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Abstract	
  40	
  

 Drastic biodiversity declines have raised concerns about the deterioration of ecosystem 41	
  

functions and have motivated much recent research on the relationship between species diversity 42	
  

and ecosystem functioning. A functional trait framework has been proposed to improve the 43	
  

mechanistic understanding of this relationship, but this has rarely been tested for organisms other 44	
  

than plants. We analyzed eight data-sets, including five animal groups, to examine how well a trait-45	
  

based approach, compared with a more traditional taxonomic approach, predicts seven ecosystem 46	
  

functions below and above ground. Trait-based indices consistently provided greater explanatory 47	
  

power than species richness or abundance. The frequency distributions of single or multiple traits in 48	
  

the community were the best predictors of ecosystem functioning. This implies that the ecosystem 49	
  

functions we investigated were underpinned by the combination of trait identities (i.e., single-trait 50	
  

indices) and trait complementarity (i.e., multi-trait indices) in the communities. Our study provides 51	
  

new insights into the general mechanisms that link biodiversity to ecosystem functioning in natural 52	
  

animal communities and suggests that the observed responses were due to the identity and 53	
  

dominance patterns of the trait composition rather than the number or abundance of species per se.	
   	
  54	
  



Introduction	
  55	
  

 Unprecedented species extinctions during the past decades have raised concerns about the 56	
  

consequences of biodiversity loss for the functioning of ecosystems and associated ecosystem 57	
  

services that are fundamental for human well-being [1]. Ample evidence shows that species 58	
  

richness and diversity can enhance ecosystem functioning [2, 3]. However, much variation in the 59	
  

relationship between biodiversity and functioning (BEF) remains to be explained. To improve 60	
  

predictions and mechanistic understanding of BEF it has been increasingly accepted that instead of 61	
  

focusing on the taxonomic identity of organisms, the diversity of functional traits of species within 62	
  

a community should be studied [2 - 5]. However, the usefulness of such trait-based compared to 63	
  

species-based approaches, as well as the relative importance of single vs. multiple traits for 64	
  

ecosystem functioning remained largely unexplored in organisms other than plants.	
  65	
  

In early attempts to link species traits to ecosystem functioning, species were sorted into 66	
  

functional groups based on the similarity of their traits often according to experts' opinion (e.g., 67	
  

[6]). Although this was a step forward and a useful exercise, the approach was criticized because 68	
  

functional groups failed to consider within-group variation in traits, and they rarely explained more 69	
  

variation in ecosystem functioning compared with randomly assembled groups of species [7]. 70	
  

Recently, quantitative measures have been developed that use multivariate techniques to integrate 71	
  

multiple traits into a single continuous trait diversity index. These measures capture value, range, or 72	
  

distribution of functional traits in a community (hereafter “functional diversity”). They are 73	
  

promising tools that could increase our understanding of the mechanisms that drive ecosystem 74	
  

functioning [8 - 11]. However, most studies have used functional diversity merely as a proxy for 75	
  

ecosystem functioning, but without actually measuring the function and explicitly linking it to the 76	
  

functional diversity measure. For functional diversity measures to be useful for explaining 77	
  

ecosystem functioning, their predictive ability needs to be tested, and they should provide 78	
  

information beyond that given by measures based exclusively on species richness and abundances 79	
  

[5]. Here, we intend to fill this gap in BEF research by examining the relationship between trait- or 80	
  



species-based indices and a number of animal provided ecosystems functions measured below- and 81	
  

above-ground.	
  82	
  

 There is an ongoing debate about which of the many functional diversity measures should 83	
  

best predict ecosystem functioning, and which mechanisms these relationships reflect [5]. We 84	
  

summarize the main mechanisms of ecosystem functioning that different trait-based indices 85	
  

emphasize (Figure 1). First, if differences among species are unimportant, the overall numerical or 86	
  

biomass abundance of organisms in a community might be better predictors than any of the 87	
  

measures that incorporate functional traits (Figure 1a). Thus, overall abundance provides a null 88	
  

model in which all species in the community are equally efficient regardless of the trait levels they 89	
  

have. Note that trait-based indices consider both, which traits are assumed to be important, but also 90	
  

their trait values (continuous traits, e.g., different values of body size) or levels (discrete traits, e.g., 91	
  

diet ‘specialist’ or ‘generalist’). For simplicity we refer only to trait levels throughout. Second, if a 92	
  

