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We consider frailty models for clustered survival data in the presence of measurement errors in covariates. We � rst show that when
the measurement error is accounted for in a full likelihood analysis but the distribution of the unobserved covariate is misspeci� ed, the
maximum likelihood estimators are asymptotically biased, especially for the variance component, whose bias can be substantial. We
then discuss making inference using functional estimation via the SIMEX method where no distribution of the unobserved error-prone
covariate is assumed. The SIMEX method is easy to implement by repeatedly � tting standard frailty models. We study the asymptotic
properties of the SIMEX estimates and show that they are consistent and asymptotically normal. In simulation studies, we compare the
SIMEX method and the likelihood method in terms of ef� ciency and robustness. We also propose a SIMEX score test for the variance
component to test for the within-cluster correlation and evaluate its performance through simulation studies. The SIMEX variance
component score test does not require specifying distributions for the random effect and the unobserved error-prone covariate, and is
easy to implement by repeatedly � tting standard Cox models. The proposed methods are illustrated using the Kenya parasitemia data.
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Robustness; Score test; SIMEX; Variance component.

1. INTRODUCTION

Many failure time regression applications involve covariates
that are measured with error. For example, in nutritional stud-
ies, dietary intake (e.g., fat intake) is often measured based on
a 24-hour food recall or a food frequency questionnaire and
typically involves considerable noise (Carroll, Ruppert, and
Stefanski 1995); in cardiovascular research, blood pressure is
often subject to considerable hourly and daily variation and
long-term blood pressure is dif� cult to ascertain (Carroll et al.
1995); and in AIDs studies, CD4 counts are often measured
with a substantial amount of variability (Tsiatis, De Gruttola,
and Wulfsohn 1995). For independent data under the Cox
model, several authors (Prentice 1982; Hughes 1993; Zhou
and Pepe 1995; Hu, Tsiatis, and Davidian 1998) have consid-
ered modeling measurement errors in covariates. In a similar
context, Lin and Ying (1993) and Paik and Tsai (1997) have
discussed the missing covariate problem.

Clustered failure time data arise in many contexts. For
example, in familial studies, age at onset of a disease is
recorded for multiple members of the same family, and in
multicenter clinical trials, failure times are observed for mul-
tiple patients in each center. Frailty models provide a con-
venient framework for modeling intracluster correlation by
assuming the dependence is induced by a shared frailty or
a random effect (Clayton and Cuzick 1985; Hougaard 1986;
Oakes 1989). An EM algorithm has been proposed to � t frailty
models (Gill, Andersen, and Sorensen 1992), and the theoret-
ical properties of frailty models have been studied in gamma
frailty models (Murphy 1995; Parner 1998) and in general
(e.g., gamma, normal, and inverse-Gaussian) frailty mod-
els (Kosorok, Lee, and Fine 2001). Approximate likelihood
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approaches (e.g., the penalized partial likelihood method) have
also been proposed (see, e.g., McGilchrist 1993; Therneau and
Grambsch 2000).

Limited work has been done on clustered failure time
data with measurement errors in covariates. We present a
data example in Section 7. The study was a cohort study
on parasitemia among children in western Kenya (McElroy
et al. 1997) in which 542 children from 309 households were
followed over a 22-month period for the time to occurrence
of parasitemia, which is an indicator for potential malaria, a
disease accompanied by substantial mortality among young
African children. The primary interest lies in studying the
association between the risk of parasitemia and the exposure
to infective mosquito bites after adjusting for other covari-
ates. Because the observed infective mosquito bite exposure is
subject to considerable error, the measurement error must be
modeled while accounting for the correlation among children
within the same household.

Two classes of approaches are often used for inference in
the measurement error literature (Carroll et al. 1995): struc-
tural modeling and functional modeling. Structural modeling
assumes a parametric distribution for the unobserved error-
prone covariate X and proceeds through a likelihood analysis.
Its validity often requires that the distribution of X be correctly
speci� ed. Functional modeling, on the other hand, makes no
distributional assumption about the unobserved error-prone
covariate X, and hence could be more robust but less ef� cient
than structural modeling.

Li and Lin (2000) proposed frailty measurement error mod-
els, which jointly model the measurement error in covariate
and the intracluster correlation for clustered failure time data.
They showed that when the measurement error is ignored,
the regression coef� cients are attenuated and the variance
component is overestimated asymptotically. They considered
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structural modeling in frailty measurement error models by
assuming a standard linear mixed model for the unobserved
covariate X . Parameter estimation proceeded using a nonpara-
metric maximum likelihood estimator (NPMLE) via the EM
algorithm with the baseline hazard unspeci� ed. The theoreti-
cal properties of the NPMLE were studied.

A question of substantial interest is the robustness of struc-
tural modeling in frailty measurement error models if the mea-
surement error in a likelihood analysis is accounted for but
the distribution of the error-prone covariate X is misspeci-
� ed. In this article, we consider functional modeling in frailty
measurement error models. To address the robustness issue
of structural modeling, we � rst study the asymptotic bias in
full likelihood estimation when the distribution of X is mis-
speci� ed. Our asymptotic bias results show that the MLEs
of the model parameters (especially the MLE of the vari-
ance component) could be subject to serious bias in struc-
tural modeling when the distribution of X is misspeci� ed. We
then discuss functional estimation in frailty measurement error
models using the SIMEX method (Stefanski and Cook 1995;
Wang, Lin, Gutierrez, and Carroll 1998), where no distribu-
tion of X is assumed. Compared to the NPMLE, the SIMEX
method is easier to implement by repeatedly � tting standard
no–measurement error frailty models (e.g., using S-PLUS.)
We study the asymptotic properties of the SIMEX estimates
and show that they are consistent and asymptotically nor-
mal. In simulation studies, we compare the SIMEX and the
NPMLE methods in terms of ef� ciency and robustness.

A common problem in frailty models is to test for within-
cluster correlation. Gray (1995) and Commenges and Ander-
sen (1995) proposed such tests using score statistics for the
variance component in frailty models when no measurement
error is present. We extend these results to frailty measure-
ment error models and propose a SIMEX variance component
score test in the spirit of Lin and Carroll (1999) in general-
ized linear mixed measurement error models. A key feature
of the SIMEX score test is its double robustness in the sense
that no assumption need be made on the distributions of the
frailty and the unobserved covariate X . It is easy to imple-
ment by repeatedly � tting standard Cox models using existing
statistical software. We evaluate its performance through sim-
ulations.

The rest of the article is structured as follows. We state
the frailty measurement error model (FMEM) in Section 2.
In Section 3 we study the asymptotic biases in the MLEs
using structural modeling when the distribution of the unob-
served errorprone covariate X is misspeci� ed. In Section 4 we
propose functional estimation in FMEMs using the SIMEX
method, study the asymptotic properties of the SIMEX, and
propose the SIMEX score test for the variance component.
We evaluate the performance of the SIMEX methods through
simulations in Section 5 and apply the proposed methods to
the Kenya parasitemia data in Section 6. We give discussions
in Section 7.

2. THE FRAILTY MEASUREMENT ERROR MODEL

We present the FMEM within the framework of counting
process. Denote by Tij

D Dij
^Pij

D min4Dij 1Pij5 the observed
survival time subject to right censoring, where Dij is the

failure time and Pij is the censoring time, and by „ij
D I 4Dij µ

Pij5 the censoring indicator for the jth subject (j D 11 : : : 1 ni)
in the ith cluster (i D 11 : : : 1m), where I4¢5 is an indicator
function. We assume that censoring is noninformative, that is,
the Pij are independent of the Dij and the unobserved covari-
ates Xij , and the distribution of Pij does not involve the model
parameters ä (de� ned later). Let Yij 4t5 D I4Tij ¶ t5 be the
at-risk process and Nij4t5 D I 4Tij µ t1 „ij

D 15 be the count-
ing process. Conditional on the true unobserved error-prone
covariate Xij , other accurately measured covariates Zij4q � 15,
and a cluster-speci� c frailty bi , the intensity for the counting
process Nij is

‹ij4t3 Xij 1Zij1 bi5 D Yij4t5‹04t5e
Xij ‚xCZ0

ij ‚zCbi 1 (1)

where bi follows some parametric distribution F 4¢3 ˆ5, ˆ is a
variance component, 4‚x1Âz5 are regression coef� cients, and
‹04t5 is an unspeci� ed baseline hazard. Common choices of
F 4¢3 ˆ5 include log-gamma, normal and log inverse Gaussian
(Clayton and Cuzick 1985; Hougaard 1986); for example,
assume that if F4¢5 is log-gamma, then exp(bi) has mean 1
and variance ˆ, and that if F4¢5 is normal, then bi ¹ N 401 ˆ5.

