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Abstract: Surrogate modeling based on Gaussian processes (GPs) has received increasing

attention in the analysis of complex problems in science and engineering. Despite extensive

studies on GP modeling, the developments for functional inputs are scarce. Motivated by an

inverse scattering problem in which functional inputs representing the support and material

properties of the scatterer are involved in the partial differential equations, a new class of

kernel functions for functional inputs is introduced for GPs. Based on the proposed GP

models, the asymptotic convergence properties of the resulting mean squared prediction

errors are derived and the finite sample performance is demonstrated by numerical examples.

In the application to inverse scattering, a surrogate model is constructed with functional

inputs, which is crucial to recover the reflective index of an inhomogeneous isotropic

scattering region of interest for a given far-field pattern.

Key words and phrases: Computer experiments, surrogate model, uncertainty quantification,

scalar-on-function regression, functional data analysis
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1. Introduction

Computer experiments, the studies of real systems using mathematical models

such as partial differential equations, have received increasing attention in science

and engineering for the analysis of complex problems. Typically, computer

experiments require a great deal of time and computing. Therefore, based on

a finite sample of computer experiments, it is crucial to build a surrogate for

the actual mathematical models and use the surrogate for prediction, inference,

and optimization. The Gaussian process (GP) model, also called kriging, is a

widely used surrogate model due to its flexibility, interpolating property, and the

capability of uncertainty quantification through the predictive distribution. More

discussions on computer experiments and surrogate modeling using GP models

can be found in Santner et al. (2018) and Gramacy (2020).

This paper is motivated by an inverse scattering problem in computer experi-

ments, where the computer experiments involve functional inputs and therefore

the analysis and inference rely on a surrogate model that can take functional

inputs into account. Figure 1 illustrates the idea of inverse scattering. Let the

functional input g represent the material properties of an inhomogeneous isotropic

scattering region of interest shown in the middle of Figure 1. For a given func-

tional input, the far-field pattern, us, is obtained by solving partial differential

equations (Cakoni et al., 2016) which is computationally intensive. Given a new
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far-field pattern, the goal of inverse scattering is to recover the functional input

using a surrogate model. Therefore, a crucial step to address this problem is

to develop a surrogate model applicable to functional inputs. Beyond inverse

scattering (Cakoni et al., 2016; Kaipio et al., 2019), problems with functional

inputs are frequently found in engineering applications of non-destructive testing,

where measurements on the surface or exterior of an object is used to infer the

interior structure. Similar problems also come up in electrical impedance tomog-

raphy, where one wishes to recover the functional input representing the electric

conductivity, from the measured current to voltage mapping; see, e.g., Mueller

and Siltanen (2020), for the electrical impedance tomography model. Another

important application is the widely used computerized tomography in medical

study for interior reconstruction (Courdurier et al., 2008; Li et al., 2019).

Figure 1: Illustration of the inverse scattering problem.

Despite extensive studies on surrogate modeling using GPs (Gramacy, 2020),

the developments for functional inputs are scarce. To the best of our knowledge,
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most of the existing development on GPs involving functional inputs are restrictive

to specific applications. For example, Nguyen and Peraire (2015) propose a

functional-input GP with bilinear covariance operators and apply it to linear

partial differential equations. Morris (2012) develops a kriging model with a

covariance function specifically for time-series data. Chen et al. (2021) propose a

spectral-distance correlation function and apply it to 3D printing.

Functional data analysis has been extensively studied in the literature and

the research involves functional inputs are often referred to as scalar-on-function

regression (Ramsay and Silverman, 2005; Kokoszka and Reimherr, 2017; Reiss

et al., 2017). Some approaches reduce the dimension of functional inputs by

basis-expansion approximation and then perform a linear or nonlinear model

in the reduced Euclidean space (see, e.g., Cardot et al. (1999); Ait-Saı̈di et al.

(2008); Yao and Müller (2010); Müller et al. (2013); McLean et al. (2014)).

Another direction is to directly handle the functional inputs by spline approaches

(see, e.g., Ferraty and Vieu (2006); Preda (2007); Baı́llo and Grané (2009);

Shang (2013). However, most of these approaches do not incorporate Gaussian

process assumptions that allow for uncertainty quantification in the construction

of surrogate models.