single trait level is strongly linked to an ecosystem function, abundance of this trait level may best 93	
  

predict the functioning (the functional identity hypothesis) [12 - 14; Figure 1b]. Alternatively, the 94	
  

complementarity of different traits in the community may be important for the functioning in the 95	
  

ecosystem (the functional complementarity hypothesis) [4, 15]. In this case, indices that measure 96	
  

presence or absence of certain trait levels (i.e., functional richness, Figure 1c), or those that consider 97	
  

abundance of different trait levels in the community (Figure 1d) will explain most of the 98	
  

functioning. In the latter case, weighted functional diversity indices will best predict ecosystem 99	
  

functioning. It should be noted that only positive functional diversity-ecosystem functioning 100	
  

relationships indicate functional complementarity. Negative relationships reflect components of 101	
  

both functional identity and complementarity with only a few dominant trait levels being important. 102	
  

Hence, the functional identity and complementarity hypotheses are not mutually exclusive and 103	
  

several studies have found that a combination of the two explained most of the variation for several 104	
  

ecosystem functions [16 - 20]. Analyzing which	
  functional diversity indices can best explain a set 105	
  



of ecosystem functions may provide clues to the main drivers of these functions and increase our 106	
  

mechanistic understanding of the BEF relationship. 	
  107	
  

Most tests of how well multivariate functional diversity is linked to ecosystem functioning 108	
  

(Figure 1 c and d) have been conducted in small-scale, highly controlled plant communities. In 109	
  

addition, we have not been able to find any investigations of this relationship for terrestrial animals 110	
  

(see the literature summary in Table S1). Hence, we analyzed eight data sets collected from the field 111	
  

along land-use gradients, and covering five terrestrial animal groups and seven ecosystem functions 112	
  

above and below ground: bees (pollination), carabid beetles (biocontrol of crop pests, biocontrol of 113	
  

weeds), earthworms (bioturbation), soil nematodes (nutrient cycling) and dung beetles (dung 114	
  

removal, seed burial). Increased understanding of the BEF relationship in these systems is important 115	
  

because both species and functional diversity are under great threat from land-use intensification 116	
  

[21, 22]. Furthermore, sustainable development of human society in the face of rapidly increasing 117	
  

human populations will depend on the ways we manage these ecosystems and the services they 118	
  

provide. However, we do not attempt to describe direct effects of land-use on biodiversity or 119	
  

ecosystem functioning as this is done in numerous previous studies (e.g., [22 - 24]). Instead, we use 120	
  

the land-use gradients in order to assure we capture variability in different aspects of the community 121	
  

composition such that we can detect and assess its impacts on functioning.	
  122	
  

We tested which of the four groups of indices in Figure 1 best predicted ecosystem 123	
  

functioning in our data sets. More precisely, we explored (i) whether trait-based approaches offer 124	
  

greater explanatory power of ecosystem functioning than indices based only on species presence 125	
  

and abundance; (ii) whether single trait measures calculated as community weighted trait means 126	
  

(CWM, reflecting the functional identity hypothesis) explain ecosystem functioning better or worse 127	
  

than multivariate functional diversity measures (reflecting the functional complementarity 128	
  

hypothesis); and, (iii) whether the predictive power of multivariate functional diversity measures 129	
  

increases when the traits are weighted by numerical or biomass abundance of the species in the 130	
  

communities. 	
  131	
  



Material and methods	
  132	
  

Data description	
  133	
  

We analyzed eight field studies that included five animal groups (bees, carabid beetles, 134	
  

earthworms, soil nematodes, and dung beetles) which deliver seven key ecosystem functions 135	
  

(pollination, biocontrol of crop pests, biocontrol of weeds, bioturbation, nutrient cycling, dung 136	
  

removal, and seed burial). We focus on field studies because knowledge gained by them is an 137	
  

important complement to the numerous experimental studies in BEF research. Despite difficulties to 138	
  

demonstrate direct causal links [25], field studies better reflect the relative importance of 139	
  

mechanisms in real world situations that are governed by processes acting at other scales than the 140	
  

commonly investigated small-scale BEF experiments. The data we used had not been analyzed in 141	
  

this context previously. For each animal group we collected species' trait information from 142	
  

identification keys and from a number of published research papers and databases. We included 143	
  

traits which are often measured for a specific animal group and shown to be key traits in affecting 144	
  

the organisms’ response to environmental change, and/or to have functional significance (see Text 145	
  