De� ne Ti
D 4Ti11 : : : 1 Tini

50, ãi
D 4„i11 : : : 1 „ini

50, and Xi ,
Zi , Yi , and Ni similarly. Further, de� ne Y0 D 4Y0

11 : : : 1Y0
m5

and N, X, and Z similarly. Denote the unknown parameter
vector by ä D 8å04¢51 ‚x1Â0

z1 ˆ9, where å04t5 is the integrated
baseline hazard. Conditional on 4X1Z5, the log-likelihood
function over a � nite time interval 601 ’7 (’ < ˆ) is

`m4N1Y3 X1Z1ä5 D
mX

iD1

`4Ni1 Yi3 Xi1 Zi1ä5

D
mX

iD1

ln
Z (

niY

jD1

Y

tµ’

Y
‚1ˆ
ij 4t5‹04t5

)ãNij 4t5

� eƒ Pni
jD1

R ’
0 Y

‚1ˆ
ij 4t5då04t5 dF4bi3 ˆ51 (2)

where Y
‚1ˆ
ij 4t5 D Yij4t5 exp4Xij ‚x

C Z0
ijÂz

C bi5 and ’ is a con-
stant and usually is the study duration.

The MLE of ä does not exist for the likelihood function
de� ned earlier when å04t5 is a continuous function. Hence we
expand the parameter space of å04t5 to include discrete func-
tions by replacing ‹04t5 with ãå04t5 in (2) (Murphy 1995;
Parner 1998; Kosorok et al. 2001). This gives

`m4N1 Y3X1Z1ä5 D
mX

iD1

ln
Z (

niY

jD1

Y

tµ’

Y
‚1ˆ
ij 4t5ãå04t5

)ãNij 4t5

� eƒ Pni
jD1

R ’
0 Y

‚1ˆ
ij 4t5då04t5 dF 4bi3 ˆ50 (3)

Denote by Wij the observed Xij -related covariate. The
FMEM is completed by assuming an additive measurement
error model relating Wij and Xij ,

Wij
D Xij

C Uij1 (4)

where the Uij are independent of the Xij and the Pij and
are independent following N 401‘ 2

u 5, and ‘ 2
u is the measure-

ment error variance. De� ne Wi and W similarly to Xi and X.
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We assume that the measurement error is nondifferential,
that is, L4Ni1Yi3Xi1Wi1Zi1 ä5 D L4Ni1Yi3Xi1Zi1 ä5, where
L4¢5 D exp8`4¢59. This implies that conditional on the true
covariates (Xi1 Zi5, the observed covariate Wi does not con-
tain additional information about 4Ni1Yi5. The likelihood of
the observed data 4Ni1Yi1Wi5 is

L4Ni1Yi1Wi3 Zi5 D
Z

L4Ni1 Yi3 Xi1 Zi5L4Wi3Xi5

� L4Xi3Zi5 dXi1 (5)

where the likelihood L4Wi3Xi5 is under (4) and L4Xi3 Zi5 is
the likelihood function of Xi conditional on Zi , whose spec-
i� cation concerns model robustness and distinguishes struc-
tural modeling and functional modeling. Li and Lin (2000)
assumed a linear mixed model for Xi in their structural mod-
eling to allow possible correlation of the Xij within the same
cluster. They proposed using a nonparametric maximum like-
lihood estimator (NPMLE) to estimate the model parameters
with the baseline hazard ‹04t5 unspeci� ed. In this article, to
make inference more robust, we do not assume a distribution
for Xi , and we proceed with functional estimation. We moti-
vate the need for this approach by conducting (in the next
section) an asymptotic bias analysis in MLE when the distri-
bution of X is misspeci� ed.

Before proceeding to our asymptotic bias analysis, we
remark that we have made no distributional assumption about
the censoring process except that it is noninformative. Under
this noninformative censoring assumption, the inference based
on the likelihood (5) is valid for any distribution of the cen-
soring times. In other words, as pointed out by a referee,
we allow the censoring times to be correlated within each
cluster. To see this, write the joint likelihood of the fail-
ure time process and the censoring process as eL4N1 Y1W5 D
L4N1 Y1W3 Z1 ä5Lc4N1Y5, where Lc4N1 Y5 is the likeli-
hood involving the censoring process. Speci� cally, Lc4N1Y5

involves the joint density of Pij , which might be correlated, but
under the assumption of noninformative censoring, Lc4N1Y5

does not depend on ä, and maximizing eL4N1Y1W5 with
respect to ä is equivalent to maximizing L4N1 Y1W3 Z1 ä5
with respect to ä.

3. ASYMPTOTIC BIAS IN MAXIMUM LIKELIHOOD
ESTIMATORS WHEN THE DISTRIBUTION

OF X IS MISSPECIFIED

Examination of the likelihood function (5) suggests that a
full likelihood analysis requires speci� cation of the distribu-
tion of X, which could be dif� cult and sometimes may not
be desirable. A question of substantial interest is what will
happen if one accounts for measurement error in a likelihood
analysis but incorrectly speci� es the distribution of X . In this
section we study the asymptotic biases in the MLEs when the
distribution of X is misspeci� ed.

We assume in our bias analysis that the cluster size is ni
D

n < ˆ and that the number of clusters is m ! ˆ. We consider
a simple random intercept frailty model (Clayton and Cuzick
1985),

‹ij4t3 Xij1 bi5 D ‹04t5e
‚xXij Cbi 1 (6)

where bi ¹ N 401 ˆ5. We consider the asymptotic biases in the
MLEs of ‚x and ˆ when the covariance of Xi is misspeci� ed.
Suppose that the true X model is a random intercept model,

Xij
D Œx

C ai
C …ij1 (7)

where ai ¹ N 401‘ 2
xŒ5 and …ij ¹ N 401‘ 2

x 5, and one misspeci� es
the X model as an independent model,

Xij
D Œx

C …ij1 (8)

where …ij ¹ N 401‘ 2
x 5. Model (7) reduces to (8) when ‘ 2

xŒ
D 0.

Denote by ä D 8‹04t51 Œx1‘ 2
x 1 ‚x1 ˆ9 the unknown param-

eter vector and by äind the asymptotic limit of the MLE of ä
under the independent X model when the random intercept X
model is true. Then äind maximizes

E8`ind4Ti1ãi1Wi3 äind59

D
Z

¢ ¢ ¢
Z

`ind4Ti1Xi
C‘uUi3äind5

�
(

nY

jD1

f 4Tij3Xij1 bi3ä5 dTijdê4Uij3 15

)

� dê4bi3 ˆ5dê4Xi
ƒ Œx13‘xŒ11T C‘ 2

x I51

where f 4¢5 is a density function, ê4¢5 is a normal cumula-
tive distribution function, 1 is an n � 1 vector of 1s, I is an
n � n identity matrix, the expectation is taken with respect to
the true likelihood L4Ti1ãi1Wi5 assuming the random inter-
cept X model (7), and `ind4Ti1 ãi1 Wi3äind5 is the log likeli-
hood assuming the X model is misspeci� ed as the independent
model (8). Maximization is with respect to äind for � xed ä.
The asymptotic limit äind does not have a closed form.
We hence study the asymptotic bias numerically. Because
E8`ind4Ti1ãi1 Wi3äind59 involves multiple-dimensional inte-
gration, we numerically evaluate it using a combination of
the methods of Gauss–Hermite quadrature and Monte Carlo
simulations. The Newton–Raphson algorithm is then used for
maximization.

For simplicity, we assumed in our numerical calculations
that there was no censoring and a constant baseline hazard,
that is, ‹04t5 D ‹0. The parameter con� guration used in our
numerical calculations was cluster size n D 2; ln4‹05 D ƒ2,
‚x

D 21 ˆ D 05; and Œ D 11‘ 2
x

D 1. We varied the measurement
error variance ‘ 2

u from 0 to 1. Figure 1 shows the asymptotic
relative biases in the MLEs ‚x1ind and ˆind assuming the inde-
pendent X model when the random intercept X model is true.
The biases are plotted as a function of the measurement error
variance ‘ 2

u (0 µ ‘ 2
u µ 15 for several values of ‘ 2

xŒ ranging
from 0 to 1. The MLE ‚ind underestimates ‚x , but its bias is
small. The MLE ˆind, on the other hand, overestimates ˆ, and
its bias can be substantial, especially when ‘ 2

u and ‘ 2
xŒ are

moderate or large. Clearly, when ‘ 2
xŒ

D 0, there is no bias in
the MLEs ‚x1ind and ˆind .

The asymptotic bias analysis suggests that even when one
accounts for measurement error in a likelihood analysis, mis-
speci� cation of the distribution of the unobserved covariate X
could result in biased parameter estimation. Hence it is of sub-
stantial interest to develop a more robust inference procedure
without specifying the distribution of X . We propose one such
procedure using functional modeling in the next section.
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Figure 1. Asymptotic Relative Biases in the MLEs of ‚x and ˆ

Assuming the Independent X Model When the Random Intercept X
Model is True as Functions of ‘ 2

u and ‘ 2
xŒ . The cluster size n D 2.

The true parameter values are ‹0 D exp(- 2) ,‚x D 2, ˆ D .5,Œx D 1, and
‘ 2

x D 1. The ’ ve curves in each plot correspond to —— (the horizontal
axis) ‘ 2

xŒ
D 0; – – – ‘ 2

xŒ
D .25; - - - ‘ 2

xŒ
D .50; – - – ‘ 2

xŒ
D .75; — — —

‘ 2
xŒ

D 1.00.

