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Abstract

Background: Parkinson’s disease (PD) presently is conceptualized as a protein aggregation disease in which

pathology involves both the enteric and the central nervous system, possibly spreading from one to another via

the vagus nerves. As gastrointestinal dysfunction often precedes or parallels motor symptoms, the enteric system

with its vast diversity of microorganisms may be involved in PD pathogenesis. Alterations in the enteric microbial

taxonomic level of L-DOPA-naïve PD patients might also serve as a biomarker.

Methods: We performed metagenomic shotgun analyses and compared the fecal microbiomes of 31 early stage,

L-DOPA-naïve PD patients to 28 age-matched controls.

Results: We found increased Verrucomicrobiaceae (Akkermansia muciniphila) and unclassified Firmicutes, whereas

Prevotellaceae (Prevotella copri) and Erysipelotrichaceae (Eubacterium biforme) were markedly lowered in PD

samples. The observed differences could reliably separate PD from control with a ROC-AUC of 0.84. Functional

analyses of the metagenomes revealed differences in microbiota metabolism in PD involving the ẞ-glucuronate

and tryptophan metabolism. While the abundances of prophages and plasmids did not differ between PD and

controls, total virus abundance was decreased in PD participants. Based on our analyses, the intake of either a MAO

inhibitor, amantadine, or a dopamine agonist (which in summary relates to 90% of PD patients) had no overall

influence on taxa abundance or microbial functions.

Conclusions: Our data revealed differences of colonic microbiota and of microbiota metabolism between PD

patients and controls at an unprecedented detail not achievable through 16S sequencing. The findings point to a

yet unappreciated aspect of PD, possibly involving the intestinal barrier function and immune function in PD

patients. The influence of the parkinsonian medication should be further investigated in the future in larger cohorts.
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Background
Idiopathic Parkinson’s disease (PD) disease is conceptual-

ized as a progressive protein aggregation disease with the

formation of neuronal cytoplasmic aggregates of mis-

folded α-synuclein (α-syn) and other proteins as the

neuropathological hallmark (Lewy bodies [LB]) [1]. LB are

present not only in the central nervous system (CNS) but

also in the enteric nervous system (ENS) of the entire

gastrointestinal tract, corresponding to the clinical notion

that the gastrointestinal tract is involved in PD [2].

Lewy, in his original thesis work in 1913, already identi-

fied the dorsal motor nucleus of the vagus as a hotspot of

brain pathology and Braak et al. more recently confirmed

the early involvement of the vagus and hypothesized that

PD might originate in the gut and that α-syn aggregation

might spread via vagal structures into the CNS and higher

cortical regions [3]. The importance of the vagus for partly

bi-directional interactions of the ENS and the CNS (“gut-

brain axis”) [4–6] has become even more evident since the

identification of the cholinergic anti-inflammatory pathway

[7]. In line with this direct connection of gut and brain neu-

rons, increasing evidence from cell culture and animal ex-

periments seems to support the hypothesis of spreading or

seeding of α-syn oligomers [8, 9]. The deposition of α-syn

within the colon can help to distinguish PD patients from

controls [10–13]. Nevertheless, when assessed with conven-

tional immunohistochemistry, its diagnostic value as a bio-

marker has not been finally confirmed as α-syn staining in

colonic mucosa was likewise found in PD patients and con-

trols [14], which not necessarily refutes the concept of an

intestinal origin of PD pathogenesis. Thus, additional yet

unidentified factors beyond α-syn must be involved in the

presumed PD disease process.

The gastrointestinal microbiome encompasses a vast di-

versity of bacterial species and may be regarded as an

extracorporeal organ system, which interacts with its host

in unprecedented ways just being unraveled now [15]. Se-

verely disturbed gut homeostasis is detrimental for the

host but the effects of smaller changes or differences in

species variation for nutrition [16, 17], behavior [18], and

drug metabolism [19] are just beginning to emerge. Re-

cent studies already linked an altered microbiome to PD,

but most participants were well advanced and treated with

L-DOPA [20–22], which affects colonic motility and may

promote intestinal bacterial overgrowth [23].

Using metagenomic shotgun analysis, we found that

early, L-DOPA-naïve PD patients carry an altered gut

microbiota composition, i.e. specific taxonomic groups,

among others related to intestinal barrier and immune

functions, were overrepresented or underrepresented.

Functional analyses also suggested differences in micro-

biota ẞ-glucuronate and tryptophan degrading pathways.

Moreover, total virus abundance was decreased in PD

participants.

Methods
Study participants and clinical characteristics

This study was approved by the local ethics committee of

the University of Bonn and all participants gave informed

consent (internal ethics vote 126/02). Study participants

were recruited from the Department of Neurology at the

University of Bonn. To reduce any potential gender ef-

fects, we included only male participants in the study.

Thirty-one male PD patients (diagnosed according to the

UK Brain Bank criteria [24]) were compared to 28 male

age-matched non-parkinsonian controls.