The focus of this paper is to introduce a new class of Gaussian process (GP)

surrogate models for functional inputs. There are recent studies on surrogate
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modeling where GP is applied to functional inputs based on truncated basis

expansion (Shi and Wang, 2008; Tan, 2019; Li and Tan, 2022). Ideas along this

line are intuitive and easy to implement; however, there are three drawbacks. First,

basis expansion requires an explicit specification of basis functions. Second, basis

expansion approximates the functional input and achieves dimension reduction

by a finite truncation of the basis functions, which can introduce additional bias to

the model. Third, scaling up the techniques developed by basis expansion to high

dimensional functional inputs is challenging due to the curse of dimensionality.

To tackle these problems with functional inputs, a new GP surrogate is

proposed by introducing a new class of kernel functions that are directly defined

on a functional space. It is shown that the proposed kernels are closely connected

to the idea of basis expansion without the need of specifying individual basis and

without the loss of efficiency due to finite truncation. The procedure is general

and provides a parsimonious model especially for high dimensional problems,

in which cases basis-expansion approaches often require a great amount of basis

functions for high quality approximation. Numerical comparisons with the idea

of basis expansion for functional inputs are conducted in the simulation studies

as well as in the application of inverse scattering problem. The empirical results

of the proposed surrogate model appear to outperform those based on basis

expansion in terms of prediction accuracy and uncertainty quantification.
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Although the proposed surrogate models extend the conventional GPs to

functional inputs, the theoretical results, including the convergence rates of the

mean squared prediction errors (MSPE) and the connections to experimental

design, are nontrivial extensions. Directly defining the kernels on a functional

space reduces the model bias as compared to basis expansion, but posts technical

challenges to the theoretical derivations. Additional scattered data approximation

techniques, such as the local polynomial reproduction (Wendland, 2004), have to

be rigorously applied to the study of convergence rates. The convergence rates

are further explored by the notion of fill distances, which provides a concrete

connection between the performance of the proposed model and the experimental

design in a functional space.

The remainder of the paper is organized as follows. In Section 2, a functional-

input GP model is introduced. A new class of kernel functions, including a

linear and a nonlinear kernel, and their theoretical properties are discussed in

Section 3. Numerical analysis is conducted in Section 4 to examine the prediction

accuracy of the proposed models. In Section 5, the proposed framework is applied

to construct a surrogate model for an inverse scattering problem. Concluding

remarks are given in Section 6. Detailed theoretical proofs, and the data and

R code for reproducing the numerical results, are provided in Supplementary

Materials.
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2. Functional-Input Gaussian Process

Suppose that V is a functional space consisting of functions defined on a compact

and convex region Ω ⊆ Rd, and all functions g ∈ V are continuous on Ω, i.e.,

V ⊂ C(Ω). A functional-input GP, f : V → R, is denoted by

f(g) ∼ FIGP(µ,K(g, g′)), (2.1)

where µ is an unknown mean and K(g, g′) is a semi-positive kernel function for

g, g′ ∈ V . A new class of kernel K(g, g′) for functional inputs is discussed in

Section 3.

Given a properly defined kernel function, the estimation and prediction proce-

dures are similar to the conventional GP. Assume that there are n realizations from

the functional-input GP, where g1, . . . , gn are the inputs and f(g1), . . . , f(gn) are

the outputs. We have f(g1), . . . , f(gn) following a multivariate normal distribu-

tion,Nn(µn,Kn), with mean µn = µ1n and covariance Kn, where 1n is a size-n

all-ones vector and (Kn)j,k = K(gj, gk). The unknown parameters, including µ

and the hyperparameters associated with the kernel function, can be estimated by

likelihood-based approaches or Bayesian approaches. We refer the details of the

estimation methods to Santner et al. (2018) and Gramacy (2020).

Suppose g ∈ V is an untried new function. By the property of the conditional
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multivariate normal distribution, the corresponding output f(g) follows a normal

distribution with the mean and variance,

E[f(g)|yn] =µ+ kn(g)TK−1
n (yn − µn), and (2.2)

V[f(g)|yn] =K(g, g)− kn(g)TK−1
n kn(g), (2.3)

where yn = (y1, ..., yn)T , yi = f(gi), and kn(g) = (K(g, g1), ..., K(g, gn))T .

The conditional mean of (2.2) is used to predict f(g), and the conditional variance

of (2.3) can be used to quantify the prediction uncertainty.