4. THE SIMEX APPROACH IN THE FRAILTY
MEASUREMENT ERROR MODEL

4.1 The SIMEX Estimation Procedure

The simulation extrapolation (SIMEX) method (Stefan-
ski and Cook 1994) is a simulation-based functional esti-
mation method for measurement error models wherein no

distributional assumption is made on the unobserved covariate
Xi . We explain the SIMEX procedure using Figure 2, which
shows the application of SIMEX to the Kenya parasitemia
data. The two parameters of interest are the coef� cient of the
number of infective bites ‚x and the variance component ˆ. A
key feature of the SIMEX is that only standard frailty models
in the form of (1) need to be � tted repeatedly, and hence it is
easy to implement. For example, the most recent versions of
S-PLUS and R (Therneau and Grambsch 2000) can � t frailty
models for some common choices of frailty distributions (e.g.,
normal and log-gamma).

Suppose that the measurement error variance ‘ 2
u is known

or is estimated as O‘ 2
u . Denote the parameter vector by ä D

8å04t51‚x1 Â0
z1 ˆ9. The SIMEX procedure consists of two

steps, a simulation step and an extrapolation step. In the sim-
ulation step, for a given � > 0, one generates a large num-
ber of simulated datasets. Speci� cally, for each c D 11 : : : 1C ,
where C is large (e.g., C D 100), one generates simulated data,
Wij1c , by adding to the Wij independent errors with mean 0
and variance

p
�‘ u as Wij1c

D Wij
C

p
�‘uU ü

ij1c , where the U ü
ij1c

are generated independently from N 401‘ 2
u 5. Then one � ts the

naive frailty model by replacing Xij in (1) with Wij1c as if
Wij1c measured Xij without error to compute the naive estimate
bäc4�5. We used the EM algorithm of Nielsen et al. (1992)
to � t these naive models, because in no–measurement error
frailty models this method yields consistent estimates of the
model parameters (Parner 1998; Kosorok et al. 2001), which
are required for the consistency of the SIMEX estimate in the
measurement error case. One next calculates the sample mean
of these naive estimates as bä4�5 D Cƒ1

PC
cD1

bäc4�5. One does
this for a series of values of �, [e.g., � D 401 0511001 10512005]
and plots the resulting naive estimates bä4�5 versus �. These
are shown in small solid squares in Figure 2 for ‚x and ˆ.
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BITE ‚B and the Variance Component ˆ When ‘ 2
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In the extrapolation step, a regression model (e.g., a
quadratic model) is � t to these averaged naive estimates bä4�5

as a function of �, shown in solid curves in Figure 2 for
‚x and ˆ. Extrapolating it back to � D ƒ1 (no measurement
error), represented by the dashed curves in Figure 2, yields the
SIMEX estimate bäsimex . Consistency and asymptotic normal-
ity of the SIMEX estimate are demonstrated in Theorems 1
and 2 in Section 4.2.

The covariance of the SIMEX estimate bäsimex can be calcu-
lated similarly to the method described by Stefanski and Cook
(1995). Speci� cally, let bì4�5 D 1

C

PC
cD1

bì8N1 Y1Z1Wc4�59,
where bì8N1 Y1Z1Wc4�59 denotes the estimated model-based
covariance of bäc4�5 by � tting the naive frailty model to
Wc4�5. Let bì

ü
4�5 denote the sample covariance of the bäc4�5,

that is, bì
ü
4�5 D 4C ƒ 15ƒ1

PC
cD18

bäc4�5 ƒ bä4�598bäc4�5 ƒ
bä4�590. Next, let bâ4�5 D bì4�5ƒ bì

ü
4�5. The covariance of the

SIMEX estimate bäsimex can be calculated by � tting a regres-
sion model (e.g., a quadratic model) of bâ4�5 as a function of
� and extrapolating it back to � D ƒ1. Technical justi� cation
of this variance estimation procedure is given in Theorem 3
in Section 4.2.

4.2 Asymptotic Properties of the SIMEX Estimator

When the outcome variable follows a parametric model,
consistency and asymptotic normality of the SIMEX estimate
of a � nite-dimensional parameter vector have been shown
by Carroll, Küchenhoff, Lombard, and Stefanski (1996). The
frailty model (1) is a semiparametric model, in which the
unspeci� ed cumulative baseline hazard å04t5 is an in� nite
parameter. Hence the unknown parameter vector ä is in� nite-
dimensional. The results of Carroll et al. (1996) cannot be
directly applied to this case. The asymptotic properties of the
SIMEX estimate bäsimex are harder to study and rely on the
semiparametric theory.

We assume in this section that the regularity conditions
(A)–(G) of Kosorok et al. (2001) hold, where conditions
(E)–(G) specify assumptions about a general frailty distribu-
tion F 4¢5. Under these regularity conditions, we prove consis-
tency and asymptotic normality of the SIMEX estimate bäsimex

assuming a general frailty distribution F 4¢5 in Theorems 1
and 2. These asymptotic results apply to common frailty mea-
surement error models, such as those assuming normal, log-
gamma, and log-inverse Gaussian frailties. We provide theo-
retical justi� cation of the SIMEX variance estimate described
in Section 4.1 in Theorem 3.

For simplicity, in our proof we assume that ni
D n and con-

sider the model with only an error-prone covariate X . The
proof with Zi present is similar with more complicated nota-
tion. We also assume that there are no ties in failure times with
probability 1. De� ne Hp to be the product space of bounded
variation functions and the real value Euclidean space with
norm ˜h˜ D ˜h1

˜
v
C —h2

— C —h3
— < p, where p is assumed to

be � nite, h14t5 is a function of bounded variation on 601 ’7,
h21h3 2 R1, and ˜h1˜v is de� ned as the sum of the absolute
value of h1405 and the total variation of h14¢5 on 601 ’7.

When there is no measurement error, under these regularity
conditions (A)–(G), Kosorok et al. (2001) showed consistency
and asymptotic normality of the MLE of ä for frailty models

assuming a general frailty distribution, where å04t5 was esti-
mated by a step function with steps taken at each observed
failure time. Kosorok et al. (2001) showed that common frailty
distributions, including normal, log-gamma, and log-inverse
Gaussian, all satis� ed these regularity conditions and that the
MLE of ä is consistent and asymptotic normal under these
frailty models.

For frailty models with no measurement error, the score
function of ä is obtained by differentiating (2) with respect
to ‚1ˆ, and the jump sizes of å04¢5. An alternative way to
form the score function is to consider one-dimensional sub-
models through the estimators and differentiate at the estima-
tor (Murphy 1995); that is, set äs4h5 D ä41 C s ¢ h5, where
1 D 411 11 15, s is a scalar, h D 8h14¢51h21 h39 2 Hp , and for
any Qh 2 Hp ,

ä4Qh5 D
ÀZ 0

0

Qh14t5 då04t51
Qh2‚1 Qh3ˆ

Á
0 (9)

Then bä solves

¡

¡s
`m8N1 Y3X1äs4h59—sD0

D Sm4N1 Y3X1ä54h5

D
mX

iD1

S4Ni1Yi3Xi1ä54h5

D 0

for any h D 4h11 h21h35, where Sm4¢54h5 is the Gateaux deriva-
tive of `m . Because Sm4¢54h5 is uniformly continuous with
respect to ä and h, it is a linear operator on h and is also
a Fréchet derivative of `m (Wouk 1979, thm. 12.1.4, p. 268).
The form of the score operator S4¢5 is given in Appendix A.
Equation (9) indicates that the parameter space of ä can
be considered as a subset of `ˆ4Hp5, which is the space
of bounded real functions on Hp under the supremum norm
˜A˜ D suph2Hp

—A4h5—. Therefore, the score function is a ran-
dom map from lˆ4Hp5 to itself for all � nite p.

Now consider the frailty measurement error model, where
Xij is not observed in (1) and is related to the observed
covariate Wij by the measurement error model (4). To
study the asymptotic properties of the SIMEX estimate
bäsimex , we � rst note that for each set of simulated data
Wc4�5 4c D 11 : : : 1 C5 obtained in the simulation step,
where Wc4�5 D 8W0

11c4�51 : : : 1 W0
m1c4�590 and Wi1c4�5 D

8Wi11c4�51 : : : 1 Win1c4�590, the corresponding naive estimate
bäc4�5 is obtained by � tting the naive frailty model, which is
model (1) with Xij replaced by Wij1c , and hence solves

1
m

mX

iD1

S
n

Ni1 Yi3 Wi1c4�51 bäc4�5
o

4h5 D 00 (10)

Computing the sample mean bä4�5 D 1
C

PC
cD1

bäc4�5, the
SIMEX estimate bäsimex is obtained by extrapolating bä4�5

back to ƒ1, that is, bäsimex
D bä4ƒ150 We assume the same

regularity conditions (A)–(G) of Kosorok et al. (2001). Con-
sistency and asymptotic normality of the SIMEX estimator
bäsimex are stated in Theorems 1 and 2. The proof of Theorem
1 follows work of Parner (1998) and Kosorok et al. (2001)
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and is thus omitted; the proof of Theorem 2 is given in
Appendix B. Following Kosorok et al. (2001), all common
frailty distributions, including normal, log-gamma, and log-
inverse Gaussian, can be shown to satisfy these regularity con-
ditions. Hence our results hold for all of these common frailty
measurement error models.

