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We have examined the regulatory role of the individual components of the immunoglobulin antigen receptor 
in B-cell development by transgenic complementation of Rag-I deficient (Rag-l-) mice. Complementation 
with a membrane ~ heavy chain (wHC) gene allows progression of developmentally arrested Rag-l- 
pro-B-cells to the small pre-B cell stage, whereas the introduction of independently integrated vLHC and K 
light chain (KLC) transgenes promotes the appearance of peripheral lymphocytes which, however, remain 
unresponsive to external stimuli. Complete reconstitution of the B-cell lineage and the emergence of 
functionally mature Rag-l- peripheral B cells is achieved by the introduction of cointegrated heavy and light 
chain transgenes encoding an anti-H-2 k antibody. This experimental system demonstrates the competence of 
the wHC and KLC to direct and regulate the sequential stages of B-cell differentiation, defines the time at 
which negative selection of self-reactive B cells occurs, and shows that elimination of these cells occurs 
equally well in the absence of Rag-I as in its presence. These data also support the hypothesis that Rag-1 
directly participates in the V(D)I recombination process. 
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Cells of the mammalian immune system develop 

through an orderly process of differentiation, the end re- 
sult of which is antigen-responsive B and T cells with 
individual immunoglobulin or T-cell receptor (TCR) sur- 
face receptors. In the murine bone marrow (BM), the se- 

quential stages of B-cell differentiation have been classi- 
fied into seven distinct fractions defined by surface an- 

tigenic characteristics (Hardy et al. 1991). The earliest 
large B-cell progenitors express CD43/$7 and differen- 
tially display B220/CD45R, HSA/30F 1, and BP- 1 surface 

markers and ordered rearrangements in the IgH loci (Eh- 

lich et al. 1993; Li et al. 1993). Differentiation to the 
small pre-B-cell stage correlates with productive IgH re- 

arrangements and the loss of CD43 expression. 
In pre-B cells, the newly generated w molecules reside 

predominantly in the cytoplasm (for review, see Rolink 
and Melchers 1991; Lassoued et al. 1993}. A number of 
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studies suggest that ~ can also emerge on the surface of 
a transient BM subpopulation complexed with the two 
surrogate light-chain (SLC) molecules k5 and VpreB (Pillai 
and Baltimore 1987; Kerr et al. 1989; Karasuyama et al. 
1993; Takemori et al. 1990; Tsubata and Reth, 1990; 

Cherayil and Pillai 1991; Misener et al. 1991; Nishimoto 

et al. 1991; Bossy et al. 1993; Lassoued et al. 1993). Sur- 
face expression of p. requires the additional appearance of 
the IgM auxilliary molecules Ig~ and Ig~ (Nakamura et 
al. 1992). It has been suggested that at this particular 
checkpoint of B-cell development, ~ has the dual role of 

promoting exclusion of the allelic IgH locus (Alt et al. 

1984, 1987; Nussenzweig et al. 1987; Manz et al. 1988} 

and activation of transcription and rearrangement in the 
K locus (Reth et al. 1987; Iglesias et al. 1991; Tsubata et 
al. 1992; Shapiro et al. 1993}. Mutant mice lacking the 
ability to synthesize the membrane form of w heavy 
chain (~HC) (wmT) fail to produce mature B cells and fail 
to exert exclusion at the allelic heavy-chain locus (Kita- 

mura et al. 1991; Kitamura and Rajewsky 1992). 
Following the expression of a functional ~, the fie- 
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quency of VK-tO-JK rearrangements increases resulting in 

the production of a functional Klight chain (KLC)(Alt et 

al. 1987; Schlissel and Baltimore 1989; Schlissel et al. 

1991a; Ehlich et al. 1993). The appearance of surface im- 
munoglobulin ~ + K (IgM) receptor coincides with de- 

creased levels of the SLC. Subsequently, cells display 
homing receptors (Clark and Lane 1991) and acquire 

competence to populate peripheral lymphoid organs. In 

contrast, B cells carrying immunoglobulin receptors 
with specificity for self-antigens undergo clonal deletion 

(Burnet 1959; Nemazee and Burki 1989a, b). In this way 
the organism eliminates inappropriate antigen receptor 

specificities soon after their genesis. 
The genesis and diversity of antigen receptors is estab- 

lished by somatic rearrangements of their composite 

gene segments (Tonegawa 1983; Schatz et al. 1992). This 

process, termed V(D)J recombination, employs ubiqui- 
tous components that include the scid (Bosma and Carol 
1991), XR-1, and xrs-6 (Taccioli et al. 1993) activities, as 

well as the lymphoid-specific components Rag-l, Rag-2 
(Schatz et al. 1989; Oettinger et al. 1990) and terminal 

deoxytransferase (TdT)(Landau et al. 1987; Gilfillan et 
al. 1993; Komori et al. 1993). Rag-1 and Rag-2 were iden- 

tified by virtue of their ability to activate V(D)J recom- 
bination of an artificial recombination substrate in fibro- 
blast cell lines (Schatz et al. 1989; Oettinger et al. 1990). 

Their expression precedes antigen receptor rearrange- 
ment, and they are down-modulated by receptor engage- 

ment (Turka et al. 1991; Brandle et al. 1992; Ma et al. 

1992). Mice homozygously deleted for either Rag-1 or 
Rag-2 show an arrest in lymphoid development at the 
point at which V(D)J recombination of TCR or immu- 

noglobulin loci would normally occur and are immuno- 
deficient because of the lack of any functional B or T 

cells (Mombaerts et al. 1992a; Shinkai et al. 1992; L. 
Corcoran, E. Spanopoulou, and D. Baltimore, this study 

and unpubl.). 
The early arrest of lymphoid development in Rag-1- 

mice does not allow the study of any possible functions 
of Rag-1 at later stages. By examining the influence of 

components of the immunoglobulin receptor on B-cell 

lineage progression in a Rag-1- background, their indi- 

vidual capabilities can be assessed and additional roles of 

Rag-1 beyond that of joining receptor gene segments 

could be uncovered. Thus, we have used transgenic com- 
plementation in the Rag-1- background to investigate 

the regulatory role of the individual components of the 
IgM receptor during the different stages of B-cell differ- 

entiation. We find that despite the absence of Rag-1, the 
plus K chains of an authentic antibody can fully rescue 

Rag-1- B-lymphoid development, whereas ~ alone can 

guide partial differentiation and a random tz plus K com- 
bination allows only partial reconstitution. 