S1 for the discussion about the trait choice and list of traits and references). Adult specimens were 146	
  

identified to species, except for pollinators and nematodes where similar species not identifiable in 147	
  

the lab were assigned to the same morphspecies. Analyses were done independently for each 148	
  

separate data-set and ecosystem function.	
  149	
  

	
  150	
  

Pollination: We analyzed three separate data-sets conducted in three crop systems (field beans, 151	
  

strawberries, and spring oilseed rape) in UK, Germany, and Sweden respectively [26]. Bees were 152	
  

sampled in 10 fields in each crop type by hand-netting along a fixed transect. Fields were located 153	
  

along a gradient of landscape complexity measured as percentage arable land. Functioning was 154	
  

measured as total weight of fruits on five to ten plants (depending on the crop) in 4 plots per field.	
  155	
  

	
  156	
  



Biocontrol of pests: We analyzed data from studies replicated in six European regions: Ireland, 157	
  

West Germany, East Germany, Poland, and two provinces in Sweden: Uppsala and Scania [27]. In 158	
  

each country, eight cereal fields where located in contrasting landscapes with low vs. high levels of 159	
  

agricultural intensification. Carabid beetles were collected with five pitfall traps per field. To 160	
  

measure function delivery by ground-dwelling predators, exclosure experiments were used to 161	
  

calculate the difference between aphid population growth in full exclosure (excluding ground-162	
  

dwelling and flying predators and parasitoids using cages and barriers), and aphid population 163	
  

growth when ground-dwelling predators (mainly carabids) had access to aphids (excluding flying 164	
  

predators and parasitoids using cages). 	
  165	
  

	
  166	
  

Biocontrol of weeds: We used data from a study conducted in Germany in 22 winter wheat fields 167	
  

selected along a gradient in landscape complexity measured as percentage arable land (11 paired 168	
  

fields, [28]). Carabids were sampled using four pitfall traps per field. Biocontrol of weeds was 169	
  

calculated for four common species: goosegrass (Galium aparine L.; Seed consumption Ga), 170	
  

creeping thistle (Cirsium arvense L. Scop.; Seed consumption Ca), rough-stalked meadow-grass 171	
  

(Poa trivialis L.; Seed consumption Pt), and loose silky bentgrass (Apera spica-venti L; Seed 172	
  

consumption As) separately. To measure percentage of seed loss due to ground-dwelling 173	
  

invertebrates, exclosure experiments were used to calculate the difference between percentage of 174	
  

remaining seeds from the initial seed number or seed weight in full exclosure (vertebrates and 175	
  

invertebrates excluded using cages with a small mesh size) and when only the vertebrates were 176	
  

excluded (using cages with a large mesh size) so that carabids had access to seeds. 	
  177	
  

	
  178	
  

Bioturbation: Earthworm communities were studied in cereal fields in the Swedish provinces of 179	
  

Uppland and Scania. In each province, earthworm communities were assessed in six sets of three 180	
  

farms that differed in farm management in close proximity to one another (see [29] for design of the 181	
  



study). Earthworm communities were estimated from four soil samples (30×30×30 cm) per field, 182	
  

taken at least 20m from the field edges and with a 20m distance between each sample. Earthworms 183	
  

were carefully hand sorted. Bioturbation was measured as above-ground cast production estimated 184	
  

by measuring in situ cast production over time on four observation squares at each field (dry matter 185	
  

soil per unit area and time). Bioutrbation is an important ecosystem function as it affects soil 186	
  

formation, water supply and flood and erosion control through its influence on pedogenesis and 187	
  

infiltration and storage of water in soil [30]. Earthworms actively participate to the process of 188	
  

bioturbation as they may ingest large amounts of soil and litter, and hence become major regulators 189	
  

of the dynamics of litter and SOM in the ecosystem [31].	
  190	
  

	
  191	
  

Nutrient cycling: Soil surveys from 44 agricultural sites in the Netherlands were analyzed [32]. In 192	
  

each field, 320 soil cores were randomly collected and mixed. Nematodes were extracted from 100g 193	
  

sub-subsamples. 150 randomly chosen individual nematodes were identified per site. As a measure 194	
  

of ecosystem function we used total amount of phosphorous (P total) in soil as a proxy for nutrient 195	
  

cycling. Nematode abundance is strongly correlated to soil P and through their micro-bioturbation 196	
  

activity high nematode abundances might contribute to high P retention [33].	
  197	
  