Theorem 1 (Consistency). Denote the true parameter by
ä0. Under the regularity conditions (A)–(G) of Kosorok et al.
(2001), assuming that the true extrapolant function is used, the
SIMEX estimate bäsimex

! ä0 in probability.

Theorem 2 (Normality). Under the regularity conditions
(A)–(G) of Kosorok et al. (2001), assuming that the true
extrapolant function is used and ä4�5 D limm!ˆ bä4�5,p

m8bä4�5 ƒ ä4�59 ! §4�5 in distribution, where §4�5 is a
tight mean 0 Gaussian process on `ˆ4Hp5 whose variance
process cov6§4�54h51§4�54g57 is given in Appendix C. The
SIMEX estimate bäsimex satis� es

p
m8bäsimex ƒ ä09 ! § ü in

distribution, where § ü is a tight mean 0 Gaussian process on
`ˆ4Hp5 whose variance process cov6§ ü 4�54h51§ ü 4�54g57 is
given in Appendix C.

We next provide theoretical justi� cation of the SIMEX
covariance estimator given in Section 4.1. One can easily see
that as C ! ˆ, bä4�5 ! eä4�5 D E8bäc4�53N1 Y1W9 with
probability 1. When C is large, the variance process of the
SIMEX estimator can be estimated using the following theo-
rem, the proof of which is given in Appendix C.

Theorem 3 (SIMEX Variance Estimator). As C ! ˆ, the
variance process of the SIMEX estimator bäsimex satis� es for
any h1g 2 Hp ,

cov
n

bäsimex4h51 bäsimex4g5
o

D lim
�!ƒ1

cov
h
bäc4�54h51 bäc4�54g5

i

ƒ lim
�!ƒ1

cov
hn

bäc4�5 ƒ eä4�5
o

4h51

n
bäc4�5 ƒ eä4�5

o
4g5

i
0 (11)

Theorem 3 shows that the variance of the SIMEX estimator
in the semiparametric frailty measurement error model, which
contains an in� nite-dimensional parameter å04t5, has proper-
ties similar to those of a parametric model, which contains
only � nite-dimensional parameters. Speci� cally, this variance
consists of two parts. The � rst term in (11) is due to sampling
variability. In fact, it corresponds to the model-based variance
of the estimator of ä using the “true” data 4N1 Y1X5 when
there is no measurement error; the second term in (11) is due
to measurement error variability. These results show that the
conventional SIMEX variance method of Stefanski and Cook
(1995) described in Section 4.1 can be applied to semipara-
metric frailty measurement error models.

A major dif� culty in the standard error estimation under
frailty models is that one must invert a K � K Fisher infor-
mation matrix, where K is the number of � nite-dimensional
parameters plus the number of observed distinct failure times.
For large datasets, this calculation is often dif� cult (Keiding,

Andersen, and Klein 1997; Parner 1998; Therneau and Gramb-
sch 2000). We hence adopt the pro� le likelihood approach (Hu
et al. 1998; Murphy and van der Vaart 2000; Li and Lin 2000).
Speci� cally, the pro� le log-likelihood of ä is de� ned as
`p4ä5 D supå0

`4ä1å05, where the baseline cumulative hazard
å0 is the nuisance parameter. Then the covariance of the MLE
bä is estimated by dcov4bä5 D 8ƒ¡2`p4bä5=¡ì ¡ä09ƒ1. Numer-
ical differentiation is often used to calculate this derivative.

4.3 The SIMEX Variance Component Test

As in frailty models, a problem of common interest in frailty
measurement error models is to test for within-cluster corre-
lation. This can be done by testing the variance component
H0 2 ˆ D 0 versus H1 2 ˆ > 0. Dif� culties with this test are
that the null hypothesis lies on the boundary of the parameter
space, and that the standard Wald and likelihood ratio statis-
tics do not follow a chi-squared distribution asymptotically.
We consider a SIMEX score test that follows a chi-squared
distribution asymptotically. Key features of this proposed test
are that it is double-robust in the sense that no distributional
assumptions on the frailty and the unobserved covariate X are
needed, and it can be easily calculated by repeatedly � tting
standard Cox models.

We � rst brie� y review the score test for H0 2 ˆ D 0 in the
frailty model (1) when there is no measurement error, that is,
when Xij is observed. Such tests have been proposed by Gray
(1995) and Commenges and Andersen (1995). Under H0, the
data are independent and follow the standard Cox model,

‹4t5 D ‹04t5e
‚xXij CZ0

ij ‚z 0 (12)

Let Mij4t5 D Nij4t5 ƒ
R t

0
Yij4s5 exp8Xij‚x

C Z0
ijÂz9 då04s5.

Under the null hypothesis H0 2 ˆ D 0, Mij is a martingale resid-
ual with respect to the � ltration ¦t

D ‘ 8X1 Z1 N4u51Y4uC5 2

0 µ u µ t9. Gray (1995) de� ned a class of general martingale
based residuals as

Rij4t5 D
Z t

0
fij4X1Z1Â1 s5 dMij4s5

ƒ
Z t

0
‡

415
ij 4X1Z1Â1 s5 dMCC4s51 (13)

where Â0 D 4‚x1Â0
z5; fij4X1 Z1 Â1 s5 is any function that is suf-

� ciently smooth with respect to X, continuous with respect
to ‚, and left continuous with respect to s; and ‡

4k5

ij 4t5 D
f k

ij 4t5Sij4t5=SCC4t5. Here Sij4t5 D exp4Xij‚x
C Z0

ijÂz5Yij4t5,
and the subscript “CC” denotes a summation over all sub-
jects. The left continuity assumption of fij 4¢5 is to guarantee
the predictability of fij 4¢5 and ‡

4k5
ij 4t5 with respect to the � l-

tration ¦t . When fij4¢5 D 1, (13) gives the basic martingale
residual (Gray 1995).

The score test is based on the square sum of the
within-cluster residual sums

Pm
iD1 R2

iC4t5, where the sub-
script “iC” means summing over the subjects within the ith
cluster. Under the null hypothesis, RiC4t5 is a martingale, and
the expectation of R2

iC4t5 is the expectation of the variance
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process of RiC4t5, that is, “RiC1RiC”4t5 (Fleming and Harring-
ton 1991). It can be shown that

Vi4t5 D “RiC1 RiC”4t5

D
Z t

0

£
‡

425

iC 4s5 ƒ
©
‡

415

iC 4s5
ª2¤

SCC4s5 då04s51

which is estimated by bVi4t5 D
R t

0
6 O‡425

iC 4s5ƒ8 O‡415

iC 4s5927 dNCC4s5

at bÂ, where bÂ is the standard maximum partial likelihood esti-
mate of Â obtained by � tting (12). The score statistic for ˆ

under H0 2 ˆ D 0 is bQ D mƒ1
Pm

iD18
bR2

iC4’5 ƒ bVi4’59 evaluated
at bÂ; that is,

bQ4N1 Y1X1Z3bÂ5

D mƒ1
mX

iD1

"(
niX

jD1

Z t

0
fij 8X1Z1bÂ1 s9 dNij4s5

ƒ
Z t

0
‡

415
ij 8X1Z1bÂ1 s9 dNCC4s5

)2

ƒ
Z t

0

£
O‡425

iC 4s5 ƒ
©

O‡415

iC 4s5
ª2¤

dNCC4s5

#
0

Under H0,
p

m bQ is asymptotically normal with mean 0 and
variance V . The exact forms of V and its estimate bV have
been given by Gray (1995, appendix). It follows that the score
statistic for testing H0 2 ˆ D 0 is

T D
p

m bQ
¯p

bV 1 (14)

which follows N 401 15 asymptotically. Note that this test is
valid for any distribution F 4¢5 of the random effect bi in (1)
and is thus robust to the speci� cation of the frailty distribution.

Now consider the frailty measurement error model (1) and
(4), where Xij is not observed and is measured with error by
Wij . We propose a SIMEX score test for H0 2 ˆ D 0 by extend-
ing the foregoing variance component score test to the mea-
surement error case. When there is no measurement error, the
test statistic (14) is exactly the setup studied by Stefanski and
Cook (1995, sec. 5.2) when the error variance is known and
that studied by Carroll et al. (1996) when the error variance is
estimated. We propose using SIMEX to estimate the numera-
tor of the test statistic T by treating bQ4¢5 as if it were a param-
eter and applying the SIMEX variance method to calculate the
variance of this “estimator.” Denoting the results by bQsimex4¢5
and bVsimex4¢5, the SIMEX score statistic for testing H0 2 ˆ D 0
is simply

Tsimex
D

p
m bQsimex

.q
bVsimex 0

Following Lin and Carroll (1999), who considered a similar
SIMEX variance component test in generalized linear mixed
measurement error models, we can show that this SIMEX
score statistic follows a chi-squared distribution asymptotically
under H0. Note that in this test no distributional assumptions
are needed for the random effect bi and the unobserved covari-
ate X , and one may calculate it by � tting a standard Cox

model (using, e.g., SAS PROC PHREG) for each simulated
dataset in the SIMEX simulation step.