R e s u l t s  

Rag-1 deficiency causes arrest of B- 

and T-cell development 

To generate mice deficient for the Rag-1 protein (Rag- 
1 - ), we constructed an insertion vector that disrupts the 

coding region of the Rag-1 gene at amino acid 330 (see 
Materials and methods). Examination of the immune 

system of Rag-1 - homozygous mutant  mice revealed the 
absence of any mature B or T cells in the periphery. In 

the thymus, T cells were arrested at the C D 4 - / C D 8 -  
stage, prior to the point at which recombination of the 
TCR loci would normally occur (data not shown). The 

antigen receptor loci in Rag-1- lymphoid precursors re- 

mained in germ-line configuration despite the fact that 

they were transcriptionally active (data not shown). 
These data are in accordance with previous observations 
on Rag-1- (Mombaerts et al. 1992a) or Rag-2- (Shinkai 

et al. 1992) mice. 
To analyze the stages of arrest of BM B-cell develop- 

ment, surface phenotypes were determined by FAGS. For 

this purpose, seven fractions were distinguished accord- 

ing to previously defined criteria as presented in Table 1 
(Hardy et al. 1991; Ehlich et al. 1993; Li et al. 1993). The 
B220 +/CD43 + cells were subdivided into fractions A, B, 
C, and C' by their content of BP-1 and HSA (Fig. 1). In the 

Rag-1- mice, B-cell development was arrested in frac- 

tion C as indicated by the high levels of cells with HSA 

and BP-1 and the absence of CD43-  cells that are the 

T a b l e  1. Stage-specific markers during B-cell differentiation in BM 

Stage (fractions) 

pro-B 

Markers (A) (B) (C) (C') 

pre-B immature B mature B 
(D) (E) {F) 

CD43/$7 + + + + + 
B220/CD45R + + + + + 
HSA/30F1 - + + + + + 
BP-1 - - + + + + 

k5 - + +  + +  + +  

D n t o  JH + + + + + + 

VH t o  D I H  - -  - -  + + + 

V K t O I K  - -  _ _ + 

++ ++ + + +  
++ + - / +  

+ + - 

+ + +  + -- 
+ + +  + -- 

The data are based on studies by Hardy et al. (1991), Ehlich et al. (1993), and Li et al. (1993). 
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Figure 1. Flow cytometr ic  analysis of BM 

cells derived from Rag-1 - mice. Cells from 

BM of Rag-1- or wild-type mice were re- 

solved by four color FACS analysis for the 

surface markers B220/CD45R, CD43/$7, 

30F1/HSA, and 30BP-1 (Hardy et al. 1991). 
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predominant ones in wild-type marrow (Fig. 1 ). Although 

fraction C was over-represented, cells failed to proceed to 

the very high HSA state of the C' fraction and fraction B 
was variable from animal to animal (Fig. 1, data not 

shown). Thus, B-cell development was arrested at the 

stage at which a functional ~ would have been formed in 
normal mice. To examine whether the introduction of 

functional immunoglobulin receptors can override this 

developmental block, we complemented the Rag-1- 
germ line with rearranged ~ and K transgenes. 

Generation and FACS analysis of Rag-1 - / ~  
and Rag-1 -/~K mice 

To generate a Rag-1-/p. genotype, the Rag-l-deficient 
mice were crossed to transgenic mice expressing high 

levels of the membrane form of a human ~HC under the 
regulatory influence of the IgH intronic enhancer. In 

these mice, the transgenic receptor promotes complete 

allelic exclusion of the endogenous IgH loci (Nussenz- 
weig et al. 1987). No routine ~ could be detected on the 

surface of w t /~  B cells (data not shown). A complete 
analysis of B-cell developmental fractions on a wild-type 
and Rag-1- background is shown in Figure 2. Whereas 
lymphoid development was arrested in fraction C in Rag- 

1-  mice (Fig. 2, B1), the expression of a transgenic ~HC 
alleviated this block and allowed B-cell development to 
proceed to the small pre-B cell stage (Fig. 2, B2, fraction 
D). The cells arrest in the stage at which recombination 
of the light-chain loci would normally occur (Table 1). 

Surface expression of the transgenic p. protein remained 
undetectable by FACS analysis (Fig. 2, A2) despite its 
high levels in the cytoplasm (data not shown). Hence, 
the expression of the membrane form of p. was sufficient 

to shift cells from fraction C to D but little, if any, 

protein was evident on the cell surface. 
To study the contribution of the KLC to early stages of 

B-cell development, Rag-1-/~K double transgenic mice 

were generated by backcrossing the Rag-1-/p. line to 
transgenic mice expressing a murine KLC regulated by 
the K intronic enhancer. In the latter, the K transgene is 
expressed at high levels in B cells and promotes allelic 

exclusion of the endogenous K loci (Brinster et al. 1983; 
Storb 1987). In the Rag-1-/~K double transgenic mice, 

expression of the transgenic K allowed differentiation of 
the small pre-B cells to the IgM + immature B-cell stage 
(fraction E) (Fig. 2, A4 and B4). The transgenic human p~ 
chain emerged on the surface complexed to the trans- 

genic murine K (Fig. 2, A4) and the cells were capable of 

exiting the BM and populating the peripheral lymphoid 
organs (Fig. 2, C4). Compared with wild type (Fig. 2, 

A/B8}, however, lymphoid development in the Rag-1-/  
~K mice was still partly impaired. Specifically, there was 
a higher representation of pro-B cells (Fig. 2, cf. B4 with 
B8), the number of IgM+/B220 high cells in the BM was 

significantly lower and these cells did not proceed to the 
B220 bright stage (Fig. 2, cf. A/B4 with A/BS). In the Rag- 

