐸.
:!,#,#$%&%'

.8!                (3) 

where 𝐵; is the b-th block and b = 1, 2, 3, …., 𝑁;<&5=. The number of blocks (𝑁;<&5=) is a 

tuning parameter to be optimized. 𝑦;,. is a binary variable {0,1}, to decide if a certain entity 

𝐸. is present in a given block 𝐵;. Y is thus a 𝑁;<&5= x 𝑁.%-1-: matrix of binary variables for all 

block-entity combination. The blocks are combined additively into equations as follows: 

𝐸𝑞> =	∑ 𝑧>,;	𝑆>,;𝐵;
,!()*+
;8!            (4) 

where 𝐸𝑞> is the v-th equation and v = 1, 2, 3, …., 𝑁.3. The number of equation (𝑁.3) is 

dictated by the number of states of the system.	𝑧>,; is a binary variable {0,1} that models if a 

certain block 𝐵; is present in a given equation 𝐸𝑞>. Subsequently, 𝑆>,; is the continuous 

variable used in the additive combination of the different blocks, which is zero if  𝑧>,; is zero 

or is a real value. Z is thus a 𝑁.3 x 𝑁;<&5= matrix of binary variables for all equation-block 

combination and S is the corresponding matrix of real-valued coefficient values. 

The algorithmic implementation of the Functional-Hybrid model is realized as indicated in the 

flowchart shown in Figure 2A. The algorithm takes as input the variables (X), functional 

transformations (f), their corresponding ranking (R) and the options for the tunable parameter 

𝑁;<&5= (NB). Thereby, the ranking of the functional transformations taken as input from the 

user is used to set-up a stepwise incorporation. First, the top ranked transformations for each 

variable are used to define the entities and the first option for  𝑁;<&5= is used. Optimization is 

performed and performance is evaluated based on 𝑀𝑆𝐸𝑃%&'(,()*. If the selected settings 

succeed in meeting the threshold (defined based on the process noise), the algorithm is 

terminated. If not, optimization is performed using the next option for the tuning parameter, 

𝑁;<&5=. If the performance threshold is not met using the any of the options for 𝑁;<&5=,  the next 
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transformations in the ranking are performed in addition to the already existing ones and the 

optimization process is repeated. The process terminates when the errors shown by the model 

reach the pre-determined threshold. 

 

 

Figure 2: (A) Flowchart representation of the algorithmic workflow of the Functional-

Hybrid model. (B) Flowchart representation of the optimization procedure used in the 

Functional-Hybrid model. 

In particular the optimization of the Functional-Hybrid model is implemented by decoupling 

the discrete optimization for the mathematical structure, dictated by Y and Z, from the 
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continuous optimization for the real-valued parameters defining the structure, k and S. Figure 

2B presents a flowchart representation of the sequential optimization procedure used. The outer 

loop consists of a genetic algorithm (GA), based on the algorithm developed by Deep et al [40] 

for integer and mixed integer optimization, implemented within the in-built function ga(). The 

GA proposes a population of mathematical structures in every iteration. The continuous 

optimizer in the inner loop, based on a non-linear programming optimizer (NLP), solves a 

parameter estimation problem to define the optimal parameters corresponding to each 

mathematical structure proposed by the GA. The interior-point method implemented in 

fmincon() [41]  is used as the NLP optimizer. The inner continuous optimizer in turn calls the 

numerical integrator based on the Numeric Differentiation Formula (NDF) with ode15s() [42], 

in every iteration to simulate the states and compute the mean squared error (MSE) with respect 

to the measured experimental values, which serves as the objective function for the NLP. On 

the other hand, the GA uses as objective the MSE of each proposed mathematical structure 

with its optimal continuous parameters (k,S) determined by the continuous optimizer, and 

optimizes for the structure definition by tuning the Y and Z.  