Disease severity was measured using the Unified PD Dis-

ease Rating Scale (UPDRS part III). Gastrointestinal symp-

toms and presence of constipation were assessed with a

modified version of an interview-based Gastrointestinal

Symptom Rating Scale (GSRS) (selected items: borboryg-

mus, abdominal distension, increased flatus, decreased pas-

sage of stools, increased passage of stools, loose stools, hard

stools, urgent need for defecation and feeling of incomplete

evacuation, each item was rated 0–3 according to intensity,

frequency, duration or social impact depending on the re-

spective item, Additional file 1) [25]. To avoid alterations of

gut microbiota related to either gastrointestinal dysfunction

of late stage PD or L-DOPA-induced intestinal effects, we

included only early stage PD participants (onset of motor

symptoms and diagnosis of PD within the past year) who

were naïve to L-DOPA therapy. Further exclusion criteria

were: (1) chronic and inflammatory gastrointestinal diseases

including chronic constipation; (2) the use of laxatives or

immunosuppressive agents in the past three months; (3)

atypical or secondary parkinsonism; while (4) the use of an-

tibiotics in the past three months in principle was an exclu-

sion criterion; however, we included three PD patients and

three controls despite the intake of antibiotics for one to

three days in a period of 28–34 days prior to feces sampling

as the omission of those cases from the analyses did not

change any result (see also Additional file 2).

Controls were matched regarding general demographics

(Table 1, general demographics). Gastrointestinal symp-

toms were comparable in both groups; in particular, no

relevant constipation was present in PD participants; diet-

ary and smoking habits did not differ between groups. No

detailed dietary plan was requested prior to the feces col-

lection and samples were collected as first bowel move-

ment of the day.

Analysis of microbiota

Non-invasively obtained stool samples were shotgun se-

quenced (paired end) using an Illumina Hiseq4000 and fur-

ther analyzed with the MOCAT2 pipeline [26]. Briefly,

taxonomic mapping quality-controlled generated profiles

reads (minimum length cutoff 45 bp, minimum quality

score cutoff 20, reads matching Illumina adapters, or hu-

man genome were removed) to a database of ten universal
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single-copy marker genes that were extracted from 3496

NCBI reference genomes and 263 human gut metagen-

omes [27]. For abundance estimates at the species level, we

used mOTU (molecular operational taxonomic units)

abundances [27] and for genus-level and family-level abun-

dances, individual NCBI taxonomy-annotated marker gene

abundances were summed up.

Quality-controlled reads were also mapped against an an-

notated reference gene catalog for the human gut micro-

biome. On average, 88% of all reads could be mapped to

the reference gene catalogue (Additional file 3). Abun-

dances of individual genes summed up according to their

KO annotation in the KEGG (Kyoto Encyclopedia of Genes

and Genomes) database. KEGG and GMM (Gut specific

Metabolic Modules) pathway [28] abundances were esti-

mated with the same algorithm as in [29], re-implemented

in C++, available from github.com/hildebra/Rarefaction.

Briefly, we estimated for each metabolic pathway which of

several alternatives had the highest coverage given our KO

abundance matrix. If the coverage per pathway was higher

than 30%, the median abundance of all KOs in this pathway

was used to estimate pathway abundance.

To estimate the number of phages and viruses, we

choose a reference gene catalog independent approach,

as assembly of mobile genetic elements is notoriously

error prone and imprecise. MOCAT2 quality filtered

reads were mapped against the ACLAME [30] database

using Diamond [31] in sensitive mode, after format con-

version from fastq to fasta using sdm [32]. Reads map-

ping with an e-value <1e-7 were considered valid hits

against the database and the number of reads mapping

to the classes of “Plasmid,” “Prophage,” and “Virus” were

counted and normalized by read number.

Statistical methods

Statistical analysis was conducted in R 3.0.0. For all

univariate tests, taxa with less than five reads over all

samples were excluded from this analysis to avoid arti-

facts, similar to the approach in [33]. The matrix was

normalized dividing each feature by the respective total

sample sum and transformed with log10(x + 1), where x

is the normalized feature coverage as calculated in the

mOTUs algorithm. For species and mOTU level

analysis, we made the filtering options more explicit to

exclude spurious correlations: from the abundance

matrix features were removed that were absent in more

than ten samples, had less than ten accumulated or two

mean read coverage. Sample count matrices were rar-

efied using the R implementation of the rtk toolkit [34].

Significance between groups of samples was tested with

a Kruskal–Wallis test, as implemented in R. The ordina-

tions (non-metric multidimensional [NMDS] ordination)

and subsequent statistical analysis were calculated using

the R-package vegan with Bray-Curtis distance on the

rarefied and log-transformed taxa abundance and visual-

ized with custom R scripts. Intergroup differences for

the microbiota were calculated using a PERMANOVA

test as implemented in vegan [35]. This test compares

the intragroup distances to the intergroup distances in a

permutation scheme and thus calculates a P value. For

all PERMANOVA tests we used 4999 randomizations.

PERMANOVA post hoc P values were corrected for

multiple testing using the Benjamini–Hochberg false dis-

covery rate (q-value) [36]. Sample composition plots

were visualized with custom R scripts (available from

github.com/hildebra/PD_helpers_R).

Univariate testing

Univariate testing for differential abundances of each

taxonomic unit between two or more groups was tested

using a Kruskal–Wallis test (P value), corrected for

multiple testing using the Benjamini–Hochberg false dis-

covery rate (q-value).