1-/~K spleen, the total number of IgM + cells was re- 
duced and an intermediate subpopulation of B220+/ 
IgM- cells appeared (Fig. 2, cf. C4 with C5). The splenic 
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Figure 2. FACS analysis of the B-cell lineage in ~, n, and I~ + K transgenic mice. BM and splenic lymphocytes isolated from wild-type 
(WT), Rag-1 -, and mice transgenic for rearranged transgenes expressing the membrane form of a human t~HC (~), or a murine KLC (K), 
or both (!~ + K), were resolved by four-color analysis for surface expression of B220/CD45R, CD43/$7, IgM, and HSA/30F1 (the latter 
is not shown) (Hardy et al. 1991). In lanes 1, 3, and 7, IgM refers to the murine (m) form, whereas in lanes 2, 4, 5, and 6, IgM refers to 
the human (h) transgenic protein. The human transgene encodes the membrane form of I~HC and is regulated by the IgH intronic 
enhancer (Nussenzweig et al. 1987). The murine KLC transgene was isolated from the MOPC 21 myeloma and is regulated by the K 
intronic enhancer (Brinster et al. 1983). 

IgM + B cells expressed high levels of HSA (data not 

shown) and had only a modest response to lipopolysac- 
charide (LPS) stimulation (see below). In contrast, B-cell 

differentiation and maturation in the wt/t~K mice more 
closely resembled the wild-type profile (Fig. 2, A/B/C8 
and see below), although the total number of B220 + cells 

in the BM is reduced. To examine whether a natural pair 

of HC and LC transgenes would provide complete recon- 

stitution, a different series of Rag-1-/IgM + mice were 
generated. 

B-cell d e v e l o p m e n t  in Rag-1 - m i c e  expressing 

an anti-H-2K k D a class I an t ibody  

The new parental lines carried murine transgenes encod- 
ing an anti-H-2 k major histocompatibility (MHC) class I 
antibody (IgM/IgD) that recognizes K k with moderate 
a f f i n i t y ,  K b weakly and fails to bind to H-2K ° expressing 

cells (Nemazee and BLirki 1989a; Russell et al. 1991). To 
determine the ability of the anti-H-2 k antibody to recon- 

stitute the Rag-1- phenotype, we generated Rag-l-defi- 
cient mice transgenic (Tg +) for the anti-H-2 k/b antibody. 

The specificity of this antibody also allowed us to study 

the effect of Rag-1 on tolerance induction by providing a 
deleting H - 2  b (b) or permissive H-2 a (a) MHC class I hap- 

lotype. An extensive analysis of the B-cell fractions in 
Tg + wild-type or Rag-1- mice is presented in Figure 3. 

In the permissive Rag-1 - / T g  +/d mice, the BM was char- 

acterized by a lack of cells intermediate between the 

arrested pro-B cells of fraction C and fraction F. cells, 
suggesting a transgene-driven acceleration of develop- 
ment (Fig. 3, cf. A/B4, with A/B1). In these mice, mature 

B cells extensively populated the periphery and ex- 
pressed high levels of the transgene (Fig. 3, C4}. Addi- 

tionally, both IgM + and IgD + cells were generated (data 
not shown). Thus, the anti-H-2 k transgenic antibody di- 

rected B-cell lineage development differently from the 

~K hybrid receptor (cf. Fig. 3, A/B3/4 with Fig. 2, A/B4/ 
5) allowing reconstitution to the mature B-cell stage. A 
similar phenotype was observed when the anti-H-2 k 

transgene was expressed in the wild-type background 
(Fig. 3, A/B/C2), in accordance to previous analyses 

(Nemazee and Biirki 1989a, b). 
To examine whether MHC-mediated clonal deletion 

operates in the Rag-1 - background, Rag-1 - / T g  +/b mice 

were generated. In these mice, no surface IgM was de- 
tected on the predominant B220 high subpopulation of the 
BM and these cells failed to proceed to the B29.0 bright 

stage (Fig. 3, A/B5). The absence of surface IgM + cells 
was also evident in the spleen where instead a novel 

subpopulation of B220 + / I g M - / I g D -  cells could be de- 
tected {Fig. 3, C5). Thus, negative selection operated ef- 
ficiently in the absence of Rag-1. Similarly, expression of 
the transgenic antibody in the wt/H-2 b milieu led to 
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Figure 3. FACS analysis of B-cell development in Rag-1-deficient mice transgenic for an anti-H-2 k MHC class I antibody (clone 3-83). 
Similarly to Fig. 1, bone marrow (BM) or splenic (SPL) B cells were resolved by four-color analysis for the surface markers B220, IgM, 
and CD43 and HSA (not shown). Genotypes were wild-type (WT), Rag-1 null (Rag-1-), transgenic for an anti-H-2 k antibody (Tg + ) in 
either the deleting (H-2 b) or nondeleting (H-2 a) MHC class I haplotype. The heavy-chain transgenic genomic locus encodes the splicing 
variants for membrane and secreted IgH forms of both C~ (IgM) and C8 (IgD), in their natural configuration (Russell et al. 1991). The 
homologous light chain is encoded by its corresponding genomic fragment. The transgenes are transcriptionally regulated in part by 
their respective intronic and 3' enhancers and are cointegrated within the same chromosomal site. Therefore, it would be expected that 
onset of K transcription is regulated in part by the IgH enhancers and vice versa. 

complete elimination of all self-reactive B-cells in the 
BM and consequently to very low levels of IgM ÷ cells 
(Fig. 3, A3). However, a high percentage of IgM ÷ ceils 

appeared in the spleens of these mice {Fig. 3, C3). This 
population was completely eliminated in the Rag-1- 

background {Fig. 3, C5) suggesting that these IgM ÷ cells 
were generated by virtue of endogenous rearrangements 
{Tiegs et al. 1993). 

