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Abstract

Background: Admixture between early modern humans and Neandertals approximately 50,000–60,000 years ago

has resulted in 1.5–4% Neandertal ancestry in the genomes of present-day non-Africans. Evidence is accumulating

that some of these archaic alleles are advantageous for modern humans, while others are deleterious; however, the

major mechanism by which these archaic alleles act has not been fully explored.

Results: Here we assess the contributions of introgressed non-synonymous and regulatory variants to modern

human protein and gene expression variation. We show that gene expression changes are more often associated

with Neandertal ancestry than expected, and that the introgressed non-synonymous variants tend to have less

predicted functional effect on modern human proteins than mutations that arose on the human lineage.

Conversely, introgressed alleles contribute proportionally more to expression variation than non-introgressed alleles.

Conclusions: Our results suggest that the major influence of Neandertal introgressed alleles is through their effects

on gene regulation.
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Background

Some archaic alleles have been shown to confer an adap-

tive advantage for modern humans, and some of the most

striking candidates for adaptive introgression from Nean-

dertals are associated with traits related to environmental

adaptation, including immunity and high altitude and skin

and hair physiology in non-Africans [1–5]. However,

recent studies have explored the effects of selection on

archaic variants and have suggested that the depletion of

archaic ancestry around functional elements in the ge-

nomes of present-day people reflects widespread purifying

selection against archaic variants [5–7]. Selected variants

can exert their effect by modifying gene expression or by

changing the amino acid sequence [8–12]. Although both

mechanisms have been described for introgressed alleles,

and it has been suggested that regulatory changes are

likely to have a larger impact [8], the relative contribution

of each mechanism remains unknown.

Neandertal alleles that introgressed into modern humans

are likely to be those that were at an appreciable frequency

in the Neandertal population and are therefore likely to be

older than their generally low frequency in modern humans

suggests. To determine whether they have disproportional

functional impact compared to non-archaic variants of

matched frequency, we identify introgressed Neandertal

alleles in present day people that affect either protein cod-

ing potential or gene regulation and compare their effects

on molecular phenotypes to non-introgressed alleles of a

similar frequency. We are able to show that some of the

introgressed alleles that modify the molecular phenotype

are responsible for phenotypic variation in modern

humans. We also study changes in frequency of these

alleles to understand the selective pressures under which

they have evolved in recent modern human history.

Results
We defined putatively introgressed alleles as those that

differ between the Altai Neandertal and all Yoruba individ-

uals in the 1000 Genomes [13] (“Methods”) and that

overlap with the previously published Neandertal introgres-

sion map for modern humans [5] (“Methods”). Although it

is possible that a subset of sites are mis-labeled due to error,

incomplete lineage sorting, and the divergence between

introgressing and sequenced Neandertal genomes [14], this

approach enriches for alleles of Neandertal origin. We then
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annotated introgressed alleles that modify amino acid

sequences [15] and tested alleles within 50 kb of genes for

their association with gene expression in multiple human

tissues [16].

Impact of introgressed alleles on protein sequences

We detected a total of 930 alleles that result in non-

synonymous changes in present-day Eurasians (Europeans

701, East Asians 740, South Asians 841; “Methods”) and

compared the predicted effect of these changes using SIFT

and PolyPhen2 [17, 18] to the effects of a set of frequency-

matched, non-synonymous non-archaic alleles. SIFT and

PolyPhen2 provide two approaches to predict the func-

tional impact of amino acid substitutions based on their

proximity to functional domains, the physico-chemical

properties of the substitution, and evolutionary or protein

family conservation. We found that non-synonymous ar-

chaic alleles are predicted to have less effect (as measured

by the deleteriousness scores) than non-synonymous non-

archaic alleles (all P < 0.001; Fig. 1; “Methods”).

Impact of introgressed alleles on gene expression

To identify changes in gene expression that are potentially

mediated by introgressed alleles we used genotype and ex-

pression data for 48 tissues and 450 individuals (Additional

file 1: Table S1) provided by the GTEx consortium [16].