3. A New Class of Kernel Functions

In this section, a new class of kernel functions for the functional-input GP is

introduced. Based on the proposed models, the asymptotic convergence properties

of the resulting mean squared prediction errors are derived. Section 3.1 focuses

on the discussions of a linear kernel and Section 3.2 extends the discussions to

a nonlinear kernel. A practical guidance on the selection of optimal kernel is

discussed in Section 3.3. For notational simplicity, the mean in (2.1) is assumed

to be zero in this section but the results can be easily extended to non-zero cases.
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3.1 Linear kernel for functional inputs

We first introduce a linear kernel for functional inputs g1 and g2:

K(g1, g2) =

∫
Ω

∫
Ω

g1(x)g2(x′)Ψ(x,x′)dxdx′, (3.1)

where g1, g2 ∈ V and Ψ is a positive definite function defined on Ω× Ω. It can

be shown in the following proposition that this kernel function is semi-positive

definite.

Proposition 1. The linear kernel K defined in (3.1) is semi-positive definite on

V × V .

By Mercer’s theorem (Rahman, 2007), we have

Ψ(x,x′) =
∞∑
j=1

λjφj(x)φj(x
′), (3.2)

where x,x′ ∈ Ω, and λ1 ≥ λ2 ≥ ... > 0 and {φk}k∈N are the eigenvalues and the

orthonormal basis in L2(Ω), respectively. Given the positive definite function Ψ,

we can construct a GP via the Karhunen–Loève expansion:

f(g) =
∞∑
j=1

√
λj〈φj, g〉L2(Ω)Zj, (3.3)
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3.1 Linear kernel for functional inputs10

where Zj’s are independent standard normal random variables, and 〈φj, g〉L2(Ω)

is the inner product of φj and g, which is 〈φj, g〉L2(Ω) =
∫

Ω
φj(x)g(x)dx. It can

be shown that the covariance function of the constructed GP in (3.3) is K(g1, g2)

defined in (3.1), i.e.,

Cov(f(g1), f(g2)) =
∞∑
j=1

λj〈φj, g1〉L2(Ω)〈φj, g2〉L2(Ω)

=
∞∑
j=1

λj

∫
Ω

∫
Ω

g1(x)φj(x)g2(x′)φj(x
′)dxdx′

=

∫
Ω

∫
Ω

g1(x)g2(x′)Ψ(x,x′)dxdx′ (3.4)

for any g1, g2 ∈ V .

The proposed surrogate model is equivalent to a basis expansion through

the Karhunen–Loève expansion in (3.3), but it is worth noting that the proposed

method only requires the specification of kernel function in (3.1) instead of an

explicit specification of individual basis φj . Furthermore, there is no dimension

reduction or approximation applied to the functional input, and thus there is

no additional bias introduced to the surrogate. More specifically, the proposed

model preserves the most information without finite truncation of basis expansion

because the kernel representation (3.1) is equivalent to representing each input g

as an element in L2(Ω) through a basis expansion with respect to {φj}∞j=1. These
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advantages as compared to basis expansion are commonly seen in kernel-based

methods, such as support-vector machines (SVM), kernel principal components

analysis (KPCA), and kernel ridge regression (KRR) (Hastie et al., 2009).

Proposition 2. The Gaussian process, f(g), constructed as in (3.3) is linear, i.e.,

for any a, b ∈ R and g1, g2 ∈ V , it follows that f(ag1 + bg2) = af(g1) + bf(g2).

The proposed kernel function has an intuitive interpretation that connects

to Bayesian modeling. In a Bayesian linear regression, the conditional mean

function is assumed to be f(x) = xTw, where w is typically assumed to have a

multivariate normal prior, i.e., w ∼ N (0,Σw). Hence, for any two points, x and

x′, the covariance of f(x) and f(x′) is Cov(f(x′), f(x′)) = xTΣwx′, which can

be interpreted as a weighted inner product of x and x′. The proposed model (3.3)

can be viewed as an analogy to the Bayesian linear model with functional inputs

and the covariance (3.4) can be viewed as a weighted inner product of the two

functions g1 and g2.

To understand the performance of the proposed predictor of (2.2) with the

kernel function defined in (3.1), we first characterize the mean squared prediction

error in the following theorem. Denote the reproducing kernel Hilbert space

(RKHS) associated with a kernel Ψ as NΨ(Ω).