	
  198	
  

Dung removal and seed burial: We used data collected from six forest sites in Sabah, Malaysian 199	
  

Borneo  (two old-growth forest, two low-intensity selectively logged forest and two high-intensity 200	
  

logged forest) [34]. Dung beetles were sampled using 10 dung-baited pitfall traps per site. Dung 201	
  

removal was measured by placing a pile of cattle dung at each of the 10 points one month after the 202	
  

trapping and collecting the remaining dung after 24 hours. Plastic beads of three sizes (small, 203	
  

medium, large) were used as seed mimics and placed in the dung to measure seed removal rates. 	
  204	
  

	
  205	
  



Diversity indices	
  206	
  

For each community we calculated several biodiversity indices (Table 1) divided into the 207	
  

four groups shown in Figure 1. For indices that were weighted by numerical or biomass abundance, 208	
  

we used the subscripts “/n” and “/b” respectively. Biomass abundance of each species in a 209	
  

community was obtained by multiplying the number of individuals of each species by its average 210	
  

body mass. For bees and carabid beetles, average body masses were estimated from a measure of 211	
  

body size using allometric relationships (based on intertegular distance for bees [35]; total body 212	
  

length for carabids [36]). For earthworms, nematodes, and dung beetles we used body mass 213	
  

measurements; dry body mass measured directly or fresh weight converted to dry body mass. For 214	
  

earthworms and nematodes, body mass was estimated separately for field populations of adults and 215	
  

juveniles, and then weighted by their proportional numerical abundances. 	
  216	
  

First, we calculated species-based indices from species presence, and numerical or biomass 217	
  

abundance (Sx, where x is the diversity index used): species richness (Srich), Pielou’s evenness 218	
  

based on species numerical or biomass abundance (Seve /n and Seve/b), Shannon diversity index 219	
  

based on numerical or biomass abundance (Ssh/n and Ssh/b), and total abundance or biomass of the 220	
  

community (Stot/n and Stot/b). 	
  221	
  

Second, we calculated single trait-based indices, i.e., community weighted means for each 222	
  

trait in a community (Figure 1b), weighted by their relative numerical (CWMx/n, [37]) or biomass 223	
  

abundances (our adjusted index, CWMx/b), where x is the name of the trait or a trait dominant level 224	
  

for categorical traits. If a trait was categorical, we used the frequency of the most abundant trait 225	
  

level in the community.	
  226	
  

Multi-trait indices are often described by three independent groups of measures [38] – 227	
  

functional richness, functional evenness and functional diversity [11, 39], which capture different 228	
  

aspects of the functional diversity [11]. Each group of measures can be calculated in several 229	
  

different ways, but there is no consensus on which index within each group performs best. To test 230	
  



our question about relative importance of weighted vs. non-weighted FD indices we calculated 14 231	
  

commonly used multivariate functional diversity measures, which we divided into two groups. The 232	
  

first group considers only the presence or absence of trait levels (two functional richness indices 233	
  

FRx, Figure 1c). The second group comprises twelve functional diversity indices weighted by 234	
  

numerical and biomass abundance (FDx/n and FDx/b, Figure 1d), therefore including both 235	
  

functional divergence and functional evenness measures. All indices are based on a species per 236	
  

species trait-distance matrix. Given that all datasets contain traits coded as categorical variables, all 237	
  

distance matrices based on species traits were calculated using Gower distance with Podani's 238	
  

extension to ordinal variables [11, 40, 41]. 	
  239	
  

For the two functional richness measures (FRx) we first calculated a measure based on 240	
  

dendrograms (FRdendr, [8]). The dendrogram was constructed using the UPGMA clustering 241	
  

algorithm, as it yielded a dendrogram with the highest cophenetic correlation with our original 242	
  

distance matrices and has also been identified to perform best in most cases [41]. The cophenetic 243	
  

correlation measures how faithfully a dendrogram preserves the original pairwise distances. Second, 244	
  

we estimated the minimum volume required to contain a set of points in trait-space (FRminvol, 245	
  

[11]). A Cailliez correction was applied when the species-by-species distance matrix could not be 246	
  

represented in a Euclidean space [42]. However, the quality of the reduced space was not as high as 247	
  

the quality measured as cophenetic correlation for the dendogram-based approach (quality 248	
  