To identify loci that are potentially of archaic origin

we cluster alleles in high linkage disequilibrium (r2 > 0.8)

and then select an archaic-like tag allele for each of the

identified archaic loci (between 6118 and 9887 loci per

tissue; “Methods”; Additional file 1: Table S1). Similarly,

we identify non-archaic loci as those where none of the

alleles in linkage disequilibrium (LD) are of archaic origin

and select for each of these non-archaic loci a random tag

allele (between 919,090 and 1,640,104 loci per tissue). We

then identified between 4322 and 6008 expressed genes

within 50 kb of archaic loci and between 16,857 and

17,044 genes within 50 kb of non-archaic loci that are

potentially regulated by the archaic or non-archaic vari-

ants, respectively. For each tissue we computed genotype-

expression association (GEA) by correlating the genotypes

of the tag alleles with the expression of nearby gene/s

(“Methods”). Neandertal introgression results in longer

haplotypes—or at least haplotypes of a length consistent

with the introgression time—that are therefore more likely

to contain more alleles in LD (lengths of archaic and non-

archaic loci shown in Additional file 2: Figure S1). Picking

the best association may therefore be biased as there are

more potentially associated alleles to choose from in

archaic loci than in non-archaic loci. To avoid artificially

inflating associations for archaic loci we pick a random

allele to represent both archaic and non-archaic loci.

We identified loci in each tissue where an archaic allele

was significantly associated with an expression change

(false discovery rate (FDR) <0.05; “Methods”, Additional

file 1: Table S1). The number of significant archaic loci

(between 1 and 211) was highly correlated with the

number of samples in the tissue (rho = 0.93, P = 8.9e-22),
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Fig. 1 Functional impact of Neandertal non-synonymous alleles. Left: Average PolyPhen2 scores for archaic non-synonymous alleles in East Asians,

South Asians, and Europeans (red squares). These averages are compared to averaged Polyphen2 scores for 1000 frequency matched sets of non-

archaic non-synonymous alleles (yellow, orange, and brown violin plots). Polyphen2 scores range from 0–1 with higher scores associated with in-

creased deleteriousness. Right: Average SIFT scores for archaic non-synonymous alleles in East Asians, South Asians, and Europeans (red squares).

These averages are compared to averaged SIFT scores for 1000 frequency matched sets of non-archaic non-synonymous alleles (yellow, orange,

and brown violin plots). SIFT scores range from 0–1 with lower scores associated with increased deleteriousness
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indicating that our power to detect significant GEAs is

dependent on the number of individuals for which we

have data in a given tissue. This difference in power and

the variation of expression constraint between tissues [19,

20] made it difficult for us to directly compare results

between tissues. However, we observed a significant excess

of low P values among the top 5% of genes showing

differential expression that is related to Neandertal ances-

try, and therefore defined the top 5% of genes associated

with archaic loci to be significant GEAs for each tissue

(Additional file 2: Figure S2). We found that most GEAs

are detected in only one tissue (27% of GEAs) or are

shared between a small number of tissues (79% of signifi-

cant GEAs are shared between four or fewer tissues;

“Methods”). We caution that these results are sensitive to

differences in expression variation between tissues.

To determine whether introgressed alleles contribute

significantly to expression variation, we compared GEAs of

our archaic tag alleles to GEAs of a set of frequency-

matched non-introgressed tag alleles. Selecting frequency-

matched archaic and non-archaic alleles ensures that we

have similar power to detect expression differences. For

each tissue we computed the number of archaic loci with a

significant GEA (top 5% P values). When pooling all

tissues, we found that a significantly higher number of

archaic loci were associated with changed gene expression

compared to non-archaic loci (P < 0.001; “Methods”; Fig. 2).

When testing tissues individually, 23 of 48 tissues had sig-

nificantly more archaic loci associated with expression

changes than non-archaic loci (FDR < 0.05; “Methods”;

Additional file 1: Table S2).