Theorem 1. Let f̂(g) = E[f(g)|yn] as in (2.2). For any continuous function
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g ∈ V ⊂ L2(Ω), define a linear operator on L2(Ω):

T g(x) =

∫
Ω

g(x′)Ψ(x,x′)dx′.

The mean squared prediction error (MSPE) of f̂(g) can be written as

E
(
f(g)− f̂(g)

)2

= min
(u1,...,un)∈Rn

∥∥∥∥∥T g −
n∑
j=1

ujT gj

∥∥∥∥∥
2

NΨ(Ω)

, (3.5)

where ‖·‖NΨ(Ω) is the RKHS norm of NΨ(Ω).

By Proposition 10.28 in Wendland (2004), it is can be shown that T g ∈

NΨ(Ω) and therefore the right-hand side of (3.5) exists. The theorem provides a

new representation of the MSPE for functional-input GPs that is analogue to that

of conventional GPs in the L2 input space, which has not been yet explored in

the existing literature. According to Theorem 1, the MSPE can be represented

as the distance between T g and its projection on the linear space spanned by

{T g1, ..., T gn}. This distance can be reduced if gj’s can be designed so that the

spanned space can well approximate the space V . We highlight some designs of

gj’s in the following two corollaries where the convergence rates of MSPE can

be explicitly discussed.

In the following corollaries, the kernel function Ψ is assumed to be a Matérn
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3.1 Linear kernel for functional inputs13

kernel (Stein, 1999):

Ψ(x,x′) = ψ(‖Θ(x− x′)‖2) with (3.6)

ψ(r) =
σ2

Γ(ν)2ν−1
(2
√
νr)νBν(2

√
νr), (3.7)

where Θ is a lengthscale parameter, which is a d × d positive diagonal matrix,

‖ · ‖2 denotes the Euclidean norm, σ2 is a positive scalar, Bν is the modified

Bessel function of the second kind, and ν represents a smoothness parameter.

The Matérn kernel is considered here because it has been widely used in the

computer experiments and spatial statistics literature (Santner et al., 2003; Stein,

1999). The corollaries can be also extended to a general positive kernel which

has k continuous derivatives, such as Wendland’s compactly supported kernel

(Wendland, 2004). We refer the details of this extension to Wendland (2004)

and Haaland and Qian (2011). Without loss of generality, we assume that Θ is

an identity matrix and σ2 = 1 for the theoretical developments in this section.

More detailed discussions of these parameters, including Θ, σ2 and ν, are given

in Section 4.

Corollary 1. Suppose gj , j = 1, . . . , n are the first n eigenfunctions of Ψ, i.e,
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gj = φj . For g ∈ V ⊂ L2(Ω), there exists a constant C1 > 0 such that

E
(
f(g)− f̂(g)

)2

≤ C1‖g‖2
L2(Ω)n

− 2ν
d . (3.8)

Furthermore, if g ∈ NΨ(Ω), then there exists a constant C2 > 0 such that

E
(
f(g)− f̂(g)

)2

≤ C2‖g‖2
NΨ(Ω)n

− 4ν
d . (3.9)

Corollary 1 represents the convergence rate analogue to that of conventional

GPs (Tuo and Wang, 2020), and shows that if we can design the input functions

to be eigenfunctions of Ψ, the convergence rate of MSPE is polynomial. If the

functional space is further assumed to be the RKHS associated with the kernel

Ψ (i.e. g ∈ NΨ(Ω)), which is smaller than L2(Ω), the convergence rate becomes

faster as indicated by (3.9). This result indicates a significant difference between

the proposed GP defined on a functional space and the conventional one defined

on a Euclidean space. That is, the convergence results of (3.8) and (3.9) depend

on the norm of the functional space that the input g lies in, which is different

from that of conventional GPs which only involves the Euclidean norm.

Instead of selecting the input functions to be eigenfunctions, an alternative is

to design the input functions through a set of knots in Ω, i.e., Xn ≡ {x1, . . . ,xn},

where xj ∈ Ω for j = 1, . . . , n, and the convergence rate is derived in the
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3.1 Linear kernel for functional inputs15

following corollary. We first denote hXn,Ω as the fill distance of Xn, i.e.,

hXn,Ω := sup
x∈Ω

min
xj∈Xn

‖x− xj‖2.

Further, denote qXn = min1≤j 6=k≤n ‖xj − xk‖/2, and a design Xn satisfying

hXn,Ω/qXn ≤ C ′ for some constant C ′ is called a quasi-uniform design.