Table 1 Clinical characteristics and general demographic

parameters of study participants

PD Control P value

Demographics

n 31 28

Age (years, mean ± SD) 64.8 ± 9.5 65.6 ± 10.4 0.970

Clinical data

UPDRS III (mean ± SD) 12.6 ± 6.9 0 ± 0 <0.001

GIT symptoms incl. constipation
(GSRS, mean ± SD)

3.4 ± 2.9 2.2 ± 2.0 0.172

Total serum bilirubin 0.23 ± 0.03 0.23 ± 0.03 0.593

Nutritional habits

Diet

Omnivorous 30 [96.8%] 28 [100%]

Vegetarian 1 [3.2%] 0 [0%]

Probiotics 4 [12.9%] 1 [3.6%]

Medication

Amantadine 26 [83.9%] 0 [0%]

Dopamine agonist 11 [35.5%] 0 [0%]

MAO inhibitor 28 [90.3%] 0 [0%]

L-DOPA 0 [0%] 0 [0%]

Statin intake 1 [3.2%] 11 [39.3%]

Metformin 1 [3.2%] 3 [10.7%]

Acetylsalicylic acid 2 [6.5%] 7 [25.0%]

Smoking

No 10 [32.3%] 9 [32.1%]

Yes 5 [16.1%] 4 [14.3%]

Ex-smoker 15 [48.4%] 15 [53.6%]

UPDRS Unified Parkinson’s Disease Rating Scale, GIT gastrointestinal, GSRS

Gastrointestinal Symptoms Rating Scale, MAO monoamine oxidase,

L-DOPA Levodopa
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The Blocked “independence test” function calls (with

the following options: “ytrafo = rank, teststat = scalar” for

blocked WRST) were used from the COIN R package

[37] to control for potential confounders, such as the in-

take of a statin.

Post hoc statistical testing for significant differences be-

tween all combinations of two groups was conducted only

for taxa with a significance of P < 0.2. Wilcoxon rank-sum

tests were calculated for all possible group combinations

and corrected for multiple testing using Benjamini–Hoch-

berg false discovery rate (q-value). GSRS, UPDRS III, and

Bilirubin correlations to taxa were tested using a spear-

man correlation test; P values were corrected using Benja-

mini–Hochberg false discovery rate.

Further, we confirmed these results using ANCOM

[38], a statistical test developed for microbial count data,

using an R implementation version 1.1-3 and the add-

itional parameters multcorr = 2 and sig = 0.1, that is with

multiple testing correction at significance 0.1.

Classifier

For generating a classifier, genera were filtered, removing

any whose mean relative abundance across samples was

below 0.1%. Subsequently, relative abundances were nor-

malized by a log-transformation with a pseudo-count

equal to one-tenth of the estimated detection limit, esti-

mated as the minimal abundance of any positively de-

tected taxa [39]. Fitting a classifier proceeds in two steps.

First, a lasso-penalized logistic regression classifier is used

to select the top features (the features with the highest ab-

solute weight are selected, Additional file 4). Second, these

features are used in an unpenalized logistic regression

classifier. Classifiers were based on the scikit-learn imple-

mentation [40]. The classifier was generated using cross-

validation in a leave-one-out schedule (feature selection

was performed de novo at each iteration to provide un-

biased estimates). Relevant taxa were extracted from a

model trained on the whole data. P values were computed

by the Mann–Whitney test on the prediction scores of the

two classes (PD and control). Classifier performance was

reported as ROC-AUC, representing the probability that

the classifier will correctly label a new sample.

Structural equation model (SEM) from the same sample

distribution

SEMs were used to test causality through examination

of both direct and indirect effects of bacteria and medi-

cation on PD and vice versa [41]. We also evaluated an

alternative model in which medication affects bacteria

and bacteria in turn affect the disease. Based on this we

used an exploratory approach to approximate a signifi-

cant model fit. Briefly, non-significant variables and

paths were subsequently removed using backward elim-

ination stepwise regression and new paths were added

based on modification indices until significant model fit

was achieved (Additional file 5). This analysis was per-

formed using the computer program AMOS ver. 7.0

(SPSS, Chicago, IL, USA).

Results

Microbiota in PD

Analyzing the two sample sets for differences in their bac-

terial composition we detected significant differences be-

tween PD and control samples (Permanova test, P < 0.001,

Additional file 6).

A NMDS ordination separated PD and controls on the

first axis of microbiota composition using Bray–Curtis dis-

tance, which explained 49.32% of variation, while axes 2

and 3 did not show this separation (Fig. 1a). The compos-

ition of PD patient gut microbiota was significantly differ-

ent from control at all taxonomic levels, while there was

little variation within PD and the control group. Richness

(i.e. number of taxa present in a sample) between commu-

nities was not significantly different, whether samples were

pooled or considered as single samples (Additional file 7).

Key taxonomic differences in the PD gut microbiota

In general, we observed Clostridiales, Bacteroidaceae, and

Ruminococcaceae as the most abundant families in both

sample sets accounting for 50–52% of the relative family

abundance. Univariate tests revealed significant changes in

family as well as in genus abundance in PD samples

(Additional file 8). Verrucomicrobiaceae (genus Akkerman-

sia), unclassified Bacteria (of the classified prokaryotes) and

Firmicutes were increased, whereas Prevotellaceae (genus

Prevotella) and Erysipelotrichaceae (genus Eubacterium)

were markedly lowered in PD samples (Fig. 1b, Additional

file 9a, and b; P < 0.05, q < 0.1; with the exception of Prevo-

tella (genus) with a P < 0.05 and a q = 0.13, thus being n. s.).