Interestingly, there was no enrichment for differential

expression associated with archaic loci at lower frequencies

(archaic allele frequency <5%) when all tissues were com-

bined (P < 0.28; Fig. 2; “Methods”), and in only 10 of the 48

tissues individually (FDR <0.05; “Methods”; Additional file

1: Table S2), suggesting that the signal is mainly driven by

higher-frequency introgressed alleles. Indeed, archaic alleles

with a frequency ≥5% are enriched near genes that are

differentially expressed in the pooled tissue set (P < 0.001),

and also near genes that are differentially expressed in

many individual tissues (26/48 tissues with FDR <0.05).

Frequency changes in introgressed alleles

In order to study recent changes in the frequencies of intro-

gressed alleles in modern humans, we used selection scores

from a catalog of sites for which allele frequency data in a

set of modern humans ranging from around 8000 years to

the present day are available [21]. We extracted selection

scores from this set for 80 archaic non-synonymous alleles

in Europeans, 79 in South Asians, and 76 in East Asians.

Three of these non-synonymous archaic alleles are shared

between all populations and all three have significantly

decreased in frequency since 8000 years ago, which is

surprising given that there was an overall tendency for the

remaining set of 77 non-synonymous archaic alleles to in-

crease in frequency (51/77 show a non-significant increase,

Fisher’s exact test P = 0.04). When comparing archaic non-

synonymous alleles to frequency-matched, non-archaic

non-synonymous alleles we found that a similar proportion

of the non-archaic alleles show a significant frequency shift

over time (Europe P = 0.16, East Asia P = 0.09, South Asia
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Fig. 2 Enrichment of significant GEA archaic loci compared to non-archaic loci across all tissues. Each violin plot shows the distribution of the

ratio between the number of significant archaic GEAs and 1000 samples of significant non-archaic GEAs for all archaic loci (blue), the subset of

archaic loci with a Neandertal allele frequency <5% (dark blue), and the subset of archaic loci with a Neandertal allele frequency ≥5% (light blue)
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P = 0.15; FDR = 0.16 for all populations; “Methods”). How-

ever, a higher fraction of non-archaic alleles increased sig-

nificantly in frequency in all populations than was the case

for the archaic alleles (Europe P = 0.04, East Asia P = 0.03,

South Asia P = 0.05; FDR = 0.05 for all populations;

“Methods”). We also compared the frequency changes in

non-synonymous archaic alleles to changes in synonymous

archaic alleles. We identified 743 synonymous archaic al-

leles in East Asians, 886 in South Asians, and 766 in Euro-

peans and extracted selection scores from Mathieson et al.

[21] for 37, 44, and 44, respectively. Since there was no dif-

ference in the distributions of archaic allele frequencies for

synonymous and non-synonymous sites (P = 0.63 Mann-

Whitney-U test; “Methods”) we compared the proportion

of significant selection scores for archaic synonymous and

non-synonymous alleles directly. We found five synonym-

ous archaic alleles in all three populations that showed sig-

nificant frequency changes; two of them increased in

frequency over time, while three decreased. The fraction of

alleles that increased significantly is not statistically signifi-

cantly higher than the fraction of archaic non-synonymous

alleles (Europe and South Asia P = 0.13, East Asia P = 0.05,

FDR = 0.13 for all three populations; “Methods”). Our re-

sults suggest that archaic non-synonymous variants de-

creased in frequency more often than expected compared

to non-archaic non-synonymous variants and show similar

frequency changes to those seen among archaic synonym-

ous variants. This is consistent with similar or slightly more

negative selection on archaic amino acid-changing variants

compared to non-archaic amino acid-changing variants.

However, we note that these results are based on very few

alleles and that additional data would be useful to confirm

these observations.