Corollary 2. (1) Suppose gj(x) = Ψ(x,xj), where x,xj ∈ Ω for j = 1, . . . , n.

For g ∈ NΨ(Ω), there exists a constant C3 > 0 such that

E
(
f(g)− f̂(g)

)2

≤ C3‖g‖2
NΨ(Ω)h

2ν
Xn,Ω.

(2) For a quasi-uniform design Xn, there exists a positive constant C such that

hXn,Ω ≤ Cn−1/d (Wendland, 2004; Müller, 2009). Therefore, there exists

a constant C4 > 0 such that

E
(
f(g)− f̂(g)

)2

≤ C4‖g‖2
NΨ(Ω)n

− 2ν
d . (3.10)

As compared with the results in Corollary 1, the convergence rate of quasi-

uniform designs as shown in (3.10) is slower than the choice of eigenfunctions

as shown in (3.9). Despite a slower rate of convergence, designing functional

inputs by Ψ(xj, ·) with space-filling xj’s can be relatively easier in practice than
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3.1 Linear kernel for functional inputs16

finding eigenfunctions of Ψ. However, if the eigenfunctions of Ψ are available,

then the design based on Corollary 1 (i.e., the first n eigenfunctions) would be

recommended as the convergence rate is faster. Some kernel functions exist

closed form expressions, such as Gaussian kernels (Zhu et al., 1997). More

generally, the eigenfunctions can be numerically approximated via Nyström’s

method (Williams and Seeger, 2000).

The proposed linear kernel can be naturally modified to accommodate the

potential non-linearity in f by enlarging the feature space using a pre-specified

nonlinear transformationM on g, i.e.,M : V → V1, where V1 is a function class.

The resulting kernel function can be written as

K(g1, g2) =

∫
Ω

∫
Ω

M◦ g1(x)M◦ g2(x′)Ψ(x,x′)dxdx′,

and the corresponding GP can be constructed by

f(g) =
∞∑
j=1

√
λj〈φj,M◦ g〉L2(Ω)Zj. (3.11)

The convergence results of MSPE can be extended to (3.11). There are many

possible ways to defineM so that the feature space can be enlarged; however,

the flexibility comes with a higher estimation complexity. In the next section,

we propose an alternative to address the non-linearity through a kernel function,
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which is computationally more efficient.

3.2 Nonlinear kernel for functional inputs

In this section, we introduce a new type of kernel function for functional inputs

that takes into account the non-linearity via a radial basis function. Let ψ(r) :

R+ → R be a radial basis function whose corresponding kernel in Rd is strictly

positive definite for any d ≥ 1. Note that the radial basis function of (3.7),

whose corresponding kernel is a Matérn kernel, satisfies this condition. Define

K : V × V → R as

K(g1, g2) = ψ(γ‖g1 − g2‖L2(Ω)), (3.12)

where ‖·‖L2(Ω) is theL2-norm of a function, defined by ‖g‖L2(Ω) = (〈g, g〉L2(Ω))
1/2,

and γ > 0 is a parameter that controls the decay of the kernel function with respect

to the L2-norm.

While it is of great interest to consider other distance metrics to define the

distance between two functions, such as Fréchet distance and L∞-norm, such

resulting kernel functions is not necessary to be semi-positive definite, which is a

required property for defining a kernel function. For example, consider an L∞-

norm distance for the kernel function, that is, K(g1, g2) = ψ(γ‖g1 − g2‖L∞(Ω)),
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3.2 Nonlinear kernel for functional inputs18

for any g1, g2 ∈ L∞(Ω), where ψ has the form of (3.7) with ν = 2.5 and

σ2 = 1. Given the four training functional inputs, g1(x1, x2) = x2
1, g2(x1, x2) =

x2
2, g3(x1, x2) = 1 + x1, g4(x1, x2) = 1 + x2, and γ = 0.5, the kernel matrix is

Kn =



1 0.8286 0.7536 0.5240

0.8286 1 0.5240 0.7536

0.7536 0.5240 1 0.8286

0.5240 0.7536 0.8286 1


.

Then, for a vector a = (1,−1,−1, 1)T , it follows that aTKna = −0.2331 < 0,

which implies that the kernel function is not semi-positive. Conditions on the

metric ‖ · ‖ such that the resulting kernel function is positive definite will be

pursued in the future. In the following proposition, we show that the kernel

function with ‖ · ‖L2 , defined as in (3.12), is positive definite.