FRminvol = 0.51 ± 0.11, quality FRdendr = 0.8 ± 0.04). 	
  249	
  

Next, we calculated the twelve functional diversity measures weighted by numerical or 250	
  

biomass abundance (FDx). The first four indices (FDdendr.wc/n, FDdendr.wc/b, FDdendr.ac/n, 251	
  

FDdendr.ac/b) are weighted versions of FRdendr implemented specifically for this paper. In order 252	
  

to construct the weighted indexes, before summing the branches of a dendrogram, each branch is 253	
  

weighted by the relative numerical or biomass abundance of each species within the community 254	
  

(FDdendr.wc/n, FDdendr.wc/b). Hence, for each terminal branch, the weighting is done according 255	
  

to the abundance of the terminal species in this branch, but for each internal branch, the weighting 256	
  



is done by the average of the abundances of all the species descending form this internal branch. 257	
  

This index is highly correlated with the weighting procedure proposed in [43], but has the 258	
  

advantage that instead of building a different dendogram for each community, it builds a single 259	
  

dendrogram for all communities, which is the  recommended approach [41]. The next two indices 260	
  

are constructed in the same way, but weighted by the mean relative proportion of numerical or 261	
  

biomass abundance of each species with respect to the species with highest numerical or biomass 262	
  

abundance across all communities (FDdendr.ac/n, FDdendr.ac/b). While the first index relates to the 263	
  

evenness of species in a community, the second one takes into account the relative numerical or 264	
  

biomass abundances in a community with respect to all the other analyzed communities. The 265	
  

remaining eight indices are based on the convex hull space: functional divergence (FDdiv/n, 266	
  

FDdiv/b, [11]), functional dispersion (FDdis/n, FDdis/b, [10]), and Rao’s quadratic entropy 267	
  

(FDRao/n, FDRao/b [44]). Functional dispersion and Rao’s quadratic entropy are highly correlated, 268	
  

but we included both to enable comparison with other studies that have used these indices. Finally, 269	
  

we calculated two measures of functional evenness (FDeve/n, FDeve/b; [11]). 	
  270	
  

	
  271	
  

Statistical analysis	
  272	
  

 For each dataset we ranked the indices according to their relative performance in explaining 273	
  

functioning. For that, we focus only on the explanatory power (measured as R2) of different indices. 274	
  

First, we used linear mixed-effect models and calculated their marginal R2 [45].  For each 275	
  

ecosystem function (response variable), we built one single-variable model for each of the diversity 276	
  

indices (explanatory variable). For datasets that included observations that were collected at 277	
  

multiple times within a region or a field we included these (Field or Region) as random factors. The 278	
  

residuals from all models were plotted and visually inspected. When necessary, data were 279	
  

transformed by log10(x+1) or arcsine square root to meet model assumptions of normality. To meet 280	
  

the assumptions of homoscedasticity we used a constant variance function when necessary. We only 281	
  



provide p-values in the appendix for completeness, and we do not interpret them as indicators of 282	
  

statistical significance due to the risk of Type I errors from multiple testing on the same data. 283	
  

Indices were ranked according to the R2 value obtained and a relative rank bounded between 0 and 1 284	
  

was calculated for each dataset, with 0 being the best ranked index. 	
  285	
  

To compare the relative performance among groups of indices, we used linear mixed effects model 286	
  

to regress the arcsine square root transformed relative rank of the indices within each of the 14 287	
  

datasets (response variable) against its category (factor with four levels: species based indices - Sx, 288	
  

functional richness -FRx, functional diversity-FDx and community weighted means-CWMx), and 289	
  

weighting method (factor with two levels: biomass or numerical abundance). Given that FDRao and 290	
  

FDdis are mathematically correlated, we excluded FDdis from this comparison. We used “dataset” 291	
  

in the random structure to control for multiple calculations of the indices belonging to the same 292	
  

group in each dataset. We used General linear hypothesis testing (“glht” function) with two-tailed 293	
  

test and Hochberg correction for multiple testing [46] for post-hoc comparisons among groups of 294	
  

indices. Note that studies are conducted at different scales (within vs. across regions) with a 295	
  

consequence of having more confidence in the results for highly replicated designs (i.e. biocontrol 296	
  

of pests and nutrient cycling). However, we do not correct for this as each dataset contributes with 297	
  

only one set of values to the linear model.	
  298	
  

	
  299	
  

Influence of traits on functional diversity-ecosystem functioning relationship	
  300	
  