Using ANCOM, we similarly found genera Akkermansia,

Prevotella, Eubacterium, unknown Bacteria, and unknown

Firmicutes to be significantly different between PD and

control patients.

Metagenomics provides species resolution. Among the

classified bacteria, we thus identified a pattern of signifi-

cantly increased key species in PD including Akkerman-

sia muciniphila and Alistipes shahii. On the other hand,

Prevotella copri, Eubacterium biforme, and Clostridium

saccharolyticum were decreased (Fig. 1b and c).

Correlation of microbiota with PD clinical scores

No significant taxonomic associations were detected, nei-

ther at genus nor at species level, when microbiota abun-

dance was correlated with clinical data (UPDRS III, GSRS,

or total serum bilirubin, despite of the presumed decreased

ẞ-glucuronidation in PD participants, Additional file 10).

This was expected, as we had aimed to recruit a cohort of

PD patients with a short duration of (motor) symptoms
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and subjective impairment; nevertheless, some interesting

trends (q > 0.1) were observed regarding the symptom

severity of PD (UPDRS III) for three different Eubacteria

(E. eligens, E. rectale, and E. hallii, Fig. 1d).

Both parkinsonian and gastrointestinal symptoms severity

including constipation were rather low in our sample set of

early L-DOPA-naïve patients and, except for core parkin-

sonian features, did not differ from controls (Table 1). We

could not detect any deviations pointing to a possible

confounder.

Functional analysis of the PD microbiome

In order to explore differences in the metabolic potential of

gut microbiota between PD and control patients, we further

estimated the abundance of metabolic pathways, using our

metagenomic reads mapped to functional orthologues from

the KEGG and GMM databases (Additional file 11).

We identified a significantly decreased gene abundance

for D-Glucuronate degradation in PD participants com-

pared to controls (System: D-Glucuronate degradation, D-

glucuronate→ pyruvate and D-glyceraldehyde 3P, Fig. 2a

and b, KEGG module number M00061, P < 0.05, q < 0.1).

GMM Orthology corroborated a decreased abundance of

genes in the pathway of beta-D-glucuronide and D-

glucuronate degradation in PD participants (Fig. 2a and b,

GMM module number MF0091, P < 0.05, q < 0.1). This was

paralleled by a decrease in genes for 5-dehydro-4-deoxy-D-

glucuronate degradation (Fig. 2a and b, GMM module

number MF0065, P < 0.05, q = 0.11).

Interestingly, we also found two different pathways for

tryptophan metabolism, which appeared to be more active

in the microbiota of PD participants (tryptophan→ kynur-

enine→ 2-aminomuconate, KEGG module number

M00038, Fig. 2a and b; tryptophan degradation, MF0009

(GMM module number), Fig. 2a and b, increased formate

conversion, GMM module number MF0118, Fig. 2a and

b). Although a lack of tryptophan and serotonin is a hall-

mark of PD, this finding did not reach statistical signifi-

cance after multiple testing correction (all p < 0.05, q > 0.1)

and needs further exploration in a larger cohort.

To determine which bacteria are involved in these path-

ways, we traced the contributing genes and determined

their likely taxonomic origin (Fig. 2a and b). Although mul-

tiple genera contribute to all modules, only in modules

MF0065 and MF0118 could we find evidence of any genera

contributing significantly more reads in PD patients than

a

b

c

d

Fig. 1 Genus and species level differences in PD participants and controls. a NMDS ordination of all samples used in this study, using a Bray–Curtis

between-sample distance at genus level. This shows the composition relatedness of samples and that PD samples form a subgroup. Outliers denoted

with # took antibiotics in a period of 28–34 days prior to feces sampling. See also Additional file 2 for taxonomic analysis while taking these samples into

account. b Genus-level sample composition. c The most significant species or groups of taxa that could not be further classified. Unclassified Prevotella is

not significant after multiple testing, but was implied in PD in several studies (see “Discussion”). d Species correlating strongest to PD disease severity (as

measured by UPDRS III). Note that after multiple testing correction, these are all q > 0.1
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control patients, after multiple testing correction (Fig. 2c).

In both cases this was Eubacterium.

Influence of medication on the microbiota

Given the important influence of pharmaceuticals on the

gut microbiota [42], we tested the effects of the

concomitant PD-specific medication in our cohort

(Additional file 12). No significant differences in taxa

abundances (families, genera, species) were apparent in

the relatively small samples grouped according to the vari-

ous combinations of anti-PD medication (dopamine agon-

ist +MAO inhibitor + amantadine: n = 10, MAO inhibitor

Tryptophan pathway c Glucuronate pathway 
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Fig. 2 Functional differences in PD patients based on selected metabolic pathways. a Phylum and (b) genus level composition of six modules that

were increased/decreased in PD patients. c All genera were contributing to these modules as expected by random chance, with the exception of

MF0065 and MF0118, where a higher than expected proportion of reads contributing could be traced to Eubacterium in PD patients
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+ amantadine: n = 14, MAO inhibitor: n = 3, no therapy: n

= 3; there was only one patient with dopamine agonist +

MAO inhibitor, who was not included). However, patients

treated with MAO inhibitors in combination with amanta-

dine (n = 14, i.e. 45.2% of the PD participants) displayed a

significantly increased richness (Additional file 12d), which

did not affect the overall richness of the entire PD cohort.