Transcriptional analysis of B-cell-specific 
markers in transgenic mice 

The relative homogeneity of the arrested BM cell popu- 

lations in the Rag-1- background provided an opportu- 
nity to examine the properties of these cells. Initially, 
steady-state mRNA levels of certain lymphoid markers 
were determined using reverse transcriptase (RT)-PCR 
to quantitatively amplify specific transcripts (Schlissel 
and Baltimore 1989). The loci analysed included the IgH 
locus transcript !~, which persists throughout B-cell de- 

velopment; the germ-line IgH transcript ~o, which is ex- 

pressed only in D-to-J recombining pro-B cells; and the 
LPS-inducible germ-line KLC transcript K ° [see Schlissel 

et al. 1991b and references therein). No significant ef- 

fects were seen in a wild-type background. As might 
have been expected from the phenotypic data, the g+ 
transgene perturbed gene expression of the Rag-1- cells 
but the K gene had no effect (Fig. 4). Transcript i ~° was 

expressed in the Rag-1- BM B cells and remained con- 

stant irrespective of the presence of the transgenic I~ pro- 
tein (Fig. 4). In contrast, transcript K ° was expressed at 

low levels in the pro-B-cell stage (Rag-1-), but assumed 
high levels in the presence of the transgenic I~ protein 
and remained at high levels despite the coexpression of 
the transgenic K protein (Fig. 4, K ° lanes 5,6,7,8). Tran- 
scription of the surrogate light-chain molecule k5 was 
high in Rag-1 - cells and decreased markedly in the pres- 
ence of I~ (Fig. 4, k5 lanes 5-8). Thus, in the transition 
from fraction C to D, ~ allows the up-regulation of K ° 
and down-regulation of k5 transcripts. In the same series 

1034 G E N E S  & D E V E L O P M E N T  

 Cold Spring Harbor Laboratory Press on August 25, 2022 - Published by genesdev.cshlp.orgDownloaded from 

http://genesdev.cshlp.org/
http://www.cshlpress.com


Transgene-&iven B-cell development  

WT RAG1-/- ,,z, 
~ ,o,d 

¢,/) ~ d i lu t ion  

29 

220 

AG-2 

AG-1 

-2 

1 2 3 4 5 6 7 8 9 10 11 12 

Figure 4. Transcriptional analysis of B-cell-specific markers in 
BM cells derived from human ~, mouse K, and human ~ plus 
mouse K (hybrid receptor) transgenic mice. Cytoplasmic RNA 
was isolated from BM and used as a template for eDNA synthe- 
sis using random oligonucleotides. The cDNA products were 
analyzed by PCR using primers specific for the immunoglobulin 
loci germ-line transcripts I~, ~o, and K °, (Schlissel et al. 1991b 
and references therein), the surrogate light chain molecule k5, 
the immunoglobulin receptor-associated molecule B29, the 
B-cell-specific isoform of the surface marker B220, transcripts of 
Rag-1 and Rag-2 and, finally, the MHC class I transcript, which 
represents a ubiquitously expressed mRNA species. The final 
PCR products were detected by Southern blot hybridization ex- 
cept for the H-2 transcript, which is shown as a photograph of an 
ethidium bromide-stained gel. (Lanes 1-4) Genotypes. (Lane 1) 
No transgene { - }; (lane 2) transgene ~ (human ~); (lane 3) trans- 
gene K (mouse K); (lane 4) transgene ~ + K (human ~ plus mouse 
K) all in a wild-type background; (lanes 5-8) the same order of 
transgenic genotypes on a Rag-1- background; (lane 9) wild- 
type spleen; (lane I0) no cDNA; (lanes 11,12) products from 
dilutions of the wild-type spleen RNA (1/5 and 1/25, respec- 
tively) except in four cases: For the RAG-1 and RAG-2 products, 
lanes 11 and 12 represent dilutions of the RAG-l- / -  BM sam- 
ple; lanes 11 and 12 of k5 represent dilutions of the wild-type 
BM sample. For the B29 product, because of a loading error, lane 
11 corresponds to wild-type spleen and lane 9 shows the fivefold 
dilution of the sample. The Rag-1 primers amplify transcripts 
initiated 5' to the disruption of the Rag-1 locus by the PGK neo 
gene. 

of assays, the steady-state levels of transcripts B220, I~, 

and B29 remain  unchanged among the Rag- l - ,  wild- 

type, or transgenic BM populations (Fig. 4). In contrast, 

Rag-1 and Rag-2 transcripts were decreased in the pres- 

ence of the transgenes but remained easily detectable. 

Stromal independence of reconstituted BM 
populations 

Early stages of lymphoid  development are characterized 

by the interdependence of lymphoid  progenitors and 

stromal epithelial  cells {von Gaudecker 1986; van Ewijk 

1991; Dorshkind 1990). Direct contact is required for 

early B-cell progenitor growth and survival, but secreted 

lymphokines,  particularly interleukin-7 {IL-7), are suffi- 

cient to allow later cells to proliferate {Lee et al. 1989; 

Era et al. 1991; Hardy et al. 1991). The pro-B BM cell 

population {fractions B and C) proliferates selectively on 

a stromal cell layer (Hardy et al. 1987, 1991). To study 

the growth properties of these B220auu/CD43 + popula- 

tions derived from Rag-1- and Rag -1 - /~  transgenic 

mice, they were purified by FACS sorting and cultured 

either directly on FLST2 fetal liver stromal epithelial  

cells or in a diffusion chamber  to prevent direct contact 

wi th  the stroma (Hardy et al. 1991). Cells were harvested 

after 4 days and counted for cell recovery. Wild-type 

pro-B cells proliferated without  stromal support because 

they matured in culture to a contact independent  phe- 

notype (Fig. 5). In contrast, Rag-1- pro-B cells prolifer- 

ated on FLST2, as well  as wild type, but did not grow in 

a diffusion chamber, indicating their absolute and con- 

t inued contact dependence. However, expression of the 

transgenic p, at the pro-B/pre-B-cell stage was sufficient 

to alleviate stromal dependence. The Rag-1 - / ~  cells be- 

came contact independent and proliferated s imilar ly  to 

wild-type cells in the absence of any direct contact wi th  

FLST2 (Fig. 5), indicating that this pro-B-cell population 

contains a fraction of cells commit ted  to differentiate 

from fraction C to fraction D. 