5. SIMULATION STUDIES

5.1 Parameter Estimation

We conducted simulation studies to evaluate the � nite-
sample performance of the SIMEX approach and to compare
the SIMEX approach with the full likelihood approach of Li
and Lin (2000) in terms of robustness and ef� ciency. In each
simulated dataset, we generated survival times Dij within each
cluster by the conditional hazard ‹ij4t5 D ‹04t5 exp4‚xXij

C
‚zZij

C bi5, j D 11 : : : 1 n, i D 11 : : : 1 m, where the Xij and
Zij were generated from standard normal N 40115, and bi ¹
N 401 ˆ D 0055. We considered correlated censoring times
within each cluster. For each cluster, the censoring times Pij

were generated from the following model from Clayton (1978)
(see also Oakes 1989; Clayton and Cuzick 1985):

P4Pi1 > t11 : : : 1 Pin > tn5

D 841 ƒ t1=r5� C ¢ ¢ ¢C 41 ƒ tn=r5� ƒ 4nƒ 159ƒ1=�1

where � ¶ 0. Marginally each Pij is uniform on 601 r7, and
the magnitude of � measures the intracluster dependence
among the Pij , with � D 0 corresponding to independence. The
cluster-level frailties bi were generated according to a normal
distribution, N 401 ˆ5.

We considered the following combinations of experiments:
the baseline hazard ‹04t5 D 2t; n D 31 m D 40; ‚x

D 21‚z
D 1;

� D 1, and r was chosen to give four different censoring pro-
portions (0%, 30%, 50%, 80%); C D 50 in the SIMEX simula-
tion step; and the measurement error variance ‘ 2

u
D 05. We ran

500 replications and applied the SIMEX method to analyze
each dataset. In the extrapolation step of the SIMEX, we used
a quadratic function. We set the frailty variance as ˆ D 05. We
calculated the sample means of the parameter estimates and
compared the pro� le likelihood–based standard errors (SEs)
with the empirical SEs.

We further compared the SIMEX with the full likelihood
approach (Li and Lin 2000) in terms of ef� ciency and robust-
ness. Speci� cally, the full likelihood approach requires speci� -
cation of the distribution of unobserved covariate X and hence
might not be robust when the distribution of X is misspeci-
� ed. Unlike the full likelihood method, the SIMEX does not
require speci� cation of the distribution of X and would be
expected to be more robust but less ef� cient. Our simulation
setup was similar to the foregoing one, except that the true Xij

were generated from model (7) with both ai and …ij generated
from the mixture normal distribution

� N 8ƒ41 ƒ � 5Œ1‘ 29 C 41 ƒ � 5N 8�Œ1‘ 291 (15)

which has mean 0 and variance � 41 ƒ � 5Œ2 C‘ 2. For ai ,
we set � D 0251 Œ D 105, and ‘ 2 D 05 ƒ � 41 ƒ � 5Œ2 D 0078,
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whereas for …ij , we set � D 0251 Œ D 2, and ‘ 2 D 1 ƒ � 41 ƒ
� 5Œ2 D 025. The choices of � 1Œ and ‘ 2 allowed the distri-
butions of both ai and …ij to be bimodal. The full likelihood–
based NPMLEs (Li and Lin 2000) were calculated by incor-
rectly assuming that X followed model (7) with ai and …ij

normally distributed. We ran 500 replications. In the SIMEX
calculations, we used a quadratic extrapolation function. We
repeated the experiment for the number of clusters m D 100.

The results are reported in Table 1. The SIMEX method
performed well and had minimal biases in the estimates of
the regression coef� cients and the variance component. How-
ever, the NPMLEs were biased. The biases in the NPMLEs
of the regression coef� cients Â were relatively small, about
10%–15%; however, the bias in the NPMLE of the variance
component ˆ was substantial and could be as high as 75%. As
the censoring proportion increased, the biases in the NPMLEs
of Â became higher and the bias in the NPMLE of ˆ became
lower. The biases persisted as the number of clusters increased
to m D 100. The SIMEX method, on the other hand, performed
consistently well in all scenarios and had minimal biases. Its
performance improved as the number of clusters increased to
m D 100. The pro� le likelihood–based SEs agreed well with
the empirical SEs. These results are consistent with our theo-
retical asymptotic bias calculations in Section 3.

We next examined the ef� ciency loss of the SIMEX
approach compared with the full likelihood approach when
the distribution of the unobserved covariate X was correctly
speci� ed in the full likelihood approach. Because the SIMEX
method is a semiparametric method and makes no distribu-
tional assumption about X, we would expect it to be less

Table 1. Robustness Comparison of SIMEX and NPMLE Based on 500 Replications When the Unobserved
Frailty Follows a Normal Distribution N(0,ˆ) and the Unobserved X Follows a Mixture-Normal Distribution

Under the Random-Effects Model (7)

Full likelihood SIMEX

No. of clusters Censoring level Parameter Estimate SEe MSE Estimate SEe SEp MSE

m D 40 0% ˆ 081 031 019 047 037 035 014
‚x 1082 033 011 1095 043 047 018
‚z 091 017 004 096 023 025 006

30% ˆ 073 025 013 048 038 034 015
‚x 1079 041 021 1097 054 048 029
‚z 091 021 005 097 033 036 011

50% ˆ 075 043 025 048 048 046 023
‚x 1077 048 028 1098 056 054 031
‚z 079 032 013 097 042 044 017

80% ˆ 062 1003 1012 053 1017 1021 1028
‚x 1063 044 030 1097 064 058 041
‚z 083 042 021 096 052 047 027

m D 100 0% ˆ 085 022 017 047 025 021 006
‚x 1083 017 005 2002 021 024 004
‚z 090 012 002 097 022 019 005

30% ˆ 079 023 014 047 031 034 010
‚x 1073 035 017 2005 039 043 015
‚z 087 018 005 094 027 024 007

50% ˆ 079 033 017 053 042 039 018
‚x 1073 042 025 1097 047 051 022
‚z 082 028 011 098 035 032 012

80% ˆ 068 087 079 052 095 092 090
‚x 1070 039 024 1097 046 042 021
‚z 083 034 017 094 040 039 016

NOTE: In the NPMLE calculations, the distribution of X is misspeci’ ed as normal. The true values are ‚x D 2, ‚z D 1, and ˆ D 05. The cluster
size is n D 3, and the measurement error variance is ‘ 2

u D 05. The MSEs are calculated using SEe .

ef� cient compared to the full likelihood approach. For each
parameter con� guration, we ran 500 simulations and applied
both the SIMEX method and the NPMLE method to each sim-
ulated dataset.

The results are displayed in Table 2. Both the SIMEX esti-
mates and the NPMLEs have little bias; however, the SIMEX
estimates had larger SEs than the NPMLEs. For the variance
component, the SEs of the SIMEX estimates were slightly
higher (about 10%), whereas for the regression coef� cients,
the SEs of the SIMEX estimate were considerably higher
(about 30%–50%) than their NPMLE counterparts. Hence, in
terms of mean squared errors (MSEs), the SIMEX method was
subject to little ef� ciency loss for the variance component esti-
mate but considerable ef� ciency loss for the regression coef� -
cient estimates compared with the MLEs. As the proportion of
censoring increased, the ef� ciency loss of the SIMEX method
compared to the MLE increased.

5.2 The SIMEX Variance Component Test

We also conducted a simulation study to evaluate the perfor-
mance of the SIMEX variance component score test proposed
in Section 4.2 in terms of its size and power. We set fij ² 1
in (13), corresponding to the basic martingale residuals. The
design that we used in the simulation study was similar to
that described in Section 5.1, except that the frailty was gen-
erated from the mixture normal distribution in (15) and cen-
soring times Pij were generated independently from uniform
601 r7 for simplicity. We considered two situations: � D 0,
which assumes that the frailty follows a normal distribution,
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Table 2. Ef’ ciency Comparison of SIMEX and NPMLE Based on 500 Replicates When the
Unobserved Frailty Follows a Normal Distribution N(0,ˆ) and the Unobserved X Follows a

Normal Distribution Under the Random-Effects Model (7)

Full likelihood SIMEX

Censoring level Parameter Estimate SEe MSE Estimate SEe SEp MSE

0% ˆ 048 038 014 047 045 042 020
‚x 1093 032 010 1094 042 044 016
‚z 095 018 004 096 026 032 007

30% ˆ 049 043 018 046 048 051 023
‚x 1098 035 013 2004 052 055 027
‚z 1002 022 005 098 032 035 011

50% ˆ 053 044 019 047 051 048 025
‚x 1094 037 014 1097 058 054 034
‚z 097 021 004 094 038 034 014

80% ˆ 052 097 095 054 1009 1012 1018
‚x 2006 044 019 1092 068 071 046
‚z 1002 030 009 094 044 040 020

NOTE: In the NPMLE calculation, the distribution of X is correctly speci’ ed as normal. The true values are ‚x D 2, ‚z D 1,
and ˆ D 05. The cluster number is m D 40, and the cluster size is n D 3. The measurement error variance is taken as ‘ 2

u D 05.

and Œ D 1 and � D 025, which assumes that the frailty follows
a bimodal mixture normal distribution. In both cases we var-
ied the variance component ˆ D � 41 ƒ � 5Œ2 C‘ 2 as 0, .25,
.50, and 1.00 to study the size and the power of the SIMEX
variance component score test. For the purpose of compari-
son, we also calculated the size of the naive variance com-
ponent score test obtained by ignoring the measurement error
with Xij replaced by Wij . Note that we calculated both sizes
and powers using a one-sided test. The nominal size was set
to be .05, and two censoring proportions (0% and 50%) were
considered. We ran 1,500 simulations.