Among the concomitant drugs the intake of a statin

showed an influence on the gut microbiota. We identified

five families significantly different between statin-treated

and untreated patients (Burkholderiaceae, Propionibacter-

iaceae, Enterococcaceae, Actinomycetaceae, and Entero-

bacteriaceae), none of which contributed to the

differences observed between PD participants and con-

trols (Additional files 12a, c and 13).

Virus abundance is lowered in PD participants

We tested the fraction of the reads that could be mapped

to the ACLAME database to estimate the amount of mo-

bile elements in the metagenomes, though this method is

limited to known diversity of mobile elements. While the

abundances for prophages and plasmids were not different

between PD and controls, total virus abundance (reflecting

bacterial and archaeal phages) was decreased in PD partici-

pants (P = 6.7e-5, Additional file 14a). We also found that

viruses were increased in participants treated with a statin

(P = 0.0002), and therefore tested for differences between

PD participants and controls, corrected for statin treatment.

This again showed a decrease of the virus load in PD par-

ticipants (P = 0.0009, Additional file 14b).

Gut microbes discriminate PD participants from controls

Using a logistic regression classifier to select predictive

features, we could discriminate PD from control with a

cross-validated AUC of 0.84 using six different taxa (Eubac-

terium, Capnocytophaga, Phascolarctobacterium, Akker-

mansia, and mOTUs no further classified than to

Firmicutes as well as Bacteria level); this corresponds to a

sensitivity of 64.5% and a specificity of 89.2% (P value =

4.19 × 10−6; Fig. 3, see also Additional files 4 and 15). Eu-

bacterium was frequently selected as most important genus,

singularly predicting PD with an AUC of 0.63 (sensitivity =

74.2%, specificity = 57.1%, P value = 0.047). The addition of

constipation scores as a putative predictive feature showed

no added predictive value over the six taxa used, contrary

to prior studies [20].

Structural equation model

Using a SEM (see “Methods”), we summarized the ob-

served differences in key taxa abundances, metadata, and

functional pathways in a holistic statistical model of the PD

gut microbiota (Fig. 4). Compared with the LASSO regres-

sion classifier mentioned above, this modeling approach en-

ables causality inference through testing both direct and

indirect correlations between biotic factors (e.g. bacterial

abundance and metadata, e.g. medication), until the model

reaches a significant fit through optimization of the correl-

ation network. The best-fit SEM supported our hypothesis

that medication used for the studied patients has no direct

effect on bacteria, explaining 87% of variation. This model

indicated that differences in taxa abundances and also func-

tional changes in ẞ-glucuronidation are basically driven by

PD and not vice versa with an Akaike information criterion

Fig. 3 Classification of PD participants based on their microbiome. Here

the classifier selected a very similar set of features as were determined by

univariate testing (Fig. 1). With only six genera, PD could be separated

from control patients with an AUC of 0.84. The exact mOTU composition

of each feature is given in Additional file 15

Fig. 4 Structural equation modeling (SEM). SEM analysis of PD in relation

to key correlating bacterial functions and taxa (MSEA= 0, PCLOSE = 0.79,

AIC = 59.385). Values on paths and boxes are standardized regression and

determination coefficients (R2), respectively. Dashed lines and red colors

denote negative relationships. The thickness of lines is proportional to

regression coefficients. All relationships are statistically significant (P< 0.05,

Additional file 5). AIC Akaike information criterion, MSEA mean square

error of approximation, PCLOSE probability of close fit
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(AIC) of 59.4 (Additional file 4), while the alternate model

(PD is partly driven by biotic factors) had an AIC of 67.5

(Additional file 16). None of the taxa seems to influence

the PD microbiota. However, in this model the PD micro-

biota could be influenced by the intake of a MAO inhibitor

(that was only taken by a fraction of participants). Key taxa

in this model reflect changes on species levels. Among taxa

themselves, the strongest positive correlation was found for

Eubacterium and unclassified Firmicutes, when correcting

for cross interactions.

Discussion

Main results

Our results show a significantly altered microbial compos-

ition in early disease stage L-DOPA-naïve PD participants.

Compared to earlier studies investigating microbiota in PD

patients using 16S-based techniques the chosen methods

allowed to detect changes at the species level and also a de-

creased virus load in PD.

We confirmed a decrease of Prevotella copri in PD

and in addition found decreased Eubacterium biforme

and Clostridium saccharolyticum and increased Akker-

mansia muciniphila as well as Alistipes shahii. Based on

the taxonomic differences alone, logistic regression after

feature selection allowed separation of PD patients in

early stages from controls with good accuracy (AUC

0.84). Furthermore, our analyses point to differences in

microbiota metabolism, namely in ẞ-glucuronate and

tryptophan degrading pathways.

Taxa abundances

Despite several differences in study design compared to

previous work [20, 21], our results strengthen the hy-

pothesis of a PD-specific “microbial footprint.” The ob-

served differences though are not directly comparable,

since the previous studies were using 16S amplicon se-

quencing with its various biases [43], while we used

metagenomics with increased precision due to usage of

single copy marker genes with high confidence taxo-

nomic assignments [27]. Testing for causality inference

of biotic and abiotic factors seem to indicate that these

taxonomic changes are a consequence of the disease.