We show above that high frequency archaic alleles

(≥5%; Additional file 1: Table S2) seem to contribute

more to differences in gene expression, suggesting that

introgressed variants in regulatory regions may have in-

creased in frequency in non-Africans. To determine the

extent to which archaic alleles that modify expression

have changed in frequency in recent human history, we

first assigned to each significantly associated archaic

locus (GEA) the most significant selection score for an

archaic allele (lowest P value) within the locus. For com-

parison, we selected as many frequency-matched non-

archaic loci that are equally strongly associated with dif-

ferential expression and assign to these the most signifi-

cant selection score for the locus (“Methods”). We find

that archaic loci associated with differential expression

in a pooled set of all tissues show significant frequency

changes more often than frequency-matched non-

archaic loci (P < 0.001; “Methods”; Additional file 1:

Table S3). Similarly, when we compare archaic loci asso-

ciated with differential expression to frequency-matched

archaic loci that are not associated with differential

expression, we find that expression-changing archaic loci

show more significant frequency changes than archaic

loci that do not change expression (P < 0.001; Additional

file 1: Table S3; “Methods”). We show that archaic alleles

associated with differential expression significantly

change their frequency more often than expected, and

that 54% of archaic alleles associated with differential

expression decreased significantly in frequency, which

was less than observed in the matched sets of archaic

alleles with no expression differences (57–67%, P < 0.001;

“Methods”). In contrast, matched non-archaic alleles

associated with expression changes showed an average

53% increase in allele frequencies (ranging between

48 and 59%, P < 0.001; Fig. 3; Additional file 2: Figure

S3; “Methods”). We note that the archaic alleles asso-

ciated with expression changes were ascertained in

pre-dominantly Europeans from the GTEx panel and

therefore they may not be representative of the regu-

latory effect in other non-African populations.

Overall, non-synonymous archaic alleles and archaic

alleles associated with expression changes have decreased

in frequency over the past ~8500 years. However, we identi-

fied four loci where the archaic alleles associated with dif-

ferential expression show large increases in frequency over

time (Additional file 1: Table S4; “Methods”). Among these

are introgressed alleles modifying expression of the OAS1/

OAS2/OAS3 genes, which are involved in innate immunity.

Elevated introgression has already been reported [22] for

these genes and we find that the expression-changing alleles

exhibit the most extreme change in frequency (corrected P

value = 1.14 × 10−8, genome-wide rank 314 across all SNPs)

with archaic alleles reaching frequencies of 28–44% in

present-day Europeans and 16–35% in present-day Asians

(Additional file 1: Table S4; Additional file 2: Figure S4).

Interestingly, we observe tissue-specific differences in the

effects of the archaic alleles on gene expression (Fig. 4). For

example, the OAS1, OAS2, and OAS3 genes are in the top

5% GEA loci in four, two, and eight tissues, respectively

(Additional file 1: Table S4). Archaic alleles in OAS1 are

associated with higher expression in subcutaneous adipose

tissue and sun-exposed skin, while higher expression in

thyroid and pancreas and vagina is associated with archaic

alleles in OAS2 and OAS3, respectively. In contrast, individ-

uals carrying archaic alleles show down-regulation of OAS1

and OAS3 in esophagus mucosa and spleen, and individuals

carrying archaic alleles show down-regulation of OAS2 in

fibroblasts and OAS3 in fibroblasts as well as three brain re-

gions (hippocampus, putamen, and caudate nucleus; Fig. 4).

The tissue-specific effects of these archaic alleles suggest

that they may be functionally relevant.