Table 3 gives the sizes and the powers of the naive and
the SIMEX variance component score tests. The level of the
naive score test was too high, and its performance worsened
as the frailty distribution departed from normality and fol-
lowed a bimodal normal mixture. However, the SIMEX score
test performed well in all cases, and its level was very close
to the nominal value. As the variance component ˆ increased,
the power of the SIMEX score test increased and quickly
approached 1.

6. APPLICATION TO THE KENYA
PARASITEMIA DATA

We applied the proposed methods to the analysis of
Kenya parasitemia data (McElroy et al. 1997) introduced in
Section 1. A total of 542 children from 309 households age

Table 3. Empirical Sizes and Powers of the Naive and SIMEX Score
Tests for the Variance Component Observed in 1,500 Simulations

Frailty Censoring
distribution level Method ˆ D 0 ˆ D .25 ˆ D .50 ˆ D 1.00

Normal 0% Naive 0086
SIMEX 0053 0234 0398 0896

50% Naive 0070
SIMEX 0043 0204 0353 0867

Bimodal 0% Naive 0123
SIMEX 0055 0266 0442 0923

50% Naive 0093
SIMEX 0053 0247 0409 0903

6 months–6 years were enrolled into the study between Febru-
ary 1986 and July 1987. At the entry into the study, the chil-
dren were treated to eliminate blood-stage infection of para-
sitemia, and their blood � lms were examined 2 weeks after
enrollment and found to be negative. They were then followed
for the � rst recurrence of parasitemia for up to 22 months.

In the � rst 2 weeks after enrollment, two � eld workers
visited each household one night each week and took turns
collecting mosquitos on another person’s legs every 30 min-
utes throughout the night. The next morning these collected
mosquitos were delivered to a laboratory, where the number
of infective mosquitos was determined. The investigators were
interested in studying the effects of the daily mean dose of
infective bites in the � rst 2 weeks on the risk of recurrent par-
asitemia. The daily mean dose of infective bites in the � rst 2
weeks was calculated using the average of the two night mea-
sures and hence was measured with substantial error. The other
covariates included sex (1 D F, 0 D M), age, and baseline par-
asitemia density. The average follow-up time was 9 months,
and about 90% children experienced recurrent parasitemia dur-
ing the follow-up. The average number of the daily mean dose
of infective mosquito bites was .89. The baseline parasitemia
density was log-transformed (LNBPD), and the daily mean
dose of infective bites in the � rst 2 weeks was quartic root–
transformed (BITE), to be consistent with the previous analy-
sis (Li and Lin 2000).

We � tted a random intercept frailty measurement error
model,

‹ij 4t3 bi5 D ‹04t5 exp8‚1 � BITEij
C ‚2 � AGEij

C ‚3 � SEXij
C ‚4 � LNBPDi

C bi91 (16)

where the frailty bi follows N 401 ˆ5. Here X D true BITE and
Z D (AGE, GENDER, LNBPD). Because different children
within the same household might enter into the study at dif-
ferent times, their numbers of infective mosquito bites might
be different. Because the measurement error variance ‘ 2

u was
not available from the data, following Li and Lin (2000), we
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conducted a sensitivity analysis by varying ‘ 2
u from 0 (naive

analysis), .08 (moderate error), or .20 (severe error). When � t-
ting the models, we treated ‘ 2

u as � xed and known.
We applied the SIMEX method to � t (16) and compared

the results with those obtained using the NPMLE of Li and
Lin (2000), who assumed X following a normal linear mixed
model. Figure 3 shows the histogram of the observed BITE
variable W and suggests that the distribution of X does
not seem to be normally distributed. This indicates that the
SIMEX approach could be more appropriate than the NPMLE.
A quadratic extrapolant function was used in the SIMEX
analysis.

The results are presented in Table 4. A greater risk of para-
sitemia was signi� cantly associated with a higher daily mean
dose of infective mosquito bites, older age, and a higher base-
line parasitemia density. Ignoring the measurement error atten-
uated the regression coef� cient estimates and in� ated the vari-
ance component. The SIMEX estimates corrected the biases
in the naive estimates. As ‘ 2

u increased, the SIMEX estimates
of the regression coef� cients increased and the SIMEX esti-
mates of the variance component ˆ decreased. For example,
the SIMEX coef� cient of BITE increased from .33 (SE D 011)
when ‘ 2

u
D 0 to 1.05 (SE D 029) when ‘ 2

u
D 020. This indi-

cates that accounting for the measurement error increased the
magnitude of the estimated effects of BITE. The SIMEX vari-
ance component estimate decreased from .16 (SE D 011) to .12
(SE D 022) when ‘ 2

u changed from 0 to .20. For this particular
dataset, the results using the SIMEX and the NPMLE were
similar.

We next applied the proposed SIMEX variance compo-
nent score test to model (16) to test H0 2 ˆ D 0, that is, no
within-household correlation. The naive score statistic for H0 2
ˆ D 0 calculated by ignoring the measurement error assuming
that ‘ 2

u
D 0 was 1.37 (p value D 008). It implied that there
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Figure 3. Histogram of the Quartic Root of BITE in the Kenya Para-
sitemia Data.

Table 4. Analysis Results of the Kenya Parasitemia Data

Naive Moderate error Severe error

Parameter NPMLE NPMLE SIMEX NPMLE SIMEX

ˆ .16(.11) .14(.11) .15(.22) .11(.12) .12(.22)
Bite .33(.11) .49(.15) .63(.26) .99(.23) 1.05(.29)
Age .04(.02) .04(.02) .04(.02) .04(.02) .04(.02)
Gender .06(.03) .06(.04) .06(.04) .05(.04) .05(.04)
Baseline bpd .09(.02) .09(.02) .09(.03) .09(.02) .09(.03)

NOTE: Moderate error means measurement error variance ‘ 2
u D 008, while severe error

means ‘ 2
u D 020. Estimates were calculated by the NPMLE and the SIMEX approaches.

The SEs (values in the parentheses) are calculated by the pro’ le likelihood approach.

was some evidence of the within-household correlation. The
SIMEX score statistics that accounted for the measurement
error were .87 (p value D 020) and .60 (p value D 027) when
assuming that ‘ 2

u
D 008 and .20. Note that a one-sided test was

used because Ha 2 ˆ > 0 is one-sided. Unlike the naive score
tests, the SIMEX score tests did not show a signi� cant cor-
relation among observations within the same household. Note
that the standard error of the estimate of ˆ in Table 4 can-
not be directly used to test for H0 2 ˆ D 0, because the null
hypothesis is on the boundary of the parameter space and the
Wald statistic is not asymptotically distributed as a chi-square
(Lin 1997).

7. DISCUSSION

In this article, we have proposed functional estimation using
the SIMEX approach in frailty measurement error models. Our
asymptotic bias analysis shows that if one accounts for mea-
surement error in a full likelihood analysis but misspeci� es the
distribution of the unobserved covariate X , then the estimates
will be biased—especially the estimate of the variance com-
ponent, whose bias can be substantial. The SIMEX approach
has an advantage of being more robust than the full likelihood
approach in the sense that no distributional assumption on
the unobserved covariate X is needed. It is also computation-
ally more convenient than the full likelihood method, because
one need only repeatedly � t standard (no measurement error)
frailty models (using, e.g., S-PLUS) in the simulation step. It
should be noted that the robustness of the SIMEX applies only
to the distribution of the unobserved covariate X , not to the
frailty distribution. In other words, a valid SIMEX estimation
requires that the frailty distribution be correctly speci� ed.

We have studied the asymptotic properties of the SIMEX
estimates for frailty measurement error models and have
shown that they are consistent and asymptotically normal
under some regularity conditions. The results apply to com-
mon frailty distributions, such as normal and log-gamma. Our
results extend those of Carroll et al. (1996) for parametric Y —X
models to semiparametric Y —X models, such as frailty models.