Functional analysis of the transgenic peripheral 

lymphocytes 

The s imultaneous introduction of rearranged ~ and K 

transgenes in the Rag-1- genotype produced an overt 
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Figure 5. Stromal cell dependence of growth of sorted pro-B 
BM cells. B2201°w/CD43+/HSA + cells were isolated from the 
BM of mice of the indicated genotype and cultured either di- 
rectly on the FLST2 stromal cell layer (Hardy et al. 1987) or in 
a diffusion chamber that prevents direct contact with stroma 
(Hardy et al. 1991). Cell viability was determined 4 days after 
cultures were established and is shown as fold increase. Geno- 
types are indicated below each bar. (Open bar) FLST2 contact; 
(solid bar) diffusion chamber. 
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shift in the differentiation of the arrested BM cells and 
enabled their exit to the periphery (Fig. 2, 4C, and Fig. 3, 
4C). To study the response of the reconstituted periph- 
eral lymphocyte cells to external stimuli, splenic B lym- 
phocytes were induced with LPS. Cells from wild-type or 
Rag-1 - /Tg  +/d mice readily responded to stimulation by 
LPS (Fig. 6). Rag-1-/lXK splenic B cells, however, al- 
though variable, showed a reduced proliferation in re- 
sponse to LPS (Fig. 6), consistent with their lack of full 
maturation. 

Subsequently, peripheral lymphocytes were tested for 
their ability to respond to cross-linking by anti-IgM, as 
measured by intracellular Ca 2+ release (Fig. 7). Upon 
treatment, lymphocytes transgenic for either anti-H-2 k 
or ~K immunoglobulin receptors expressed in a wild- 
type background, showed a clear Ca 2 + release signal (Fig. 
7b, e). A similar response was observed in Rag-1 - splenic 
lymphocytes that have been reconstituted with the anti- 
H - 2  k transgenic receptor (Fig. 7f). In sharp contrast, how- 
ever, the ~K hybrid receptor failed to fully induce B-cell 
maturation in the Rag-1- genotype, as evidenced by the 
lack of Ca 2+ elevation (Fig. 7c). 

The functional status of the reconstituted peripheral 
lymphocytes was also tested by assaying the phosphory- 
lation of cellular proteins on tyrosine in response to anti- 
IgM (Gold et al. 1990, 1991). The results reiterated the 
C a  2 +  release assays in that the Rag-1-/Tg+/d splenic 

cells showed augmented protein-tyrosine phosphoryla- 
tion (Fig. 8a, lanes 7,8) while cells with the hybrid I~K 
receptor were unresponsive (Fig. 8a, lanes 4-6). Finally, 
the difference between the two receptors in restoring the 
B-cell lineage of Rag-1 - mice was reflected in the greatly 
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Figure 6. Response of peripheral lymphocytes to LPS stimula- 
tion. B220 + cells from the spleens of mice of indicated geno- 
types were isolated by cell sorting and incubated for 4 days in 
the presence of LPS. Subsequently, cells were harvested and 
counted. Wild-type cells expanded fivefold during the course of 
the 4-day incubation (bar labeled WT). 

decreased levels of Iga and Ig~ in the splenic lympho- 
cytes of the Rag-1-/~K mice (Fig. 8b, lanes 15,16) com- 
pared with their Rag-1 - /Tg  +/a counterparts, which ex- 
pressed levels equal to those of wild type (Fig. 8b, lanes 

7,8). 

D i s c u s s i o n  

The total absence of antigen receptor rearrangements in 
Rag-l-deficient mice emphasizes the indispensable role 
of Rag-1 in the V(D)J recombination process. In normal 
murine BM, Rag-1 and Rag-2 enable V(D)J recombina- 
tion to initiate at the transition between fractions A and 
B (Table 1). Thus, the initial D-to-JH rearrangements can 
be readily observed in fraction B while fraction C is char- 
acterized by VH-to-DJH rearrangements (Hardy et al. 
1991; Ehlich et al. 1993). The phenotypes of mice defi- 
cient in Rag-1 (this study) and Rag-2 (Shinkai et al. 1992) 
suggest that in the absence of receptor gene rearrange- 
ment, B-cell differentiation is abrogated after cells reach 
fraction C, as also observed in scid mice (Hardy et al. 
1989). Given the extensive V(D)J recombinatorial activ- 
ity in fractions B and C, the ability of Rag-1 - and Rag-2- 
BM cells to proceed through these fractions and arrest in 
C suggests that the two proteins are involved in organiz- 
ing or executing the V(D)J recombination reaction(s) 
rather than being stage-specific regulators of lymphoid 

development. 
The mere expression of a functional immunoglobulin 

receptor allows complete reconstitution of the B-cell lin- 
eage in the Rag-1 - background, implying that the lack of 
Rag-1 activity does not result in the absence of any de- 
velopmental events that are crucial for B-cell differenti- 
ation. Similarly, the expression of a functional TCR in 
Rag-1- or Rag-2-deficient mice allows complete reconsti- 
tution of the T-cell lineage in these mice (Mombaerts et 
al. 1992b; Shinkai et al. 1993; E. Spanopoulou, C.J. Ro- 
man, W. van Ewijk, R. Hardy, P. Corbella, C. Mamo- 
clouki, D. Moschofidis, L. Simpson, L.M. Corcoran, D. 
Kioussis, and D. Baltimore, in prep.). Additionally, the 
ability of the self-reactive B cells generated in the Rag- 
1- /Tg+/b mice to undergo negative selection suggests 

that Rag-1 is not required for this process. The complete 

reconstitution of the B-cell lineage in the Rag-1 - /Tg  +/a 
mice suggests that Rag-1 is not involved in the recom- 
bination of any as-yet-unidentified loci that could be 
critical to immunocyte differentiation. Finally, the lack 
of Rag-1 expression does not alter the expression of Rag- 
2, k5, VpreB , CD43, HSA, BP-1, or germ-line immuno- 
globulin transcripts (this study; Mombaerts et al. 1992a; 
Shinkai et al. 1992). Thus, the only identified role of 
Rag-1 and Rag-2 in the lymphoid lineage is to ensure 
V(D)J rearrangement of the antigen receptor loci. 