All included traits were chosen a priori based on the authors' ecological knowledge. To test 301	
  

whether our choice of traits had a large influence on the observed effect of functional diversity 302	
  

measures on ecosystem functioning, we used a jack-knife approach for the functional diversity 303	
  

predictors (FRx or FDx) that explained most variance.	
  304	
  

We built models with all traits included, and we then removed one trait at a time from the 305	
  

full model. We calculated the difference in explanatory power (∆R2) between the full model and the 306	
  



model without a given trait. Negative ∆R2‘s reflect traits that are important in explaining the 307	
  

relationship between diversity and function, while positive values indicate traits that, when 308	
  

excluded, improved the model. All calculations of diversity indices and statistical analyses where 309	
  

performed in R (version 2.15.1, [47]) using packages “nlme” [48], “MuMIn” [49],  “FD” [10, 50], 310	
  

“multcomp” [51] and our own R script. The R function to calculate all indices used in our analysis 311	
  

is available at https://github.com/ibartomeus/fundiv. 	
  312	
  

All relevant data including all indices calculated for each dataset can be found in Dataset S1.	
  313	
  

Results	
  314	
  

Performance of functional diversity in predicting ecosystem functioning	
  315	
  

 We compared explanatory power between groups of biodiversity indices: species-based vs. 316	
  

trait-based, single-trait vs. multiple traits, community weighted vs. non-weighted indices, and 317	
  

indices weighted by numerical vs. biomass abundance. We found large differences in the average 318	
  

performance between the index groups (F3,478=	
  11.16, p < 0.0001). Post-hoc comparison among 319	
  

relative ranks of indices groups revealed that weighted trait-based indices, both community 320	
  

weighted means (CWMx) and functional diversity (FDx), performed consistently better than 321	
  

species-based indices (Sx) across all data sets studies (difference in means: Sx-CWMx = 0.23 ± 322	
  

0.04, p < 0.0001; Sx-FDx = 0.13 ± 0.05, p = 0.02; Figure 2, Table S2). However, non-weighted 323	
  

functional richness (FRx) did not perform better than species-based indices (Sx-FRx = 0.10 ± 0.07, 324	
  

p = 0.36), while single-trait measures (CWMx) were on average better ranked than functional 325	
  

diversity measures (CWMx-FDx = -0.10 ± 0.04, p= 0.02). Multi-trait functional diversity measures 326	
  

weighted by numerical abundance (FD/n) performed equally good as measures weighted by 327	
  

biomass abundance (FD/b; F1,478=	
  0.078, p = 0.93). Note that the lower the relative rank, the better 328	
  

the performance of the index is.	
  329	
  

 Interestingly, species richness and abundance did not only obtain low rankings, but their 330	
  

explanatory power was on average less than half of that of FD indices (Table S2). Shannon 331	
  



diversity and species evenness tended to explain most functions better than species richness and 332	
  

abundance. Within the weighted multi-trait functional diversity measures, FDeve and FDdiv were 333	
  

the best performers. In fact, in 9 of 14 cases they ranked as the overall best predictors. Notably, the 334	
  

direction of the effects of biodiversity indices on ecosystem functioning was positive in the majority 335	
  

of cases, the exception being a few FD indices (Table S2).	
  336	
  

Influence of traits on functional diversity-ecosystem functioning relationship	
  337	
  

Jack-knife analysis showed that our results are relatively robust with respect to the choice of 338	
  

traits included (see Figure S1). Changes in R2 after excluding any trait were small and mainly 339	
  

negative. The few exceptions were ‘dung manipulation strategy’ for large seed burial by dung 340	
  

beetles, ‘light preference’ for consumption of Apera spica-venti seeds by carabid beetles, and ‘body 341	
  

length’ and ‘trophic level’ for nutrient cycling by nematodes. Traits with high negative values are 342	
  

highly influential because they increase the explanatory power. In contrast, we only found one trait, 343	
  

‘hibernation’, which induced large positive R2-changes in the consumption of Apera spica-venti 344	
  

seeds and Galium aparine seeds by carabid beetles, indicating that this trait reduces the model 345	
  

performance (Figure S1).	
  346	
  

	
  347	
  

Discussion 	
  348	
  

Indices solely based on the numbers and abundances of species were consistently poor at 349	
  

predicting ecosystem functioning across the seven ecosystem functions investigated here. 350	
  