Proposition 3. The function K defined in (3.12) is positive definite on V × V .

Assume that there exists a probability measure P on V such that
∫
V
g(t)2dP (g) <

∞, for t ∈ Ω (Ritter, 2007). Based on the positive definite function K as in

(3.12), we can construct a GP via the Karhunen–Loève expansion:

f(g) =
∞∑
j=1

√
λjϕj(g)Zj, (3.13)
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3.2 Nonlinear kernel for functional inputs19

where ϕj’s are the orthonormal basis obtained by a generalized version of Mer-

cer’s theorem, K(g1, g2) =
∑∞

j=1 λjϕj(g1)ϕj(g2) (Steinwart and Scovel, 2012)

with respect to the probability measure P .

The nonlinear kernel in (3.12) can be viewed as a basis expansion of the

functional input based on the fact that ‖g1 − g2‖2
L2(Ω) =

∑∞
j=1〈φj, g1 − g2〉2L2(Ω),

where {φj}∞j=1 are orthonormal basis functions in L2(Ω). By a finite truncation

of basis expansion, the input g can be approximated by {φj}Mj=1 in RM , for a

positive integer M , and therefore f(g) can be approximated by a GP with the

correlation function, ψ(γ‖ · ‖2), where ‖ · ‖2 is the Euclidean norm on RM .

However, similar to the discussions in Section 3.1, this introduces additional

bias due to the finite truncation and requires an explicit specification of the

orthonormal functions {φj}Mj=1 and M in advance. Instead, the proposed method

directly evaluates the correlation on a functional space through the nonlinear

kernel without approximation, and the application only requires the selection of a

proper kernel function.

It is also worth noting that the L2 norm in (3.12) can be replaced by any

Hilbert space norm, such as RKHS norm. Therefore, the nonlinear kernel (3.12)

is flexible and can be generalized to any target space of interest in practice.

Nevertheless, the L2 norm can be approximated by numerical integration methods,

such as Monte Carlo integration (Caflisch, 1998), which is computationally more
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3.2 Nonlinear kernel for functional inputs20

efficient compared to, for example, the RKHS norm that requires the computation

of inverting an N ×N matrix, where N is the size of grid points.

Based on the proposed nonlinear kernel, the convergence rate of the MSPE

is studied in the following theorem.

Theorem 2. Suppose that Φ is a Matérn kernel function with smoothness ν1, and

ψ is the radial basis function of (3.7), whose corresponding kernel is Matérn

with smoothness ν. Let τ = min(ν, 1). For any n > N0 with a constant N0,

there exist n input functions such that for any g ∈ NΦ(Ω) with ‖g‖NΦ(Ω) ≤ 1, the

MSPE can be bounded by

E
(
f(g)− f̂(g)

)2

≤ C5(log n)−
(ν1+d/2)τ

d log log n. (3.14)

Based on (3.14), it appears that the convergence rate is slower than the con-

ventional GP where the inputs are defined in the Euclidean space. Although

potentially there are rooms to further sharpen this rate, a slower rate of conver-

gence for functional inputs is not surprising because the input space is much

larger than the Euclidean space. Note that since the RKHS generated by a Matérn

kernel function with smoothness ν1 is equivalent to the (fractional) Sobolev space

Hν1+d/2(Ω) (Wendland, 2004), the assumption of g ∈ NΦ(Ω) in Theorem 2 is

equivalent to g ∈ Hν1+d/2(Ω).
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3.3 Selection of kernels21

If Φ is a squared exponential kernel, the corresponding RKHS is within the

RKHS generated by a Matérn kernel function with any smoothness ν2. Thus, one

can choose a large ν2 > ν1 and apply Theorem 2 to obtain the same convergence

rate as in (3.14) by replacing ν1 with ν2. Therefore, one can conclude that the

convergence rate of RKHS generated by a squared exponential kernel is faster

than that of the RKHS generated by a Matérn kernel function with a fixed ν1.

3.3 Selection of kernels

Based on Sections 3.1 and 3.2, the linear kernel of (3.1) results in a less flexible

model leading to a lower prediction variance but higher bias, while the nonlinear

kernel of (3.12) results in a more flexible model leading to a higher variance but

lower bias (Hastie et al., 2009). To find an optimal kernel function that balances

the bias–variance trade-off, the idea of cross-validation is adopted that allows us

to select the kernel by minimizing the estimated prediction error.