Our simulation studies show that the SIMEX performs well
in � nite samples, and that there is a trade-off between robust-
ness and ef� ciency of the SIMEX method and the full likeli-
hood method. Speci� cally, when the distribution of the unob-
served covariate X is misspeci� ed, the NPMLEs are biased,
especially the variance component estimate, whose bias can
be substantial, whereas the SIMEX estimates are still close to
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the true values. However, when the distribution of the unob-
served covariate X is correctly speci� ed in a likelihood anal-
ysis, the SIMEX estimates are subject to small ef� ciency loss
in estimating the variance component but considerable ef� -
ciency loss in estimating the regression coef� cients compared
with the NPMLEs. Regarding the choice between the SIMEX
method and the NPMLE method, we would suggest that one
examines the distribution of the error-prone covariates W . If
W deviates much from a normal distribution, then the SIMEX
estimates may be more preferable, because they are robust to
the distribution of the unknown covariates. But if the normal-
ity assumption of W were plausible, which might imply that
the unobserved X is normal, then the NPMLE estimates would
be more ef� cient and would be preferred. We also recommend
applying both methods in practice as a sensitivity analysis and
checking whether the results agree.

We have also proposed a simple SIMEX score test for the
variance component in frailty measurement error models. This
test, based on the martingale residuals, is an extension of
Gray’s (1995) test to the measurement error context. One key
feature of the SIMEX score test is its double robustness; that
is, no distributions need be assumed for the random effects
and the unobserved covariate X . Further, it is easy to calculate
by repeatedly � tting standard Cox models.

Our simulation studies indicate that the level of the naive
variance component score test when ignoring the measure-
ment error is higher (sometimes much higher) than the nom-
inal value. In contrast, the SIMEX score test performs well,
yielding a correct level and good statistical power. However,
the SIMEX score test could be less powerful than a fully para-
metric score test constructed by assuming a parametric dis-
tribution for X . Unlike the SIMEX score test, which has a
closed-form expression and can be easily implemented using
existing statistical software, such a fully parametric score test
can be dif� cult to construct because a closed-form expression
is often not available, it often involves multiple-dimensional
integration, and new statistical software usually needs to be
developed. Future research is needed to compare the robust-
ness and the power of the SIMEX variance component score
test and a full likelihood–based score test. It would also be of
interest to investigate whether the SIMEX variance component
score test is locally most powerful.

APPENDIX A: DERIVATION OF THE SCORE OPERATOR

We assume in Appendixes A and B that the frailty bi follows a
normal distribution with mean 0 and variance ˆ. We rewrite the log
likelihood function (3) as

`m4N1 Y3X1 ä5 D
mX

iD1

ln

"
nY

jD1

(
Y

0µtµ’

Yij 4t5e
Xij ‚ãå04t5

)ãNij 4t5

� G8Ni04’51 Y
‚
i0 4’51 ˆ9

#
1

where Ni04’5D Pn
jD1 Nij4’5, Y

‚
i0 4’5 DPn

jD1

R ’

0
Yij4t5 exp4Xij‚5då04t5,

and G8n1x1ˆ9 D E8enb1ƒx exp4b159 D 4ƒ15nL4n54x3ˆ5 for n 2
8011121 : : : 9. Here L4n54¢5 denotes the nth derivative of the Laplace
transformation with respect to the random variable exp4b15. Let

Gx8n1x1 ˆ9 D ¡
¡x

G8n1x1 ˆ9 and Gˆ8n1 x1 ˆ9 D ¡
¡ˆ

G8n1x1ˆ9. Some
algebra shows that Gx8n1x1 ˆ9 D ƒG8nC11 x1 ˆ9.

To calculate the score operator, choose the one-dimensional sub-
models s 2! äs4h5 D äCs4

R 0

0
h1 då01h21h35 for h D 8h14¢51h21h39.

Then de� ne the score operator by

Sm4N1Y3 X1ä54h5

D ¡

¡s
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where Gi D G8Ni04’51 Y
‚
i0 4’51ˆ91Gi12 D Gx8Ni04’51Y

‚
i0 4’51ˆ9, and

Gi13 D Gˆ8Ni04’51Y
‚
i0 4’51ˆ9.

APPENDIX B: PROOF OF NORMALITY (THEOREM 2)

With the same regularity conditions postulated by Kosorok et al.
(2001), we � rst show that for a given � > 0,

p
m4bä4�5 ƒ ä4�55 !

§4�5 weakly, where §4�5 is a tight mean 0 Gaussian process. Specif-
ically, the naive estimate bäc4�5 for data 4N1Y1Wc5 solves, for any
h 2 Hp,

SSm8Wc4�51 bäc4�594h5 D 1
m

mX

iD1

S8Ni1Yi3 Wi1c4�51 bäc4�594h5

D 01

where Wi1c4�5 D Wi
C�1=2U ü

i1c. Hence by lemma 2 of Kosorok et al.
(2001), that the information operator is a continuously invertible lin-
ear operator, we have that

p
m8bä4�5 ƒä4�59 D mƒ1=2
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i 1�1 ä4�5970

Here the information operator PS8�1ä4�59 D E6S4158Ni1Yi3 Wi C
�1=2U ü

i1c1ä4�597, S415 is the Fréchet derivative of S with respect
to ä and �C1i8Ni1Yi3 Wi1Ui1 �1 ä4�59 D 1
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Because ¦i are independent and identically distributed replicates,
applying the functional central limit theorem (van der Vaart and Well-
ner 1996), we have mƒ1=2

Pm
iD1 ¦i

! §4�51 where §4�5 is a tight
Gaussian process on `ˆ4Hp5 with mean 0 and covariance process

cov8§4�54h51§4�54g59 D lim
m!ˆ

1
m

mX

iD1

cov8¦i4�54h51¦i4�54g59

D
Z 0

0
h1‘

ƒ1
å 4�54g5 då0 C h2‘

ƒ1
‚ 4�54g5

Ch3‘
ƒ1
ˆ 4�54g51

and 8‘å4�51‘‚4�51‘ ˆ4�59 are some continuously invertible linear
operators from Hˆ to Hˆ with inverse 8‘ ƒ1

å 4�51‘ ƒ1
‚ 4�51‘ ƒ1

ˆ 4�59.

Hence
p

m8bä4�5ƒ ä4�59 ! §4�5 weakly.
Suppose that æ D 4�11 : : : 1 �K 50 , where K is the number of grid

points of � used in the SIMEX simulation step. Using the foregoing
results, we can easily show that

p
m8bä4æ5ƒ ä4æ59 D mƒ1=2

X
¦i4æ5 C op415 ! §14æ5

in distribution, where ä4æ5 D 8ä4�151 : : : 1ä4�K 590, ¦i4æ5 D
8¦i4�151 : : : 1¦i4�K 590, and §14æ5 is a tight mean 0 Gaussian pro-
cess on `ˆ4Hp5 with covariance process

cov8§14æ54h51§14æ54g59 D lim
m!ˆ

1
m

mX

iD1

cov8¦i4æ54h51¦i4æ54g590

Suppose that ä4�5 can be speci� ed using a parametric model
g4Ò1 �5 depending on a parameter Ò. Assuming the true extrapola-
tion function, we have ä0 D g4’1ƒ15 and bäsimex D g4bÒ1ƒ15, where
bÒ solves

Pg4Ò1æ508g4Ò1 æ5 ƒ bä4æ59 D 0

and Pg D ¡g=¡Ò 0. We then have

p
m4bÒ ƒÒ5 D 8Pg4Ò1æ50 Pg4Ò1æ59ƒ1 Pg4Ò1 æ50pm8bä4æ5 ƒä4æ59

Cop415 ! §24æ5

in distribution, where §24æ5 D 8Pg4Ò1æ50 Pg4Ò1æ59ƒ1 Pg4Ò1æ50§14æ5.
Because the SIMEX estimate bäsimex D g4bÒ1ƒ15 and ä4ƒ15 D
g4Ò1 ƒ15 D ä0 , using the delta method, we have that

p
m8bäsimex ƒ

ä09 ! §3 , where §3 D Pg4Ò1 ƒ1508Pg4Ò1æ50 Pg4Ò1æ509ƒ1 Pg4Ò1æ50§14æ5

is a tight mean 0 Gaussian process on `ˆ4Hp5.

APPENDIX C: PROOF OF THE VARIANCE PROCESS
FORM (THEOREM 3)

Because eä4�5 D E8bäc4�53N1Y1 W9, bä4�5 ! eä4�5

almost surely as C ! ˆ. Then cov8bä4�54h51 bä4�54g59 !
cov8eä4�54h51 eä4�54g59. Now calculate

cov68bäc4�5ƒ eä4�594h51 8bäc4�5ƒ eä4�594g57

D cov6bäc4�54h51 bäc4�54g57 C cov6eä4�54h51 eä4�54g57

ƒ cov6bäc4�54h51 eä4�54g57 ƒ cov6eä4�54h51 bäc4�54g571

where

cov6bäc4�54h51 eä4�54g57 D E6bäc4�54h5eä4�54g57

ƒE6bäc4�54h57E6eä4�54g57

D E8E6bäc4�54h5eä4�54g53N1 Y1W7

ƒE6bäc4�54h53N1Y1W7E6eä4�54g579

D E6eä4�54h5eä4�54g57

ƒ E6eä4�54h57E6eä4�54g57

D cov6eä4�54h51 eä4�54g570

Similar calculations show that cov6eä4�54h51 bäc4�54g57 D
cov6eä4�54h51 eä4�54g57. It follows that

cov68bäc4�5ƒ eä4�594h51 8bäc4�5 ƒ eä4�594g57

D cov6bäc4�54h51 bäc4�54g57 ƒ cov6eä4�54h51 eä4�54g570

This completes the proof.