Expression of the membrane form of i z in the Rag-1 -/Iz 

mice 

Introduction of a functional ~HC transgene, encoding 
the membrane-bound form, into the Rag-1- genotype 
enables the developmental transition of Rag-1- cells 
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Figure 7. Mobilization of intracellular 
Ca 2+ following engagement of surface 
IgM. Splenic lymphocytes were isolated 
from mice of the indicated genotype, 
loaded with Indo-1, and subjected to IgM 
cross-linking with either anti-human ~ or 
anti-mouse ~ [both F(ab')2]. The y-axis iff- 
dicates the intracellular free calcium con- 
centration; time is indicated in seconds on 
the x-axis. 

from the pro-B- to the pre-B-cell stage, although no trans- 

genic surface Ix could be detected by FACS analysis. A 

similar phenotype has been described previously in the 

scid/ix transgenic mice, in which BM B cells proceed to 

the small pre-B-cell stage, whereas, no surface Ix could be 
detected by FACS (Hayashi et al. 1990; Reichman-Fried 

et al. 1990, 1993). This could be the result of limitations 

in the level of detection by FACS . Low-level surface 

expression of the transgenic Ix in Rag-1- /~  mice has 

been revealed indirectly by probing for induction of ty- 

rosine phosphorylation activity following the surface en- 

gagement of the tx protein (E. Spanopoulou, C.J. Roman, 

J. Friedrich, J. Cambier, R.R. Hardy, L.M. Corcoran, and 

D. Baltimore, in prep.). 

The competence of the membrane IxHC to alleviate 

the block imposed by the lack of V(D)J recombination 

has a close parallel in the T-cell lineage. Introduction of 

a functional TCR~ chain into either Rag-l- or Rag-2- 
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Figure 8. Tyrosine phosphorylation pattern of splenic lymphocytes in re- 
sponse to anti-IgM cross-linking and relative expression of the receptor-asso: 
ciated proteins Iga and IgB. Lymphocytes were isolated from spleens of ani- 
mals of the indicated genotypes and incubated with the relevant antibody, and 
total cell extracts were probed by immunoblot analysis using the anti-phos- 
photyrosine-specific monoclonal antibody 4G 10. (a) Splenic lymphocytes from 
wild-type/~K or Rag-1-/}xK mice were induced with an anti-human ~ [F(ab')2] 
antibody (lanes 1-6), whereas lymphocytes from Rag-1-/Tg+/a mice were 
stimulated with an anti-mouse IgM antibody (b 761) (lanes 7,8). Cells were 
lysed, and the 1% NP-40 soluble material was subjected to immunodetection 
by the phosphotyrosine-specific antibody 4G10. (b) Immunoblot analysis of 
splenic extracts probed with combined antibodies against Iga and Igl~. ( + } IgM 
cross-linking. 

GENES & DEVELOPMENT 1037 

 Cold Spring Harbor Laboratory Press on August 25, 2022 - Published by genesdev.cshlp.orgDownloaded from 

http://genesdev.cshlp.org/
http://www.cshlpress.com


Spanopoulou et al. 

deficient scid mice enables progression of the C D 4 - /  
CD8-  cells to the CD4 +/CD8 + stage and expression of 
relatively small amounts of the [3 chain on the surface 

along with the CD3 auxiliary molecules ~/Se but not 
(Kishi et al. 1991; Mombaerts et al. 1992b; Shinkai et al. 

1993). The ~.HC and the TCR[3 chain are similar in their 

competence to drive lymphoid differentiation, but one 
difference is the relative ease of detection of TCR[3 on 
the surface of pre-T cells. Clearly, a limiting factor for 
or TCR[3 to emerge on the cell surface is the expression 
levels of Ig~[3 or CD3 components, respectively (Naka- 

mura et al. 1992; Levelt et al. 1993). An additional factor 
is suggested by the down-regulation of h5 once a produc- 

tive Iz chain is expressed (Fig. 4). Thus, at least three 
components of the "potential" pre-B receptor complex 
appear to be present at very low levels in the pro-B/pre- 

B-cell populations consistent with the low levels of sur- 

face ~. 

Introduction of membrane-bound IgM in Rag-1- mice 

Ample surface expression of Ix is permitted by the pres- 
ence of a functional KLC. The regulatory role of the latter 

is evidenced in the Rag-1 -/ixK mice in which B cells are 
not held in fraction D but proceed to the B220high/IgM + 

stage in the BM and acquire competence to emigrate and 
populate the peripheral lymphoid organs. However, 
these IgM + BM cells fail to reach the B220 bright stage 

observed in normal mice and peripheral transgenic lym- 
phocytes retain a rather immature phenotype failing to 

respond to external stimuli. At present, we have no ex- 

perimental explanation for this phenomenon. Both 
transgenes are particularly successful in pairing with the 
homologous endogenous chains (Brinster et al. 1983; 
Nussenzweig et al. 1987). In addition, the same human 
}xHC is functionally active when paired with murine Iget 

and Ig[3 (Costa et al. 1992; Sanchez et al. 1993). Expres- 
sion of the hybrid ix + K receptor in a wild-type back- 

ground does not impair B-cell maturation. This is possi- 
bly due to the expression of endogenous KLCs that form 
functional complexes with the transgenic p~. The data 
suggest that the hybrid receptor can become surface IgM 
but fails to mediate signaling in the final stages of dif- 

ferentiation. The maturation deficiency of the B cells in 

Rag-1/~K mice, along with their deficit of Ig~ and Ig[3, 

implies that surface IgM is involved in controlling at 
least two separable steps of B-cell differentiation, one of 
which is not operative in IxK mice but is operative in 
anti-H-2 k transgenics. 