However, whether the observed changes are primary

changes or rather secondary, resulting from unidentified

effects, and whether it is either beneficial or harmful

cannot be decided at present.

The increase in Akkermansia muciniphila, which appears

to be in certain consistency in regards to the findings of

Keshavarzian et al., Scheperjans et al., and Unger et al.

[20–22], may illustrate this dilemma: it is a common mucin

degrader which has been shown to reverse diet induced

pathological intestinal changes in high-fat fed mice by re-

storing the intestinal mucus layer and the underlying epi-

thelium, thus being able to improve gut barrier function

[44, 45]. Protective effects of extracellular vesicles derived

from Akkermansia muciniphila on experimentally induced

colitis further support a beneficial influence on intestinal

immunity [46]. On the other hand, inflammatory and regu-

latory properties have been reported for Akkermansia,

probably mediated due to an increased exposure of im-

mune cells to microbial antigens upon breaking down the

mucosal mucin layer [47]. Preliminary evidence also linked

Akkermansia to multiple sclerosis [48]. Previous studies on

colonic biopsies and feces samples from treated and drug-

naïve PD participants suggested an altered mucosal barrier

function and PD patients exhibited significantly greater

intestinal permeability than controls, paralleled by an in-

creased mucosal staining for E. coli and α-syn [49]. Pro-

inflammatory dysbiosis may even trigger α-syn misfolding

or neuronal injury from gut-derived endotoxins [21, 50].

Although we did not identify E. coli species associated with

PD in our samples, the increase in Akkermansia might be

associated with a yet unexplored disease related impact on

mucosal barrier function.

Extending the results of Scheperjans et al. and Unger et

al. [20, 22], which pointed to a relatively lower abundance

of Prevotellaceae in advanced PD, Prevotella copri was

markedly lowered in our samples of early stage PD. On the

other side, Keshavarzian et al. [21] did not show this differ-

ence for fecal samples, albeit the trend was the same for

mucosal-derived PD samples. However, Prevotella abun-

dance was also reduced in Japanese multiple sclerosis pa-

tients and in autistic children, somewhat questioning the

specificity of this finding [51, 52]. The Prevotella enterotype

is the least prevalent in human individuals [53] and is re-

lated to dietary/fiber intake [54, 55]. In particular, Prevotella

enrichment has been linked to non-Western and/or fiber-

rich diets [56, 57]. Fibers are the primary substrate for short

chain fatty acids (SCFAs) including butyrate and reductions

in the latter can disrupt barrier function and promote in-

flammation [58]. The fact that, in various autoimmune dis-

eases including type 1/2 diabetes, irritable bowel disease,

rheumatoid arthritis, and Behcet’s disease reduced levels of

Prevotella have been found [42, 59–61], could indicate a de-

creased SCFA production (i.e. propionate) and in turn favor

inflammatory conditions in PD [21].

In contrast to Scheperjans et al. [16], we did not find in-

creased Ruminococcaceae (phylum Firmicutes) to compen-

sate lower levels of Prevotella but instead an increase in

unclassified Firmicutes. Interestingly, although the early, L-

DOPA-naïve PD patients hold a different species pattern

not yet affected by drug effects and the chronic constipa-

tion typically observed in late-stage PD, we found a certain

consistency with the advanced PD patients’ pattern.

Taken together, the observed bacterial pattern in our PD

samples might hint towards yet unexplored mechanisms of

a disturbed intestinal and immune function in PD patho-

genesis. Colonic biopsies from PD patients indeed showed
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enhanced pro-inflammatory cytokines and glial markers

correlating with disease progression [62, 63]. Furthermore,

there is evidence of α-syn contributing to neuro-

inflammation by potentiating microglial or astroglial

activation [64]. In line with this, recent work highlighted

the crucial role of microbiota on maturation and activity of

microglia [65], which have been considered as one of the

earliest contributors of neurodegeneration [66] and further

supports the importance of microbial-derived mediators

(gut peptides, chemokines, SCFAs) on immune regulation

and CNS function [65, 67].

A possible role for SCFAs in PD

SCFAs are essential energy sources for colonocytes and

reduced levels of SCFAs might not only contribute to a de-

creased colonic motility (i.e. constipation) but also led to an

increase in intestinal barrier leakiness [68–70]. Keshavar-

zian et al. and Unger et al. both suggested a beneficial role

for SCFAs as PD-derived feces were shown to contain less

SCFA butyrate-producing bacteria, including Blautia, Rose-

buria, and Coprococcus [21] as well as Faecalibacterium

prausnitzii [21, 22], which were previously attributed to

exert putative anti-inflammatory effects.

While SCFA administration contra-intuitively promoted

motor dysfunction and α-syn-mediated neuro-inflammation

in a germ-free transgenic mouse model over-expressing α-

syn, oral administration of heat killed bacteria had no effect

on motor performance, indicating the putative importance

for metabolically active microbiota in disease pathogenesis

[71]. Namely, when PD-derived microbiota (of treatment-

naïve new onset PD donors) were orally transferred to

germ-free mice, several taxa, including Roseburia, Rikenella-

ceae, and Enterococcus, were markedly altered in the

microbial profile of the recipient mice independently of its

genotype as when they received microbiota derived from

healthy donors.