Moreover, they performed worse than indices using a trait-based approach, both in previous studies 351	
  

of plants (Table S1),	
  and	
  in our current analysis of animals. As in many plant studies, single-trait 352	
  

indices (CWMx) were often ranked as the best predictors of ecosystem functioning in our analyses 353	
  

on animals. Hence, functioning is in the majority of cases maximized by a single trait. However, we 354	
  

also found that multi-trait functional diversity measures (e.g., FDeve, FDdiv) can best predict 355	
  



functions provided by some animal groups. Thus, it appears that the distribution of functionally 356	
  

dissimilar traits is also relevant for several functions.	
  357	
  

Despite the diversity of ecosystems and of organisms and ecosystem functions provided by 358	
  

animals investigated here, and by plants in previous studies, some general conclusions can be made. 359	
  

First, species numerical and biomass abundance appear to be poor sole predictors of the functions 360	
  

investigated, although they are often positively correlated with ecosystem functions (Figure 1a, e.g., 361	
  

[52]). Second, non-weighted indices that have commonly been used as proxies of functional 362	
  

diversity were also poor predictors of ecosystem functioning. These include species richness, but 363	
  

also newly developed multi-trait indices of functional richness (FRx) that has been useful for 364	
  

analyzing community assembly [39]. This suggests that the number of species in a community, or 365	
  

the trait ranges they encompass, are insufficient to fully explain ecosystem functioning.	
  366	
  

Current knowledge on the role of species richness for ecosystem functioning is mainly based 367	
  

on small-scale experiments [3]. There is increasing evidence that results from such studies do not 368	
  

always agree with findings from more realistic and species rich assemblages where skewed species 369	
  

abundance distributions have been suggested to play a key role [53, 54]. Our findings indicate that 370	
  

we need to integrate the abundance and distribution not only of species, but also of their trait levels 371	
  

within the community to better understand BEF relationships in terrestrial animal communities 372	
  

(Figure 1b,d). On one hand, we show that weighted functional diversity indices (especially 373	
  

functional evenness and divergence) in many cases were the best predictors of ecosystem 374	
  

functioning provided by animals, and this relationship was most often positive. This means that 375	
  

communities with a more even distribution of species across the trait space, will deliver higher 376	
  

levels of ecosystem functioning; a result that supports the functional complementarity hypothesis. 377	
  

On the other hand, we also found negative relationships between functional evenness and 378	
  

functioning in some cases, as well as single traits being consistently good predictors of functioning. 379	
  

This exemplifies that a dominant trait level of a single or just a few traits are needed to maximize 380	
  

functioning in some communities. 	
  381	
  



The functions studied here were performed by different taxa with different traits, and hence 382	
  

the mechanisms driving high functioning levels vary among functions. Given the exploratory nature 383	
  

of our analyses, we restrain from discussing specific traits and mechanisms for different organisms, 384	
  

but rather propose that our findings provide a starting point for future research in these 385	
  

communities. On a more general level, there are some interesting questions emerging from our 386	
  

study that future BEF research should focus on. First, why does functional identity often appear as 387	
  

the best mechanism and under which scenarios it interplays with functional complementarity? For 388	
  

example, a reason for the better support of the functional identity rather than functional 389	
  

complementarity hypothesis for some functions may be that ecosystem functions, such as predation 390	
  

of just one pest species, provide a narrow niche with less opportunity for niche partitioning than the 391	
  

predation of different species. Second, how can increasing the spatial and temporal scales, or the 392	
  

number of functions performed by the same animal group, increase the importance of functional 393	
  

diversity? For example, it appears that even when the same animal group (e.g. bees) is performing a 394	
  

given function (e.g., pollination) the key traits explaining functioning for a particular crop are 395	
  

specific for each plant. Hence, for pollination to be maximized at the landscape level and 396	
  

simultaneously for several crops, the functional diversity of the pollinator community would have 397	
  

to be increased. In this case, functional diversity will be more important than single-trait values as it 398	
  

provides insurance across varying conditions across space and time. However, the situation may be 399	
  

different when there are trade-offs between functions provided by the same community [15].  400	
  