Phenotype associations

To determine whether archaic alleles influence particular

phenotypes in present-day humans, we identified from
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among the top 1% of archaic GEAs 14 loci (P value <10-8)

where an archaic allele in the locus matches an allele

previously reported to be significantly associated in one or

more genome-wide association studies, and a further six

archaic alleles that match the most significant GWAS as-

sociation in one or more studies (1 × 10−8 < P value

< 1 × 10−5; Additional file 1: Table S5). Similarly, we iden-

tify six non-synonymous archaic alleles with significant

GWAS associations (P value <10−8) and three that match

the most significant GWAS association in one or more

studies (1 × 10−8 < P value < 1 × 10−5). It is difficult to con-

struct a meaningful enrichment test that accounts for con-

founding factors present in this collection of GWAS

studies, but we note that for both non-synonymous and

regulatory changes there are a number of categories asso-

ciated with metabolic pathways and with immunity, as

well as a number of neurological associations. Interest-

ingly, we are now able to elucidate the molecular impact

of three of the variants reported in Sankararaman et al.

[5]. The introgressed haplotype at ZNF365 (rs7076156,

hg19, chr10:64415184) carries a non-synonymous allele

associated with risk of Crohn’s disease with frequencies up

to 32% in Europeans [23]; Additional file 1: Table S6). In

addition, an archaic allele on chromosome 11 (rs1834481,

hg19, chr11:112023827) is associated with reduced ex-

pression of IL18 in multiple tissues, including the pan-

creas, and IL18 levels/markers of inflammatory

response in two GWAS studies [24, 25] and present in

Europeans at frequencies up to 24%. Another regulatory

archaic variant, rs12531711 (hg19, chr7:128617466),

modifies the expression of TNPO3 in brain and is associ-

ated with multiple auto-immune phenotypes [26–35]

(Additional file 1: Table S6).

Further, we find a GEA locus which includes rs17612333

(hg19, chr4:169330384) for which the archaic allele is asso-

ciated with reduced expression of DDX60L in subcutaneous

adipose tissue and an increased body mass index (BMI) in

Native Americans [36]. The archaic allele is present at

frequencies between 13 and 21% in European populations

and shows similar frequencies in Asians (8–15%; Additional

file 1: Table S6; Additional file 2: Figure S4). A second ar-

chaic GEA locus that is associated with changed expression

of COL13A1 includes rs17497526 (hg19, chr10:71580120),

an allele associated with Parkinson’s disease risk in North

Americans [37]. The risk allele is likely of archaic origin,

and individuals carrying the archaic allele in the GTEx

dataset show significantly lower expression of COL13A1 in

the cerebellum compared to individuals without the intro-

gressed archaic allele. The archaic allele is more prevalent

in European populations (7–15%) than in Asians (2–11%),

with the frequency in East Asian populations substantially

lower (2–5%; Additional file 1: Table S6; Additional file 2:

Figure S4). It is intriguing that some studies that have

suggested a lower prevalence of Parkinson’s disease in Asia

[38], opening the question of whether the archaic introgres-

sion may contribute to Parkinson’s risk in Europeans.
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Discussion

Recent studies have shown that Neandertal alleles are de-

pleted in more constrained, functional regions of the gen-

ome and that, on average, selection has acted to remove

introgressed Neandertal alleles from the modern human

population [5, 7, 39]. Despite these general patterns, a

number of instances of adaptive introgression have been

described, generally affecting systems that influence im-

mune and metabolic phenotypes [1, 5, 10, 22, 40, 41]. The

mechanisms by which these adaptive alleles act have not

been widely explored. We show here that Neandertal

alleles contributing to variation in protein sequences and

expression have, in general, decreased in frequency during

recent modern human history. This is particularly the case

near protein coding genes, and is consistent with negative

selection on Neandertal DNA in modern humans [5, 6, 7,

39]. However, we cannot exclude the possibility that some

of the introgressed variants also experienced negative se-

lection in Neandertals prior to admixture. The difference

in deleteriousness between frequency matched archaic

and non-archaic alleles in modern humans may therefore

reflect a mixture of these two effects.

The surviving Neandertal DNA seems to have contrib-

uted significantly to variation in gene expression in mod-

ern humans compared to other non-introgressed variants.