[Received August 2000. Revised May 2002.]

REFERENCES

Carroll, R., Küchenhoff, H., Lombard, F., and Stefanski, L. A. (1996),
“Asymptotics for the SIMEX Estimator in Structural Measurement Error
Models,” Journal of the American Statistical Association, 91, 242–250.

Carroll, R., Ruppert, D., and Stefanski, L. A. (1995), Measurement Error in
Nonlinear Models, New York: Chapman and Hall.

Clayton, D. (1978), “A Model for Association in Bivariate Life Tables and Its
Application in Epidemiological Studies of Familiar Tendency in Chronic
Disease Incidence,” Biometrika, 65, 141–151.

Clayton, D. G., and Cuzick, J. (1985), “Multivariate Generalizations of the
Proportional Hazards Model,” Journal of the Royal Statistical Society, Ser.
A, 148, 82–117.

Commenges, D., and Andersen, P. K. (1995), “Score Test of Homogeneity
for Survival Data,” Lifetime Data Analysis, 1, 145–159.

Fleming, T. R., and Harrington, D. P. (1991), Counting Processes and Survival
Analysis, New York: Wiley.

Gray, R. J. (1995), “Tests for Variation Over Groups in Survival Data,” Jour-
nal of the American Statistical Association, 90, 198–203.

Hougaard, P. (1986), “A Class of Multivariate Failure Time Distributions,”
Biometrika, 73, 671–678.

Hu, P., Tsiatis, A. A., and Davidian, M. (1998), “Estimating the Parameters
in the Cox Model When Covariate Variables Are Measured With Error,”
Biometrics, 54, 1407–1419.

Hughes, M. D. (1993), “Regression Dilution in the Proportional Hazards
Model,” Biometrics, 49, 1056–1066.

Kosorok, M. R., Lee, B. L., and Fine, J. P. (2001). “Semiparametric
Inference for Proportional Hazards Frailty Regression Models,” Technical
Report 156, University of Wisconsin-Madison, Dept. of Biostatistics and
Bioinformatics.

Li, Y., and Lin, X. (2000), “Covariate Measurement Errors in Frailty Models
for Clustered Survival Data,” Biometrika, 87, 4, 849–866.

Lin, D. Y., and Ying, Z. (1993), “Cox Regression With Incomplete Covari-
ate Measurements,” Journal of the American Statistical Association, 88,
1341–1349.

Lin, X. (1997), “Variance Component Testing in Generalized Linear Models
With Random Effects,” Biometrika, 84, 309–326.

Lin, X., and Carroll, R. J. (1999), “SIMEX Variance Component Tests in
Generalized Linear Mixed Measurement Error Models,” Biometrics, 55,
613–619.

McElroy, P. D., Beier, J. C., Oster, C. N., Onyango, F. K., Oloo, A. J., Lin, X.,
Beedle, C., and Hoffman, S. L. (1997), “Dose- and Time-Dependent Rela-
tions Between Infective Anopheles Inoculation and Outcomes of Plasmod-
ium Falciparum Parasitemia Among Children in Western Kenya,” American
Journal of Epidemiology, 145, 945–956.

http://www.ingentaconnect.com/content/external-references?article=/0162-1459^28^2990L.198[aid=4733879]
http://www.ingentaconnect.com/content/external-references?article=/0162-1459^28^2990L.198[aid=4733879]
http://www.ingentaconnect.com/content/external-references?article=/0162-1459^28^2991L.242[aid=2732718]
http://www.ingentaconnect.com/content/external-references?article=/0006-3444^28^2965L.141[aid=2006675]
http://www.ingentaconnect.com/content/external-references?article=/1380-7870^28^291L.145[aid=4733873]
http://www.ingentaconnect.com/content/external-references?article=/0006-3444^28^2973L.671[aid=365395]
http://www.ingentaconnect.com/content/external-references?article=/0006-341X^28^2954L.1407[aid=1489522]
http://www.ingentaconnect.com/content/external-references?article=/0006-341X^28^2949L.1056[aid=1489523]
http://www.ingentaconnect.com/content/external-references?article=/0006-3444^28^2987:4L.849[aid=4733874]
http://www.ingentaconnect.com/content/external-references?article=/0162-1459^28^2988L.1341[aid=1313131]
http://www.ingentaconnect.com/content/external-references?article=/0006-3444^28^2984L.309[aid=4733875]
http://www.ingentaconnect.com/content/external-references?article=/0006-341X^28^2955L.613[aid=4733876]
http://www.ingentaconnect.com/content/external-references?article=/0002-9262^28^29145L.945[aid=4733877]
http://www.ingentaconnect.com/content/external-references?article=/0162-1459^28^2988L.1341[aid=1313131]
http://www.ingentaconnect.com/content/external-references?article=/0006-341X^28^2955L.613[aid=4733876]
http://www.ingentaconnect.com/content/external-references?article=/0002-9262^28^29145L.945[aid=4733877]


Li and Lin: Frailty Measurement Error Models 203

McGilchrist, C. A. (1993), “REML Estimation for Survival Models With
Frailty,” Biometrics, 49, 221–225.

Murphy, S. A. (1995), “Asymptotic Theory for the Frailty Model,” The Annals
of Statistics, 23, 182–198.

Murphy, S. A., and van der Vaart, A. W. (2000), “On Pro� le Likelihood,”
Journal of the American Statistical Association, 95, 449–471.

Nielsen, G. G., Gill, R. D., Andersen, P. K., and Sorensen, T. I. A. (1992), “A
Counting Process Approach to Maximum Likelihood Estimation in Frailty
Models,” Scandinavian Journal of Statististics, 19, 25–43.

Oakes, D. (1989), “Bivariate Survival Models Induced by Frailties,” Journal
of the American Statistical Association, 84, 487–493.

Paik, M., and Tsai, W. (1997), “On Using the Cox Proportional Hazards
Model With Missing Covariates,” Biometrika, 84, 579–593.

Parner, E. (1998), “Asymptotic Theory for the Correlated Gamma-Frailty
Model,” The Annals of Statistics, 26, 183–214.

Prentice, R. L. (1982), “Covariate Measurement Errors and Parameter Esti-
mation in a Failure Time Regression Model,” Biometrika, 69, 331–342.

Stefanski, L. A., and Cook, J. R. (1995), “Simulation-Extrapolation:The Mea-
surement Error Jackknife,” Journal of the American Statistical Association,
90, 1247–1256.

Therneau, T. M., and Grambsch, P. M. (2000), Modeling Survival Data:
Extending the Cox Model, New York: Springer.

Tsiatis, A. A., De Gruttola, V., and Wulfsohn, M. S. (1995), “Modeling the
Relationship of Survival to Longitudinal Data Measured With Error. Appli-
cations to Survival and CD4 Counts in Patients With AIDS,” Journal of the
American Statistical Association, 90, 27–37.

van der Vaart, A. W., and Wellner, J. A. (1996), Weak Convergence and
Empirical Process, New York: Springer Verlag.

Wang, N., Lin, X., Gutierrez, R., and Carroll R. J. (1998), “Bias Analysis and
the SIMEX Approach in Generalized Linear Mixed Error Models,” Journal
of the American Statistical Association, 93, 249–261.

Wouk, A. (1979), A Course of Applied Functional Analysis, New York: Wiley.
Zhou, H., and Pepe, M. S. (1995), “Auxiliary Covariate Data in Failure Time

Regression,” Biometrika, 82, 139–149.

http://www.ingentaconnect.com/content/external-references?article=/0162-1459^28^2984L.487[aid=365402]
http://www.ingentaconnect.com/content/external-references?article=/0162-1459^28^2984L.487[aid=365402]
http://www.ingentaconnect.com/content/external-references?article=/0006-341X^28^2949L.221[aid=365720]
http://www.ingentaconnect.com/content/external-references?article=/0162-1459^28^2995L.449[aid=2058346]
http://www.ingentaconnect.com/content/external-references?article=/0006-3444^28^2984L.579[aid=1313136]
http://www.ingentaconnect.com/content/external-references?article=/0090-5364^28^2926L.183[aid=1891879]
http://www.ingentaconnect.com/content/external-references?article=/0006-3444^28^2969L.331[aid=1489526]
http://www.ingentaconnect.com/content/external-references?article=/0162-1459^28^2990L.1247[aid=2732723]
http://www.ingentaconnect.com/content/external-references?article=/0162-1459^28^2990L.27[aid=1489528]
http://www.ingentaconnect.com/content/external-references?article=/0162-1459^28^2993L.249[aid=4733880]
http://www.ingentaconnect.com/content/external-references?article=/0006-3444^28^2982L.139[aid=1313139]
http://www.ingentaconnect.com/content/external-references?article=/0162-1459^28^2990L.1247[aid=2732723]
http://www.ingentaconnect.com/content/external-references?article=/0162-1459^28^2990L.27[aid=1489528]
http://www.ingentaconnect.com/content/external-references?article=/0162-1459^28^2993L.249[aid=4733880]