The choices we make in BEF research,	
  such as which traits and indices to use, can strongly 401	
  

affect the observed relationship between functional diversity and ecosystem functioning [5]. First, 402	
  

the trait selection is extremely important for characterizing trait-based indices, especially for single-403	
  

trait measures, such as CWM. Preferably, we should use a priori knowledge based on experimental 404	
  

manipulations investigating which traits are likely to drive different functions, but this information 405	
  

is rarely available for animals. However, we found that most multi-trait functional diversity indices 406	
  

were weakly affected by trait choice (see also [55]), and while excluding traits worsen explanatory 407	
  



power in some cases, it rarely increased it. We propose that the jack-knife approach can be used to 408	
  

exclude or weight traits that contribute little to predicting functioning. Second, we show that the 409	
  

choice of weighted vs. non-weighted indices is important. Weighted indices always explained 410	
  

ecosystem functions better, demonstrating the importance of considering the abundance distribution 411	
  

of traits in communities. Weighting by biomass should be superior to weighting by numerical 412	
  

abundance in cases where the process is size-based, often by being related to metabolic rate of 413	
  

individuals (i.e. individual’s performance increase with body size). However, we found no clear 414	
  

preference for indices scaled by biomass vs. numerical abundances in the communities we 415	
  

investigated. 	
  416	
  

Several new avenues have been proposed to better quantify functional diversity and increase 417	
  

the predictive power of biodiversity-functioning relationships: taking into account single and multi-418	
  

trait indices simultaneously, phylogenetic diversity [56], within-species trait variability [57], abiotic 419	
  

factors [58], and nonlinearities in the response [3].  We show that the power to predict ecosystem 420	
  

functions using trait distributions in natural communities is relatively low (< 50%). This is not 421	
  

surprising given that most ecosystem functions, such as crop pollination and thereby yield 422	
  

production, depend on multiple abiotic and biotic processes including several organism groups [59, 423	
  

60]. Direct links between organisms and functions, like between aphid predation and predators, are 424	
  

stronger than indirect links, like between P retention and nematodes. However, we show that for 425	
  

predicting ecosystem functioning, trait-based measures are substantially better than measures of 426	
  

species richness and abundances, commonly used by researchers and policy makers. Our study thus 427	
  

provides new insights into general mechanisms that link biodiversity to ecosystem functioning in 428	
  

natural animal communities and suggests that the observed responses were due to the identity and 429	
  

dominance patterns of the trait composition rather than to the number or abundance of species per 430	
  

se. Hence, using trait-based approach in BEF research is a promising step forward and may greatly 431	
  

increase our understanding and aid management of multiple ecosystem functions. 	
  432	
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Figure 1. Main mechanisms linking traits to ecosystem function. The x and y axes represent 589	
  

different trait levels (e.g. ‘large body size’, ‘medium body size’ and ‘small body size’). For the 590	
  

simplicity only two traits are presented. Darker colors indicate higher trait level abundance in the 591	
  

community. Different mechanisms predict that high functioning levels can be achieved by having 592	
  

(a) high abundance of any trait present in the community, (b) high abundance of the efficient trait 593	
  

level of the relevant trait, (c) the presence of complementary trait levels combinations or (d) an even 594	
  

distribution of complementary trait level combinations. Figures should be seen as simplified 595	
  

examples and other trait combinations are possible. See text for explanation for the calculation of 596	
  

indices.	
  597	
  

	
  598	
  

Figure 2. Performance of different groups of diversity indices across ecosystem functions and 599	
  

groups of organisms investigated. The mean and standard error of the relative ranking of species-600	
  

based indices (Sx, n= 94), functional richness (FRx, n= 28), functional diversity (FDx, n= 168) and 601	
  



community weighted means (CWMx, n= 194). Different letters indicate post-hoc significant 602	
  

differences after correcting for multiple comparisons. Lower rank values indicate better explanatory 603	
  

power. See the text and the Table 1 for description of the ecosystem functions and codes for 604	
  

biodiversity indices and Table S2 for the results for all predictors.	
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  606	
  

Figure S1. Figure presenting ∆R2-s after the jack-knife approach is applied on the best multivariate 607	
  

functional diversity predictor in the system. Note that in the case where FDdiv was the best 608	
  

multivariate predictor and the trait data included only one continuous trait (i.e. carabid beetles), we 609	
  

used the second best predictor for the jack-knife approach due to the inability of FDdiv to be 610	
  

calculated with only categorical traits included.	
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