2.2.2. Hybrid-ANN model 

To illustrate advantages of using the Functional-Hybrid model in practical (or industrial) 

applications, a comparison is made with the equivalent hybrid model using an artificial neural 

network, referred to as Hybrid-ANN, for the microbial fermentation bioreactor case study. The 

equations for the Hybrid-ANN model can be represented as follows: 

𝐸𝑞> =	
7?,
7-
= 𝐴𝑁𝑁(𝐶, 𝑞	)  

where 𝐶> is the concentration of the v-th species that is X, S and P, C is the vector of 

concentration of all the species and q is the weight matrix of the ANN. In this specific case 

study dealing with a microbial fermentation bioreactor, no specific process conditions are 

varied in the simulation. However, for other cases, a vector of process conditions (e.g., DO, 
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pH, Temperature) is additionally provided as input to the ANN. A multi-output feedforward 

ANN is used in this work with a tanh activation function. Integration and optimization are 

performed simultaneously to optimize the ANN weights such that the difference between 

measured and model predicted concentration is minimized. ode15s () and fminunc () is used 

for integration and optimization, respectively [1].  

3.  Results and Discussion 

3.1. Algorithm Validation studies 

 

Figure 3: Time evolution of the normalized concentrations (to the maximum value in the 

training data) of the (A) five chemical species involved in the reaction as a function of the 

residence time in the reaction kinetic identification (B) substrate concentration in the 
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Michaelis-Menten case study (C) two states in the Lotka-Volterra system and (D) the two 

states in the FHN system. The crosses represent the measurements and the dashed line 

represent the model prediction. 

Firstly, the performance of the proposed algorithm was studied on four simple benchmark 

systems: (i) identification of the reaction kinetics from dynamic measurements of the reactant 

and product, (ii) identification of the enzyme kinetics, (iii) Lotka-Volterra system and (iv) FHN 

system. The functional-Hybrid model is trained as described in section 2.2.1 on the training set 

defined in section 2.1 for the respective case study. The trained (or optimized) model is then 

applied on the respective test data to compute the RMSEP and the 𝑀𝑆𝐸𝑃%&'(,()*. The 

supplementary information (S.I. Table 1 through 5) provides the details of the different ranked 

transformations, the converging iteration following the step-wise addition approach, and the 

number of optimal 𝑁;<&5=/ used in each of the four case-studies.  

Table 2: RMSEP made by the Functional-Hybrid model and the final equation deduced 

by it for the different case studies are compared with the mean statistics of the data and 

the actual equations used to generate data, respectively. 

Case States RMSEP 

[units] 

Mean 

[units] 

Learnt Equation Actual Equation 

Reaction 

Kin. 

𝐶@ 5.4 x 10-3 1.145 𝐶!̇ =	−9.6	𝐶!𝐶" 𝐶!̇ =	−0.0296	𝐶!𝐶" 

𝐶A 9.2 x 10-3 1.015 𝐶"̇

=	−1.38	𝐶#𝐶"

− 9.65	𝐶!𝐶" 

𝐶"̇

=	−0.0296	𝐶#𝐶"

− 0.0075	𝐶!𝐶" 

𝐶B 1.5 x 10-2 0.723 𝐶#̇

=	−2.62	𝐶#𝐶"

+ 15.6	𝐶!𝐶" 

𝐶#̇

=	−0.0075	𝐶#𝐶"

+ 0.0296	𝐶!𝐶" 

𝐶C 6.7 x 10-3 0.864 𝐶$̇ = 	11.93	𝐶!𝐶" 𝐶$̇ = 	0.0296	𝐶!𝐶" 
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𝐶D 2.8 x 10-2 0.126 𝐶%̇ = 	8.046	𝐶&𝐶" 𝐶%̇ = 	0.0075	𝐶&𝐶" 

Enzyme 

Kin. 