While inconclusive at the moment, prospective research

on SFCA gene expression and metabolomic profiles of

microbiota in health and disease will shed further light on

this aspect.

Viral analyses

The gut bacteria harbor a diverse phageome and virome

that may contribute to function and structure of the

microbiome, but evidence from comparative analyses of

the human gut phageome is limited. Recently a compre-

hensive metagenomic analysis in 64 individuals sug-

gested a core phageome that was shared among more

than one-half of all individuals and might also exert

beneficial properties as it was reduced in individuals

with inflammatory bowel disease [72]. However, based

on our analysis, we could not find any differences in the

abundance of prophages and plasmids between PD and

control samples. In contrast, total virus amount was sig-

nificantly lowered in PD participants.

Importantly, the assessment of virus and phage load is

entirely dependent on the corresponding protein families

being present in the ACLAME database; therefore, we

only detect those phages or viruses, of which a closely

related reference genome is present in the database.

Testing for correlations between bacterial family and

viral load abundance showed no significant correlations

after multiple testing.

As viruses interact with host cells and influence immune

response (i.e. prevent inflammatory conditions [73]), there

might be various possibilities in which viruses interact in

the pathogenesis of PD. Although inconclusive at the mo-

ment, exploration of the specific role of viruses in PD is a

promising avenue to follow-up with more specific

research.

Functional aspect

Accumulating evidence suggests a direct impact of meta-

bolic alterations in microbiota on human health [74, 75].

We observed a putative reduction in microbiota ẞ-glucu-

ronidase activity in early stage PD participants. Decreased

ẞ-glucuronidation in the microbiota could imply a deteri-

oration of resistance to various pathogenic organisms [76].

Also, microbial derived ẞ-glucuronidases affect effective

dose availability of administered drugs by reactivation in

the gut, which has been shown for irinotecan therapy in

colorectal cancer patients [77]. Altered metabolisms of xe-

nobiotics or parkinsonian pharmaceuticals metabolized in

the ẞ-glucuronate degrading pathway must be determined

experimentally [78].

Our data further revealed a trend towards an increased

tryptophan degradation gene copy number in PD. If one as-

sumes that this increased genetic potential translates into

an increased tryptophan metabolization, this finding is in

line with previous research and is of particular interest as

L-tryptophan, the precursor for serotonin, is decreased in

PD patients’ brains. L-tryptophan is also metabolized to

kynurenines, whereof metabolites have regulatory immune

function and were described as either harmful or beneficial

in PD [79–81]. Urinary metabolomics profiling demon-

strated significant changes of urinary markers including an

increased tryptophan metabolism, which was associated

with the progression of PD [82]. Interestingly, catabolism of

serotonin also includes glucuronidation in the human

intestine [83].

The association with these metabolic pathways point to a

deeper involvement of Eubacteria with PD. Indeed Eubac-

teria spp. were decreased in PD (Eubacterium biforme) and

other Eubacteria species (E. hallii, E. rectale, E. eligens)

showed a trend towards correlation with disease severity

(n.s.). Specifically colonizing the mucus layer, particularly

Eubacterium rectale, might be interconnected with
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processes directly affecting the mucus layer due to its abil-

ity to gain access via flagella [84]. Further, diversity of Eu-

bacterium rectale was also reduced in an in vitro dynamic

gut model (M-SHIME) of long-term colonization of the

mucin layer when microbiota were derived from ulcerative

colitis patients [85]. Additionally, Eubacterium halii is

viewed as a key species impacting the microbial balance

due to its ability to produce several SCFAs [86]. In turn, al-

terations in the abundance of different Eubaceria might

contribute to the PD pathogenesis via metabolic but also

direct mucosal pathways.

Lowered Eubacteria (family Erysipelotrichaceae) in

mucosal as well as in fecal PD samples were similarly

observed in the study of Keshavarzian et al. [21]; how-

ever, a correlation with disease severity was not proven.

Clinical aspects

Instead, Keshavarzian et al. found PD duration correlating

with the greatest number of taxa, whereby the family

Lachnospiraceae, which includes several (supposedly anti-

inflammatory) butyrate producing bacteria, displayed a

significant negative correlation. Scheperjans et al. further

showed a significant association of Enterobacteriaceae

with the postural instability and gait disorder (PIGD) PD

phenotype [20], which was not confirmed in the work of

Unger et al. [22].

Namely, based on our analyses, the intake of different

anti-parkinsonian drugs had no overall influence on taxa

abundance or microbial functions. However, in future sub-

group analyses PD patients under the therapy with MAO-

inhibitors and amantadine might be favorably influenced

by an increased richness if assessed in a lager cohort. In

this context, it is worth noting another study, which was

published during the revision process of this manuscript

and which demonstrates instead independent effects of

different PD medications on the microbiome [87].

However, although the intake of a statin showed an in-

fluence on the gut microbiota with, in total, five families

being different in statin-treated individuals, none of

them contributed to the differences observed between

PD participants and controls when controlling for statin

intake with differential statistical methods. One caveat of

testing for confounders in our cohort is that this result

might be limited by the sample size being too small to

find even small effects, which is an unavoidable inherent

aspect of human cohort studies. However, future studies

should address this aspect.