An interesting outcome of the studies on the Rag-1 - /  
Tg +/b mice is the observation that clonal deletion of the 

self-reactive B lymphocytes takes place equally effi- 

ciently in the absence of Rag-1 and T-cell help. Thus, B 
cells can undergo negative selection without having pre- 
viously encountered T cells and in the absence of any 

V(D)J recombination activity. These data support previ- 
ous suggestions that B-cell tolerance can be achieved in 
the absence of helper T cells (Bretscher and Cohn 1970; 
Golan and Borel 1971; Nemazee and Bfirki 1989a). The 
phenotype of the deleting haplotype (Rag-1-/Tg+/b) is  

in accordance with the previously reported data that au- 
toreactive B cells are counterselected by deletion (Nem- 
azee and Bfirki 1989a) and that both IgM and IgD iso- 
types of the anti-H-2 k receptor are being deleted (Russell 

et al. 1991). 
The lack of endogenous immunoglobulin in the Rag- 

1 - /Tg  +/b mice allowed us to examine the surface phe- 

notype of the anti-H-2b-positive BM cells under deletion 

conditions. Cells generated in the deleting haplotype 
reach the B220 high stage, whereas a permissive MHC en- 
ables the BM cells to progress to the B220  bright stage be- 

fore they exit to the periphery (Fig. 3, cf. B4 with BS). 
Thus, elimination of self-reactive cells occurs at the 
transition from the B220  high to  the B220  bright stage, con- 

sistent with previous suggestions about the timing of 

negative selection (Nemazee and Bfirki 1989a, b; Nishi- 

moto et al. 1991; Hartley et al. 1993). 

The regulatory role of the ~HC membrane form 

A characteristic property of the membrane ix, demon- 
strated in pre-B-cell lines, is its ability to induce tran- 
scriptional activation of the K locus (Iglesias et al. 1991) 
and subsequently a dramatic increase in the frequency of 

VK-tO-JK rearrangements in fraction D (Reth et al. 1987; 
Hardy et al. 1991; Iglesias et al. 1991; Ehlich et al. 1993; 
Li et al. 1993; Shapiro et al. 1993). This property is con- 

sistent with the model that transcription and recombi- 
nation of the immunoglobulin loci follow an ordered pat- 

tern (Alt et al. 1987; Schlissel and Baltimore 1989; 

Schlissel et al. 1991a). However, the analysis of Rag-1- 
BM cells revealed that the K locus is transcribed prior to 

the production of a ix, albeit at low levels. This discrep- 
ancy has also been observed in the ~MT mice, in which 

BM cells show a low frequency of recombination in the 
K locus despite the lack of any p. (Kitamura and Rajewsky 
1992; Ehlich et al. 1993). Thus, in agreement with pre- 

vious observations (Blackwell et al. 1989; Kubagawa et 

al. 1989; Schlissel and Baltimore 1989), our data suggest 
that the initial low levels of transcription and recombi- 
nation in the K locus are independent of the presence of 
the txHC. It is possible that initial K transcripts give rise 

to functional KLCs (Kitamura et al. 1992). In contrast to 

this early phase, however, elevated K transcription is de- 

pendent on Ix as demonstrated by the phenotype of the 
Rag-1 -/t~ BM cells. Therefore, the increase in transcrip- 
tion and frequency of recombination of the K locus in 
fraction D appears to be a regulatory property of ~. 

The transcriptional analysis of the Rag-1 and Rag- 
1 - / ix BM populations revealed the additional ability of Ix 

to promote the down-regulation of h5 in fraction D. This 
property of ~ is in accord with the decreased levels of 

h5/VpreB observed in the transition from fractions C to D 
in the BM of normal mice (Li et al. 1993) but is discrep- 
ant with previous observations on pre-B-cell lines (Igle- 

sias et al. 1991; Kudo et al. 1992). 
The regulatory role of ~ at the pre-B cell stage is em- 

phasized by the competence of the Rag-1 - /~  pro-B/pre-B 
cells to proliferate in the presence of IL-7 but indepen- 
dently of attachment to the BM stroma. These data are 
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s imilar  to observat ions  f rom wild- type and scid  BM cells, 

indica t ing  tha t  early pro-B cells proliferate only  in con- 

tact  w i t h  the  BM s t roma but  the  expression of a func- 

t ional  ~ at the  t r ans i t ion  f rom fract ion C to C'  enables 

en t rance  to the  second, IL-7 responsive phase (Hayashi et 

al. 1990; Era et al. 1991; Reichman-Fr ied  et al. 1993). 

In conclus ion,  the  pheno type  of the  R a g - l - / ~  mice  

under l ines  the  mu l t i p l e  regulatory func t ions  of mem-  

brane ~ at the  pre-B cell  stage. In separate studies we 

were able to show tha t  ~ emerges on  the  surface of these 

cells a lbei t  at low levels (E. Spanopoulou,  C.J. Roman,  J. 

Friedrich, J. Cambier ,  R.R. Hardy, L.M. Corcoran,  and D. 

Balt imore,  in  prep.). M e m b r a n e  ~ is present  at  h igh  lev- 

els in  the  cytoplasm,  complexed  to SLC or K moie t ies  

(Pillai and Bal t imore  1987; Takemor i  et al. 1990; Las- 

soued et al. 1993), apparent ly  re ta ined  in  the  endoplas- 

mic  r e t i cu lum by BiP pro te in  (Haas and Wahl  1983). 

Therefore,  the  ques t ion  remains  whe the r  deve lopment  

of pre-B cells is directed by the  ~ res ident  on the  cell 

surface and/or  i ts  cy top lasmic  form and wha t  is the  exact 

func t iona l  s ignif icance of low levels of surface &. A sim- 

ilar ques t ion  is raised about  the  func t iona l  impor tance  of 

low levels of TCRB h o m o d i m e r s  on the  surface of pro-T 

cells (Mombaerts  et al. 1992b; Sh inka i  et al. 1993). 