S 1.0 x 10-3 0.144 �̇� = 	−1.7	
𝑆

𝑆 + 0.35

+ 	0.44	F 

�̇� = 	−1.5	
𝑆

𝑆 + 0.3

+ 	F 

Lotka-

Volterra 

C1 4.2 x 10-1 3.960 𝐶'̇ =	−5.1	𝐶'𝐶(

+ 2.06	𝐶' 

𝐶'̇ =	−𝐶'𝐶( + 2	𝐶' 

C2 1.9 x 10-1 1.850 𝐶(̇ = 	8.4	𝐶'𝐶( − 3.87	𝐶( 𝐶(̇ =		𝐶'𝐶( − 4	𝐶( 

FHN V 3.4 x 10-2 -0.317 �̇�

= 	0.92	𝑉 + 1.58	𝑅

− 	2.53	𝑉) 

�̇� = 	𝑉 + 	𝑅 −	
𝑉)

3  

R 1.3 x 10-2 -0.096 �̇� = 0.34	𝑉 − 0.044

+ 0.19	𝑅 

�̇� = 𝑉 − 0.2 + 0.2	𝑅 

 

For an exemplary run in the test set, Figure 3 presents the comparison of the dynamic evolution 

of the concentration measured (crosses) and predicted (dashed lines) in the different case 

studies. The RMSEP observed on each state for the respective case-study is tabulated in Table 

2. Both the dynamic profile and the RMSEP indicate that the Functional-Hybrid model is 

capable of accurately capturing the true trends and is minimally influenced by the measurement 

noise. Additionally, for these cases, the system of ODE equations learnt by the Functional-

Hybrid model was very close to the original system of ODE used to simulate the data. Table 2 

shows the final equations deduced by the Functional-Hybrid model for the four benchmark 

case studies and the original in-silico model equations used to simulate data. It is noteworthy 

that the continuous parameters (k and S) of the converged equations do not exactly match the 

respective in-silico model since the Functional-Hybrid model, unlike the original model, is 

trained on normalized concentrations.  

3.2.Microbial Fermentation Bioreactor 
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The results from these four case studies validated the performance of the proposed algorithm. 

Subsequently, the Function-Hybrid framework was applied to a case study of relevance to the 

biotech industry, a simulation of an industrial microbial fermentation bioreactor. As detailed 

in section 2.1.5, 30 experiments were generated using the LHS method. 20 randomly chosen 

experiments were used as the training set and following the protocols detailed in Section 2.2.1, 

the Functional-Hybrid model was trained. The final trained (or optimized) model was used to 

predict the test set consisting of the remaining 10 experiments. Figure 4A shows the 

comparison of the true value (black solid line), the perturbed measurements (blue crosses) and 

the predictions (red dashed lines) made by the Functional-Hybrid model for all the three states, 

X, S and P, on an exemplary run in the test set. It is observed that the dynamic profiles predicted 

by the Functional-Hybrid model overlaps the true simulated profiles for all the three variables 

despite being trained using the perturbed noisy measurements. The strict structural relationship 

imposed through domain-specific transformations alleviates the model from being influenced 

by noise and subsequently overfitting to the noise.  

The parity plots presented within the subplots in Figure 4A shows the comparison of true values 

(not the measured or perturbed values) and the predicted values of the respective states X, S 

and P, for all the experiments in the test set. The parity plots do not show any systematic bias 

or any large variation along the diagonal indicating the perfect correlation between the true and 

predicted values. This confirms that the behavior, i.e., the predictions aligning closely with the 

true values, depicted by the exemplary dynamic profile is similar in all the other experiments 

in the test set as well.  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 10, 2021. ; https://doi.org/10.1101/2021.06.09.447664doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.09.447664
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18 

 

Figure 4: (A) Comparison of the true (black solid), measured (blue cross) and Functional-

Hybrid model predicted (red dashed) time profile of an exemplary run from the test set. 

Parity plots of true values (x-axis) and Functional-Hybrid model predicted values (y-axis) 

for all the experiments in the test set is presented in bottom-right, top-right and bottom-

right corner of the plots for the three states X, S and P, respectively. (B) The parity plot 

of true equation (x-axis) and Functional-Hybrid model predicted equation (y-axis) for 

several randomly simulated combinations of X, S and P. 