Although the enrichment for differential expression linked

to archaic ancestry is only between ~5 and 10% for all tis-

sues, the fact that there are thousands of archaic alleles

across the genome means that the expression of several

hundred genes is potentially affected. We also see that
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Fig. 4 Global frequency distribution of archaic alleles at the OAS gene cluster and differential expression for OAS3. The frequency of the archaic locus

(orange) spanning the OAS gene cluster in present-day human populations from the 1000 Genomes phase III (light blue) and Simons Genome Diversity

Project (dark blue) datasets are shown in the upper panel. The sizes of the pie charts are proportional to the number of individuals in each population.

The lower panel shows the genotype-dependence of expression (log-transformed read counts) of OAS3 in pancreas (left) and fibroblasts (right). The

expression distributions for both homozygote and the heterozygote states are shown as box plots and expression in each individual is plotted as a

black square. The Spearman correlation coefficient and the corresponding P value for both tissues are shown above each graph. The introgressed

Neandertal allele is the “A” (chr12:113366899)
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higher frequency archaic variants contribute significantly

more to gene expression changes than lower frequency

archaic variants, suggesting that at least some of the ar-

chaic alleles that modify gene expression may have been

driven to higher frequencies by positive selection, and

supporting the idea that changes in gene expression are

likely to have important adaptive effects in humans [42].

Conclusions

We provide evidence that changes in both protein se-

quence and in expression introduced by Neandertal

DNA have phenotypic consequences for present-day

people. However, our results indicate that introgressed ar-

chaic DNA is likely to exert a larger effect through

changes in gene regulation than through modifications to

protein sequences.

Methods

Genotype data and assignment of putative introgressed

variants

We used genotype data for 450 individuals for whom

expression data are also available (GTEx [43] version 6;

Additional file 1: Table S1). Of a total of 10,531,619

SNPs in GTEx, we used 7,400,760 that are located

50 kb up- and downstream of protein-coding genes

(ENSEMBL: GRCh37) and showed variation between in-

dividuals. These SNPs were then assigned to each of the

protein-coding genes that were located within 50 kb of

the SNP.

Next, we clustered SNPs into two sets. The first set con-

sisted of 105,046 putative introgressed Neandertal-like SNPs

(aSNPs), which we defined as having (i) one fixed allele in

Yoruba individuals of the 1000 Genomes project (phase III)

[13], (ii) a different allele in a heterozygous or homozygous

state in the genome of the Altai Neandertal [14] which

segregates in out-of-African GTEx individuals, and (iii)

overlap with confidently inferred regions of Neandertal-

introgression in modern humans. These introgressed re-

gions are required to have a Neandertal posterior probabil-

ity greater than 0.9 and a length of at least 0.02 cM [5]. The

second set contained 7,282,603 SNPs that are not likely to

be of archaic origin, i.e., SNPs where the Neandertal-shared

allele is also present in Yoruba individuals. We call these

“non-introgressed alleles”. The remaining 13,111 SNPs that

do not fall in either set were excluded from any further ana-

lyses (Additional file 1: Table S1).

Expression data

We used expression data for multiple individuals from

48 tissues for which at least 50 individuals with available

genotype data were provided by GTEx (Additional file 1:

Table S1). Five tissues with 5–26 individuals were

excluded (Additional file 1: Table S1). All protein-coding

genes for which at least two of the individuals for the

given tissue had a read count greater than zero were

defined as expressed in this tissue and were used in the

following analyses (Additional file 1: Table S1). We use

this low cut-off to accommodate the low frequency

(~2%) of typical Neandertal alleles. Read counts for all

expressed genes in a tissue were then normalized be-

tween individuals using the R package DESeq2 [44].

Computing genotype-dependent expression (GEA)

For all SNPs for which we had at least two genotypes

with a minimum of two individuals each, we computed

Spearman’s correlation between the genotype, encoded

as 1 (homozygous reference allele), 2 (heterozygous),

and 3 (homozygous alternative allele), and the normal-

ized expression of the nearby gene(s).