The  above studies show tha t  B-cell deve lopment  

pauses at cer ta in  checkpoints ,  being dependent  on the 

expression of the checkpo in t  de t e rminan t  for t rans i t ion  

to the  next  stage. Expression of these de te rminants ,  i.e., 

the m e m b r a n e  forms of ~ or ~K, al lows progression 

th rough  the  checkpo in t s  and fur ther  different ia t ion.  

Mater ia l s  and m e t h o d s  

Targeted disruption of Rag-1 

The mouse Rag-1 gene was isolated from transfected NIH-3T3 
fibroblasts expressing Rag-1 activity {Schatz et al. 1989). The 
targeting vector carried genomic Rag-1 sequences I7.6 kb span- 
ning the coding region) from the upstream EcoRV site to a 3' 
XbaI site). A cassette containing the PMC1 neomycin-resis- 
tance gene under the control of the PGK promoter, and carrying 
a polyadenylation signal (see Corcoran et al. 1993) was inserted 
into an internal EcoRV site in the Rag-l-coding sequence. The 
PGK neo insertion generated a frameshift mutation. A thymi- 
dine kinase cassette was inserted at the 5' end of the targeting 
vector to select against random integration. 

J1 embryonic stem (ES) (SVJ129) cells were cultured on ~/-ir- 
radiated {20Gy) primary embryonic (Neo resistant) fibrobtasts as 
described (Corcoran et al. 1993). Twenty micrograms of linear- 
ized targeting vector was transfected into 8 x 106 ES cells by 
electroporation (400 V, 25 mF). Selection was initiated 48 hr 
later in the presence of 400 ~g/ml of G418 with or without 
FIAU (0.2 raM). Resistant colonies were picked 8 days after se- 
lection, and homologous recombinants were identified by 
Southern analysis. Approximately 1/25 doubly resistant clones 
contained successful disruptions of the Rag-1 allele. 

ES cell clones containing one RAG-I mutant allele were in- 
jected into blastocysts of C57BL/6 mice and transplanted into 
the uteri of foster mothers. Several of the derived chimeric mice 
transmitted the mutant allele to their offspring, which were 
further backcrossed to establish mice homozygous for the mu- 
tation. Neonatal Rag-1-1- mice were genotyped by Southern 

analysis to reveal a Mendelian pattern of transmission of the 
Rag-1 null allele. 

Flow cytometry analysis, sorting, and culture conditions 

Preparation of single cell suspension cells from the BM and 
subsequent immunostaining and FAGS analysis, as well as sort- 
ing and culturing of the cells when required, were performed as 

described (Hardy et al. 1991)using the identical reagents. The 
human transgenic heavy chain was identified by an anti-human 

antibody (clone 145-8, Becton Dickinson), subsequently bi- 
otin conjugated. 

RNA preparations and PCR assays 

Preparation of total cellular RNA, reverse transcription, and 
subsequent analysis of the eDNA products by PCR were per- 
formed as described (Schlissel et al. 1991b) using the identical 

primers. 

LPS stimulation proliferation assay 

B220 + cells from spleens of mice of indicated that genotypes 
were isolated by cell sorting and plated at 106 cells/ml (100 
~l/well of a 96-well plate) in RPMI-1640 medium (supple- 
mented with 5 x 10 -s M 2-mercapoethanol and 10% fetal calf 
serum) containing 10 p,g/ml of LPS (Sigma). After 4 days, cells 
were harvested and counted. 

Culturing on FLST2 stroma cells 

Experimental conditions were as described previously (Hardy et 
al. 1987, 1991). Experimental cultures on FLST2 were carried 
out in 24-well plates (Nunc), using 1 ml of standard medium. 
Cultures were also performed by inserting diffusion chambers 
("Millicell", Millipore Corp.) into wells containing pre-estab- 
lished FLST2 layers. Typically, 1 x 1 0  4 t o  5 X 1 0  4 sorted cells 

were placed in each well. 

Ca 2 + mobilization assays 

Loading of the cells with Indo-1 and measurements of intracel- 
lularly released Ca 2+ were essentially performed as described 

(Costa et al. 1992). Indo-l-loaded cells were incubated at 37°C 
for 5 min, and transferred to a fluorimeter cuvette, and antibody 
was added to a final concentration of 15 ~g/ml. 

IgM cross-linking, preparation of cytoplasmic extracts, 

and Western analysis 

Splenic lymphocytes were isolated without red blood cells and 
cultured at a density of 5x 106/ml in RPMI/10% FCS/ ~-mer- 

captoethanol at 37°C for 30 min prior to the addition of anti- 
body. Anti-mouse Fab {Jackson Laboratory) or a rabbit poly- 
clonal anti-human (Southem Biotechnology) was added to a fi- 
nal concentration of 25 ~g/ml, and the suspended cells were 
incubated further for 5 min. Cross-linking was terminated by 
the addition of 12 ml of ice-cold PBS containing 1 mM ortho- 
vanadate, and the pelleted cells were lysed in 20 mM HEPES (pH 
7.9), 100 mM KC1, 300 mM NaC1, 1% NP-40, 1 mM orthovana- 
date, 1 mM NaF, and 10 mM EDTA in the presence of several 
protease inhibitors. After sonication, extracts were separated on 
an 8% polyacrylamide gel and transferred onto nitrocellulose 
using 10 mM CAPS (pH 11.0), and 20% methanol. Filters were 
incubated in TBST (10 mM Tris at pH 8.0; 150 mM NaC1; 0.05% 
Tween 20) and blocked with either 2% BSA (for the anti-phos- 
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photyrosine antibody) or 2% milk for the Iga and Igl3 antibodies, 
incubated with the primary antibodies overnight at 4°C, washed 
several times, incubated with the secondary antibodies for 30 
min, washed again, and developed by alkakine phosphatase 
(Promega) or chemilluminescence (Amersham). The anti-phos- 
photyrosine monoclonal antibody 4G10 was purchased from 
UBI. 
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