Conclusions
Our data revealed differences of colonic microbiota be-

tween PD patients and controls at an unprecedented detail

not achievable through 16S sequencing: altered representa-

tion of several taxa including Eubacterium biforme, which

has not been reported previously and might be limited to

detection via metagenomics. The functional differences in

the gut microbiota included ẞ-glucuronate and tryptophan

degrading pathways. The findings point to a yet-

unappreciated aspect of PD, possibly involving the intestinal

barrier function and immune function in PD patients. We

further show the benefits of integrating functional micro-

biota predictions into microbial-based profiles to discrimin-

ate health and disease that is promising as it holds the

potential to identify PD patients. Furthermore, it is now evi-

dent that exploration of the PD virus populations is a

promising avenue to follow up with more specific research.

Additional files

Additional file 1: Gastrointestinal Symptom Rating Scale (GSRS). Modified

version of the GSRS, Gastrointestinal Symptom Rating Scale according to

Svedlund et al. 1988, each item was rated from 0 to 3 according to

intensity, frequency, duration, or social impact, respectively. (PDF 12 kb)

Additional file 2: PD microbial differences are not confounded by pre-

study antibiotics use. Statistical analysis blocked for six patients that used

antibiotics 28–34 days prior to sampling. Excluding these samples from the

statistical analyses does not change the results: the PD samples are at genus

level still significantly different from the control samples. (XLSX 53 kb)

Additional file 3: Statistics of sequencing. Sequencing statistics for all

samples of this study, including the number of reads per sample and the

number of reads per sample mapped to the gene catalogue. (XLSX 25 kb)

Additional file 4: Feature weights. Features selected by the Lasso

classifier, showing the weights of features at different taxonomic levels

that the classifier was trained on. Positive numbers resemble positive

association with PD. (XLSX 25 kb)

Additional file 5: Structural equation model (SEM). Estimated parameters

of the SEM model and the significance of features to PD. (XLSX 9 kb)

Additional file 6: Permanova test. Permanova test for compositional

differences between PD and control patients showed significant differences

at all taxonomic levels. In contrast, the compositional dispersion as tested

with a betadisper test showed significant differences at no levels, with the

exception of the species level (P = 0.045). (XLSX 8 kb)

Additional file 7: Richness and mOTUs. a Richness of single samples

(rarefied to 3000 read coverage) was similar between PD and controls, (b) also,

pooling samples and rarefying to different depths showed a similar pattern

(rarefied to 251189), as well as (c) measuring the accumulation of new mOTUs

when randomly increasing the sampling space. However, evenness and

Shannon diversity were positively correlated to UPDRS III. (PDF 64 kb)

Additional file 8: Univariate Testing. Significant taxa differences

between PD participants and controls. (XLSX 34 kb)

Additional file 9: Key taxonomic gut microbiota differences between

PD participants and controls. a The 11 most abundant families and their

contribution to the gut microbiota displayed in a pie chart. b, c The most

significantly different genera and families between PD participants and

controls (q < 0.1), confirming previous studies. Note that unclassified

bacteria were higher in PD patients. (PDF 88 kb)

Additional file 10: Correlation of microbiota with clinical scores.

Correlation of GSRS, UPDRS III and bilirubin to taxa with spearman

correlation test and Benjamini–Hochberg false discovery rate

correction. Species correlating strongest to PD disease severity are

shown in Fig. 1d. (XLSX 97 kb)

Additional file 11: Functional analyses. Functional differences between

PD and control patients, using KO and COG enzyme annotations, as well

as GMM and KEGG modules. (XLSX 904 kb)

Additional file 12: Microbiota differences linked to medication,

especially the intake of a statin seemed to have a strong influence

on gut microbiota, with (a) five bacterial families as well as (b)
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family richness significantly different between drug users and

medication free patients. c PD medication did not show significant

differences in family composition, while (d) gut microbiota mOTU

richness differed markedly for patients taking MBI + Aman. DA

dopamine agonist, MBI monoamine oxidase inhibitor, Aman

amantadine. (PDF 319 kb)

Additional file 13: PD microbial differences are not confounded by statin

use. Statistical analysis blocked for statin use. This analysis shows virtually the

same families being significantly different between PD and control samples,

compared to not controlling for statin intake. (XLSX 14 kb)

Additional file 14: Virus analyses. Fecal virus analyses showed differences

between PD and control with (a) PD samples containing fewer amounts of

viruses, with the 10th, 25th, 50th, 75th, and 90th quantiles being 0.001,

0.001, 0.001, 0.003, and 0.003 for Parkinson samples and 0.001, 0.002, 0.003,

0.011, and 0.016 for control samples, respectively. b A link to medication

with a statin to increase the content of viruses. (PDF 47 kb)

Additional file 15: mOTU phylogeny for predictive features. The most

predictive taxonomic features for PD (Fig. 3) were broken down into the

mOTUs [27] comprising them. Further, the percentage to which a given

feature was made up by each mOTU is indicated. (XLSX 10 kb)

Additional file 16: Alternative SEM model. Alternative SEM model of PD

in relation to key biotic and abiotic factors (MSEA = 0.113, PCLOSE =

0.138, AIC = 67.447) in which PD is driven by biotic factors, had a worse

AIC fit than our proposed SEM modeling of PD disease associations

(Fig. 4). AIC Akaike information criterion, MSEA mean square error of

approximation, PCLOSE probability of close fit. (PDF 192 kb)
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