In addition to accurate predictions of the dynamic profiles, the system of ODE equations learnt 

by the Functional-Hybrid model estimates the values for the three equations 97E
7-
, 7D
7-
, 7B
7-
: 

coherent with the values derived from the original in-silico model. Figure 4B demonstrates the 

correlation of the values of the equation for several randomly simulated combinations of the 

states [X, S and P] derived from the original model (x-axis) and those estimated by the 

Functional-Hybrid model (y-axis).  Though there are slight deviations among the two, the 
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Functional-Hybrid model was capable of learning the representation of the equations that 

resembles the original system of equations. These deviations could be attributed to two factors: 

(i) the Functional-Hybrid model was trained using noisy measurements, which is more realistic 

as the true system can be observed only with some noise, and (ii) the numerical approximations 

due to the type of optimizers used. 

Additionally, it is here to be noted that the scale of the x and y axis in the plots of Figure 4B 

are different and that the slope of the correlation line is 4.67 x 10-2, 6.42 x 10-3 and 1.31 x 10-2 

for the respective three states instead of 1. This is due to the fact that the Functional-Hybrid 

model is learnt based on normalized concentrations of the states while the original system of 

ODE is based on un-normalized concentrations. Thus, as indicates in Figure 4B, the slope of 

the correlation line is equal to the normalization constant used to scale the respective states. 

The finally converged Functional-Hybrid model learns the following equations for the three 

states: 

7E
7-
= 	0.8702	 D

DF#.##H!
	𝑋 − 	0.1977	𝑋	 B

BF#.!IJK		
. 	 B
BF#.#L$H

.			 !
DF#.M!ML

	 −

												0.9379𝑋	. 	𝑃. 	 B
BF#.#L$H

.			 D
DF#.M!ML

−	N
O
	𝑋	  

7D
7-
= −	0.7493	 D

DF#.##H!
	𝑋 + 	0.1873𝑋	 B

BF#.!IJK		
. 	 B
BF#.#L$H

. 			 !
DF#.M!ML

	+ 	N
O
	(𝑆P − 𝑆)  

7B
7-
= 	0.7199 D

DF#.##H!
	𝑋 − 	0.1793𝑋	 B

BF#.!IJK		
. 	 B
BF#.#L$H

.			 !
DF#.M!ML

−	N
O
	𝑃	  

 

Though the converged equations do not have the exact same functional representation as the 

original system of ODEs, Figure 4B demonstrates that the value of the equations estimated by 

the converged Functional-Hybrid model correlate well with the original system of equations. 

The difference in the functional representation learnt by our modeling framework could be 

attributed to (i) that it is trained on noisy data, (ii) the use of local optimizer in the Functional-

Hybrid framework, (iii) the two functional representations are numerically equivalent, which 
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seems plausible from the Figure 4B, (iv) the set of experiments used for model training cannot 

distinguish between the two forms and specific experiments might be required to distinguish 

the system of ODE derived by Functional-Hybrid model from the original system of ODE. In 

this regard, further model discrimination analysis [43] can be used to increase the reliability on 

the selected structures by generating data that assures structural identifiability [43]. 

3.3.Comparison with the Hybrid-ANN model 

The performance of the Functional-Hybrid model is compared with the benchmark approach 

of developing hybrid models, by using an ANN, for the microbial fermentation bioreactor case 

study presented in the previous section. The same 20 experiments considered to build the 

Functional-Hybrid model are used to train the Hybrid-ANN using the methodology detailed in 

Section 2.2.2. Subsequently the same test set is used to evaluate the performance of both the 

models. Figure 5 illustrates the same analysis as in Figure 4 but now for the Hybrid-ANN 

model. 
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Figure 5: (A) Comparison of the true (black solid), measured (blue cross) and Hybrid-

ANN model predicted (red dashed) time profile of an exemplary run from the test set. 