Clustering of alleles in high LD

We clustered sets of alleles in high LD. We used PLINK

[45] and combined sets of alleles with an r
2
≥ 0.8 into one

locus (PLINK parameters –ld-window-r2 0.8 –ld-window

99999). For each set of linked alleles we assign one of two

possible classes: Neandertal-like or non-archaic. A set of

linked alleles was defined to be Neandertal-like if at least

one allele is Neandertal-like (“Neandertal-like locus”). Sets

of linked alleles without Neandertal-like alleles were

defined to be non-archaic (“non-archaic locus”). It is pos-

sible for both sets that loci contain a single SNP if no

other variant in high LD could be identified. For each set

of linked alleles we chose a representative allele using two

algorithms to select this allele: in Neandertal-like sets the

representative allele was either (i) the Neandertal-like al-

lele within the set with the most significant genotype-

expression correlation or (ii) a random Neandertal-like

allele. In the non-archaic the representative allele was

either (i) the allele within the cluster with the most signifi-

cant genotype-expression correlation or (ii) a random

allele. Representative alleles defined according to the sec-

ond criterion were used for statistical analysis comparing

archaic and non-archaic loci in order to avoid differences

in power. The sets defined by the first criterion were used

for the GWAS comparison and for the comparison of top

GEA loci between tissues (see following section "Contri-

bution of archaic loci to differential expression" for

details).

In total we obtained data for 1,652,478 to 3,002,785

gene loci per tissue (Additional file 1: Table S1).

Contribution of archaic loci to differential expression

To quantify the extent of differential expression associated

with archaic loci compared to non-archaic loci we selected

in each tissue the GEAs for all archaic loci. We computed

the empirical tissue-specific 5% quantiles on the corre-

sponding tissue’s P value distributions. For each tissue we

randomly selected the identical number of frequency-
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matched non-archaic loci, i.e., non-archaic loci with the

same frequency distribution of their tag-alleles as the

frequency of the Neandertal-like tag-alleles selected for

the archaic loci. For each tissue we computed the number

of random non-archaic loci with a smaller GEA P value

than the empirical 5% quantile defined based on the

archaic loci P value distribution. At random, we would

expect that non-archaic alleles reach the 5% quantile

cutoff as often as the archaic alleles. In order to

compute statistical significance, we repeated the re-

sampling of non-archaic alleles 1000 times. The pro-

portion of samples with at least as many significant

GEAs gives us an empirical P value for each tissue.

To compute an empirical P value over all tissues, we

sum over all tissues for archaic loci and 1000 random

samples of non-archaic loci. We repeated these ana-

lyses for archaic loci with Neandertal allele frequencies

greater than and equal to 5%, and archaic loci with a

Neandertal allele frequency lower than 5%. We cor-

rected the obtained tissue-wise P values for multiple

testing using the Benjamini-Hochberg procedure [46];

the reported expression FDR values therefore account

for all tissue-specific tests performed.

Detecting non-synonymous Neandertal alleles and

computing deleteriousness

To identify synonymous and non-synonymous variants in

present-day non-African human populations (Europeans,

East Asians, and South Asians) [13] we used the variant

effect predictor software (vep [15]). We selected non-

synonymous variants (vep ID missense_variant) and syn-

onymous Neandertal-like alleles (vep ID synonymous_var-

iant) at a frequency greater than zero and used our defined

archaic allele set (“Methods”, paragraph 2) to define these

as introgressed alleles or non-introgressed alleles.

Comparing deleteriousness scores between

Neandertal-like alleles and non-archaic alleles

To classify non-synonymous changes according to their

potential impact on the protein we used two scores,

PolyPhen2 and SIFT [17, 18]. For each of the three

meta-populations, Europeans, East Asians, and South

Asians, we computed the average SIFT and PolyPhen2

deleteriousness scores for all non-synonymous variants

in each population. To compare deleteriousness scores

for the Neandertal non-synonymous variants to the

scores for non-archaic non-synonymous allele, we sam-

pled 1000 sets of non-archaic, non-synonymous alleles

that were frequency matched to the Neandertal non-

synonymous variants and computed their average SIFT

and PolyPhen2 deleteriousness scores. The distribution

of average deleteriousness scores for matched non-

synonymous variants is shown in Fig. 1.