Parity plots of true values (x-axis) and Hybrid-ANN model predicted values (y-axis) for 

all the experiments in the test set is presented in bottom-right, top-right and bottom-right 

corner of the plots for the three states X, S and P, respectively. (B) The parity plot of true 

equation (x-axis) and Hybrid-ANN model predicted equation (y-axis) for several 

randomly simulated combinations of X, S and P. 

 

It could be observed in Figure 4A that the Functional-Hybrid model does not show any 

systematic biases or large variances indicating almost a perfect correlation between the true 

and predicted values. These predictions thus resulted in very low RMSEP 0.24 g/L, 1.15 g/L 

and 0.28 g/L for the states X, S and P, respectively. In contrast, the RMSEP attained by the 

Hybrid-ANN model is 0.45 g/L, 2.25 g/L and 1.35 g/L for X, S and P, respectively which is 

double that of the Functional-Hybrid model for X and S, and almost five times for the state P. 

As shown in parity-plots of Figure 5A, the Hybrid-ANN model consistently underpredicts the 

concentration of X and overpredicts the concentration of P for all the experiments in the test 

set. While for the state S, the Hybrid-ANN model shows a higher variance throughout the entire 

concentration range and also predicts unrealistic concentrations, i.e., negative values of 

concentration. These observations are reflected in higher RMSEPs of the Hybrid-ANN 

compared to the Functional-Hybrid model for all the three states.  

While the equations estimated by Functional-Hybrid model show a very good correlation with 

the original system of equations (c.f. Figure 4B), the equations deduced by the Hybrid-ANN 

model show deviations from the numerical values of the original equation (c.f. Figure 5B). At 

lower concentration, there is good agreement between the deduced and original equation, but 

with increasing concentration the variance between the predicted and true equation increases 
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considerably. Additionally, at higher concentration there is a systematic bias in the predicted 

equation which overestimates the true equation. These trends hold true for all the three states:X, 

S and P. 

3.4.Practical advantages of Functional-Hybrid model 

After performing a base case comparison between the two models, the Functional-Hybrid and 

the Hybrid-ANN model, the number of experiments required to train the models and their 

performance in extrapolation was studied. For these studies, again the microbial fermentation 

bioreactor was considered. As described in Section 2.1.5, 50 experiments were designed using 

the LHS method and a test set of 10 experiments were randomly chosen among these 

experiments, and kept fixed.  

 

Figure 6: (A) Comparison of the normalized MSEP score of the Functional-Hybrid model 

and the Hybrid-ANN trained using different number of experiments in interpolation. (B) 

Comparison of the Functional-Hybrid model trained using 20 experiments (F-H (20 

Exp)), Hybrid-ANN trained using the same 20 experiments (H-A (20 Exp)) and Hybrid-

ANN trained using 40 experiments (H-A (40 Exp), the point at which the performance of 
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Hybrid-ANN approaches Functional-Hybrid in interpolation, shown in Figure 6 A) based 

on normalized MSEP score. 

 

To study the number of experiments required to train a reliable model, from the remaining 40 

experiments, training sets of different sizes were generated using a randomly chosen subset of 

experiments. The exact same training and test set was used to train the two models. Figure 6A 

shows the comparison in terms of 𝑀𝑆𝐸𝑃%&'(,()*, calculated as per the definition introduced 

in the Methods section, for the two models trained using different number of experiments. It 

can be observed that the Functional-Hybrid model requires about 10-20 experiments to reach 

a very accurate performance while the Hybrid-ANN requires about 40 experiments to reach 

the same level of performance attained by the Functional-Hybrid model with 20 experiments 

(highlighted through the zoomed view presented within Figure 6A). The prior domain 

knowledge encoded in the form of transformations helps the Functional-Hybrid model to 

converge to a good model with much lesser number of experiments in comparison the Hybrid-

ANN that requires more experiments to learn all the dependencies accurately. Since a lot of 

resource is involved in the experiments and analytics, the reduction in the experimental effort 

by 50% is of great value to the biotech industry.  