Assigning selection scores for expression-associated loci

To link selection scores to GEA loci, we computed for

each tissue the archaic loci with the lowest 5% GEA P

values. We then intersected SNPs in each locus with SNPs

reported by Mathieson et al. [21] and assigned the lowest

selection score P value to each locus. Loci with no over-

lapping SNP in the selection set were excluded. For the

remaining archaic loci we generated 1000 frequency- and

size-matched sets each of (i) archaic loci with a selection

score and a GEA P value outside the lowest 5% of the

GEA P value distribution and (ii) non-archaic loci with a

selection score and with a GEA P value smaller than the

5% quantile GEA P value of the archaic loci GEA P value

distribution in the corresponding tissue. Empirical enrich-

ment P values were calculated as the proportion of

random sets with a number of loci with a selection score

P value <0.05 equal to or larger than the number of such

loci with significant archaic GEAs with significant

selection associations. We summed the number of loci

with selection score P values <0.05 across tissues to assess

significance over all tissues and corrected the resulting

tissue-wise P values for multiple testing by the Benjamini-

Hochberg procedure [46].

Allele frequency changes for loci with significant selection

scores

We compared the number of significant selection scores

for Neandertal non-synonymous variants to two back-

ground sets: (i) frequency-matched, non-synonymous non-

archaic alleles; and (ii) Neandertal synonymous variants.

For the first comparison we sampled 1000 sets of non--

archaic non-synonymous alleles that were frequency

matched to the Neandertal non-synonymous variants and

computed the number of significant selection scores and

the direction of the allele frequency change in each set.

Due to the lower number of synonymous variants with se-

lection scores, compared to non-synonymous Neandertal

variants with selection scores, we were not able to imple-

ment a re-sampling strategy. However, since the distribu-

tions on synonymous and non-synonymous archaic

variants do not differ (Mann-Whitney U test, P = 0.63), we

compared the number of significant selection scores and

the direction of their frequency changes directly in each

population using Fisher’s exact test.

We compared the number of significant selection scores

for Neandertal GEAs to two background sets: (i) frequency-

matched non-archaic loci with differential expression; and

(ii) frequency-matched archaic loci with no differential

expression.

For both comparisons we sampled 1000 sets of (i)

frequency-matched non-archaic loci with differential

expression and (ii) frequency-matched archaic loci with

no differential expression and computed the number of
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significant selection scores and the direction of the allele

frequency change in each set.

Overlap of archaic alleles associated with differential

expression with modern human phenotype data

We queried GWASdb [47, 49–72] to identify Neandertal-

like alleles present in the most significant GEA loci (top 1%

in a tissue; Additional file 1: Table S4) or the set of non-

synonymous Neandertal alleles (Additional file 1: Table S5).

We required that the association be either significant

genome-wide (GWAS P value <1 × 10−8) or the top candi-

date in the corresponding publication with a P value of 1 ×

10−5 or lower.

Confirming that the identified loci are of archaic origin

For each candidate non-synonymous archaic SNP we

extracted the Neandertal-like locus on which this SNP oc-

curs. For the selection candidates and the GEA candidates

we used the associated locus. We then defined the length

of the putative archaic haplotype for each locus as the

length of the segment between the two most distant ar-

chaic SNPs. To determine whether these putative archaic

haplotypes are longer than expected due to incomplete

lineage sorting, we used the approach by Huerta-Sánchez

et al. [3], applying the age of the Altai Neandertal based

on two commonly used mutation rates (μ = 1 × 10−8 and

0.5 × 10−8) [1] and the average recombination rates at each

locus [48] (Additional file 1: Tables S4 and S5).
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