Additionally, the strong structures imposed in the Functional-Hybrid model also makes it very 

robust in its extrapolation capabilities. Figure 6B compares the metric 𝑀𝑆𝐸𝑃%&'(,()*	for 

extrapolation experiments made by the different models namely, Functional-Hybrid model 

trained with 20 experiments, Hybrid-ANN model trained with 20 experiments and a Hybrid-

ANN model trained with 40 experiments (i.e., the number of experiments where the 

performance of the Hybrid-ANN matches the Functional-Hybrid model in the case of 

interpolation).  
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The Hybrid-ANN trained with 20 experiments perform very poor in extrapolation with the 

𝑀𝑆𝐸𝑃%&'(,()* being an order of magnitude higher than the ones observed with the Functional-

Hybrid model. The 𝑀𝑆𝐸𝑃%&'(,()* of the Functional-Hybrid and Hybrid-ANN model, both 

trained with 20 experiments, in interpolation is 5.53 x 10-5 and 1 x 10-4, respectively, resulting 

in a difference of only 4.54 x 10-5. However, the 𝑀𝑆𝐸𝑃%&'(,()* of the Functional-Hybrid and 

Hybrid-ANN models when extrapolating is 2.78 x 10-4 and 0.0027, respectively, resulting in a 

difference of an order of magnitude. This indicates that the ability to learn the true trend in the 

training can significantly worsen during extrapolation, thereby leading to poor performance 

and meaningless results if the models are used for process optimization. In order for such 

models to be useful for extrapolation, they have to reach sufficiently good training 

performances, thus, requiring at least 40 experiments during the training. Despite that, the 

Hybrid-ANN model shows a 𝑀𝑆𝐸𝑃%&'(,()* of 4.1 x 10-4, which is about 1.5 times higher in 

comparison to that of the Functional-Hybrid model. On the other hand, the Functional-Hybrid 

model produces the most accurate estimates while using the lesser number of experiments, 

making this model suitable for process optimization and also for its integration with real-time 

measurements to facilitate monitoring and control [44]. 

4. Conclusion 

Hybrid models that are capable of integrating engineering know-how (first-principle models) 

with data (machine learning) have become a pragmatic solution to modeling in different areas 

of chemical engineering and biotechnology. However, the data-driven part of these hybrid 

models is largely dependent on conventional machine learning methods, such as artificial 

neural network, support vector machines, gaussian processes etc., thus making it difficult for 

process engineers to interpret the patterns learnt by these models. On the other hand, there are 

common functional forms specific to each domain that are easily recognized by the experts.  
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This work presented a novel hybrid modeling framework, Functional-Hybrid models, that uses 

an adapted symbolic regression strategy based on domain-specific ranked functional forms to 

build dynamic models that are easier to interpret by domain experts. The framework is 

successfully implemented for four benchmark systems and a system of relevance to process 

engineers, a microbial fermentation bioreactor. The developed Functional-Hybrid model is 

compared against a conventional hybrid model based on artificial neural network (Hybrid-

ANN). The models are compared based on its accuracy in interpolation and extrapolation 

where we could demonstrate that the error of the Functional-Hybrid model is at least 2-times 

lower than in the Hybrid-ANN. Further, the experimental burden of developing these models 

was evaluated in terms of number of experiments required to build a robust model for either 

case, with Functional-Hybrid models requiring only 20 experiments and Hybrid-ANN needing 

at least 40 experiments. The additional structure enforced by the domain specific functional 

transformations in the Functional-Hybrid model enhances the robustness of the predictions, 

specifically when extrapolating, while reducing the experimental data needed to train such 

models. 

To demonstrate the concept, the case studies presented in this work are based on simulations. 

However, addressing experimental cases (not based on in silico data) are the foreseen next 

steps. Additionally, the current framework could be improved in terms of computational 

performance, which constitutes another future research direction. 
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Supplementary Information 

System of equations used to simulate data for the different case studies. 

1. Chemical reaction system 

7?-
7-

=	−	0.0296	 ∙ 𝐶@ ∙ 𝐶A 	  

7?.
7-

=	−	0.0296	 ∙ 𝐶@ ∙ 𝐶A −	0.0075	 ∙ 𝐶A ∙ 𝐶B  

7?/
7-

= 0.0296	 ∙ 	𝐶@ ∙ 𝐶A − 	0.0075	 ∙ 𝐶A ∙ 𝐶B  

7?0
7-

= 0.0296	 ∙ 	𝐶@ ∙ 𝐶A  

7?1
7-

= 	0.0075	 ∙ 𝐶A ∙ 𝐶B  

where 𝐶@, 𝐶A, 𝐶B, 𝐶C and 𝐶D are the concentration of different chemical species A, B, P, D 

and S. 

 

S.I. Table1: Ranked transformations used as input to the algorithm, stepwise addition 

iteration where optimized model meets threshold (Converged) and the optimal number 

of blocks (𝑵𝑩𝒍𝒐𝒄𝒌𝒔) for the chemical reaction kinetics case study. 

Rank Transformation Entity Converged 𝑵𝑩𝒍𝒐𝒄𝒌𝒔 

1. Identity 𝐶@, 𝐶A, 𝐶B,	𝐶C, 𝐶D Yes 2 

2. Power law (𝐶@)=2, (𝐶A)=3, (𝐶B)=4, (𝐶C)=5, 

(𝐶D)=6 

- - 

3. Monod ?-
?-F=7

 , ?.
?.F=8

,  ?/
?/F=9

,  ?0
?0F=7

, ?1
?:F=7

 - - 

 

2. Enzyme Kinetics 

7D
7-
= 𝐹 −	 !.L	D

#.MFD
  

where S is the substrate concentration and F is the inflow flux of the substrate.  
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S.I. Table2: Ranked transformations used as input to the algorithm, stepwise addition 

iteration where optimized model meets threshold (Converged) and the optimal number 

of blocks (𝑵𝑩𝒍𝒐𝒄𝒌𝒔) for the enzyme kinetics case study. 

Rank Transformation Entity Converged 𝑵𝑩𝒍𝒐𝒄𝒌𝒔 

1. Identity 𝑆, 𝐹 No - 

2. Inverse-Linear !
DF=2

  Yes 2 

3. Monod D
DF=3

  - - 

4. Hill Kinetics D+5

D+5F=4
  - - 

 

3. Lotka-Volterra System 

7?!
7-
= 	2 ∙ 𝐶1	 − 𝐶1 ∙ C2  

7?$
7-
= 	 − 4 ∙ 𝐶2 + 𝐶1. C2  

where C1 and C2 are the concentrations of the two states involved in the Lotka-Volterra 

system. 

S.I. Table 3: Ranked transformations used as input to the algorithm, stepwise addition 

iteration where optimized model meets threshold (Converged) and the optimal number 

of blocks (𝑵𝑩𝒍𝒐𝒄𝒌𝒔) for the Lotka-Volterra problem. 

Rank Transformation Entity Converged 𝑵𝑩𝒍𝒐𝒄𝒌𝒔 

1. Identity 𝐶!, 𝐶$ Yes 3 

2. Quadratic (𝐶!)$, (𝐶$)$ - - 

3. Sigmoid ?2
?2F=2

, ?3
?3F=3

  - - 

 

4. FitzHugh-Nagumo (FHN) System 
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7O
7-
= 	(𝑉 −	O

4

M
+ 𝑅)  

7W
7-
= 	(𝑉 − 	0.2	 + 	0.2	𝑅)  

 

where V and R are the concentrations of the two states involved in the FHN system. 

S.I. Table 4: Ranked transformations used as input to the algorithm, stepwise addition 

iteration where optimized model meets threshold (Converged) and the optimal number 

of blocks (𝑵𝑩𝒍𝒐𝒄𝒌𝒔) for the FHN system. 

Rank Transformation Entity Converged 𝑵𝑩𝒍𝒐𝒄𝒌𝒔 

1. Identity 𝑉, 𝑅 No - 

2. Quadratic 𝑉$, 𝑅$ Yes 4 

3. Cubic 𝑉M, 𝑅M  - - 

4. Sigmoid O
OF=2

, W
WF=3

  - - 

 

5. Microbial Fermentation Bioreactor 

7E
7-
= 27.3985	 D

DF$.MMIK
	 !
BF$H.K#MJ

	𝑋 −	N
O
𝑋   

7D
7-
= −1256.3		 D

DFH.M#KH
	 !
BF$L$.M#J

	𝑋 − N
O
(	𝑆P − 𝑆)  

7B
7-
= 593.0957	 D

DFH.M#KH
 !
BF$L$.M#J

	𝑋 −	N
O
	𝑃  

7O
7-
= 𝐹  

where X, S and P are the concentration of biomass, substrate and product, F is the feed rate 

and 𝑆P is substrate concentration of the feed.  

S.I. Table 5: Ranked transformations used as input to the algorithm, stepwise addition 

iteration where optimized model meets threshold (Converged) and the optimal number 

of blocks (𝑵𝑩𝒍𝒐𝒄𝒌𝒔) for the Microbial Fermentation case study. 
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Rank Transformation Entity Converged 𝑵𝑩𝒍𝒐𝒄𝒌𝒔 

1. Identity 𝑋, 𝑆, 𝑃 No - 

2. Sigmoid 	 D
DF=2

, B
BF=3

  No - 

3. Inverse-Linear 		 !
DF=4

, !
BF=5

  Yes 3 

4. Inverse-Linear !
DF=6

, !
BF=7

  - - 

5. Inverse-Quadratic !
DF=8F	=9D3

, !
BF=;F	=2<B3

  - - 

 

 

 

 

S.I. Table 6: RMSEP made by the Functional-Hybrid model for the different case study 

compared with the min, max and mean statistics of the data and the final equations 

deducted by the Functional-Hybrid model for the different cases. 

 

Case States RMSEP 

[units] 

Min 

[units] 

Max 

[units] 

Mean 

[units] 

Equation 

Reaction Kin. 𝐶@ 0.0054 0.38 2 1.145 𝐶!̇ =	−9.6	𝐶!𝐶" 

𝐶A 0.0092 0.03 2 1.015 𝐶"̇ =	−1.38	𝐶#𝐶"

− 9.65	𝐶!𝐶" 

𝐶B 0.0150 0.0 1.24 0.723 𝐶#̇ =	−2.62	𝐶#𝐶"

+ 15.6	𝐶!𝐶" 

𝐶C 0.0067 0.0 1.62 0.864 𝐶$̇ = 	11.93	𝐶!𝐶" 

𝐶D 0.0282 0.0 0.36 0.126 𝐶%̇ = 	8.046	𝐶&𝐶" 
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Enzyme Kin. S 0.001 0.0252 0.939 0.1443 �̇� = 	−1.7	
𝑆

𝑆 + 0.35 + 	0.44	F 

Lotka-

Volterra 

C1 0.42 1.36 8.76 3.96 𝐶'̇ =	−5.1	𝐶'𝐶( + 2.06	𝐶' 

C2 0.197 0.38 5.00 1.85 𝐶(̇ = 	8.4	𝐶'𝐶( − 3.87	𝐶( 

FHN V 0.0342 -2.823 2.909 -0.317 �̇� = 	0.92	𝑉 − 1.58	𝑅

− 	2.53	𝑉) 

R 0.013 -3.221 4.607 -0.096 �̇� = 0.34	𝑉 − 0.044 + 0.19	𝑅 
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