Although cross-validation methods are typically expensive to implement in

many situations, the leave-one-out cross-validation (LOOCV) of GP models can

be expressed in a closed form, which makes computation less demanding (Zhang

and Wang, 2010; Rasmussen and Williams, 2006; Currin et al., 1988). Specifically,

denote ỹi as the prediction mean based on all data except ith observation and yi

as the real output of ith observation. One can show that, for a kernel candidate
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3.4 Generalization to multiple functional-input variables22

K, which can be either the linear kernel (3.1) or the nonlinear kernel (3.12), the

LOOCV error is

1

n

n∑
i=1

(yi − ỹi)2 =
1

n
‖Λ−1

n K−1
n (yn − µn)‖2

2, (3.15)

where Λn is a diagonal matrix with the element (Λn)j,j = (K−1
n )j,j . Thus,

between the linear and nonlinear kernels, the optimal one can be selected by

minimizing the LOOCV error.

3.4 Generalization to multiple functional-input variables

Both of the linear and nonlinear kernel functions developed in Sections 3.1 and

3.2 can be naturally extended to multiple functional-input variables. For example,

suppose that there are two functional-input variables, g ∈ V and h ∈ V , and the

n inputs, {(g1, h1), . . . , (gn, hn)}, are collected. In such cases, the linear kernel

(3.1) can be rewritten as

K((g1, h1), (g2, h2)) =

∫
Ω

∫
Ω

(g1(x)g2(x′) + h1(x)h2(x′)) Ψ(x,x′)dxdx′,

and the nonlinear kernel (3.12) can be rewritten as

K((g1, h1), (g2, h2)) = ψ
((
γ1‖g1 − g2‖2

L2(Ω) + γ2‖h1 − h2‖2
L2(Ω)

)1/2
)
,
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where γ1, γ2 > 0 are the parameters.

The nonlinear kernel also can be naturally generalized to the mixture of

functional inputs and scalar inputs. That is, suppose that in addition to the two

functional-input variables, g, h ∈ V , there exists a scalar input variable in the

experiment, denoted by z ∈ Ω′ ⊆ R, then a kernel function can be defined as

K((g1, h1, z1), (g2, h2, z2)) =

ψ
((
γ1‖g1 − g2‖2

L2(Ω) + γ2‖h1 − h2‖2
L2(Ω) + γ3(z1 − z2)2

)1/2
)
,

where γ3 > 0.

4. Numerical Study

In this section, numerical experiments are conducted to examine the emulation

performance of the proposed method. In Supplementary Material S8, the sample

paths of the functional-input GP with different parameter settings are explored.

In these numerical studies, the quasi-Monte Carlo integration (Morokoff

and Caflisch, 1995) is used to numerically evaluate the integrals in the kernels.

Specifically, suppose that Ω is a unit cube, then the linear kernel (3.1) can be
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approximated by

K(g1, g2) ≈ 1

N2

N∑
i=1

N∑
j=1

g1(xi)g2(x′j)Ψ(xi,x
′
j), (4.1)

where {xi}Ni=1 and {x′j}Nj=1 are low-discrepancy sequences from a unit cube, for

which the Sobol sequence (Sobol’, 1967; Bratley and Fox, 1988) is considered

here. The number of points in the sequence, N = 5, 000, is set. Similarly, the

L2-norm in the nonlinear kernel (3.12) can be approximated by

‖g1 − g2‖L2(Ω) ≈

(
1

N

N∑
i=1

(g1(xi)− g2(xi))
2

)1/2

. (4.2)

The prediction performance of the proposed method is examined by three syn-

thetic examples, including a linear operator, f1(g) =
∫

Ω

∫
Ω
g(x)dx1dx2, and two

nonlinear ones, f2(g) =
∫

Ω

∫
Ω
g(x)3dx1dx2 and f3(g) =

∫
Ω

∫
Ω

sin(g(x)2)dx1dx2,

where x = (x1, x2) ∈ Ω ≡ [0, 1]2 and g(x) : [0, 1]2 → R. Eight functional in-

puts, which are shown in the first row of Table S1, are considered for each of the

synthetic examples and their outputs are given in Table S1.

Three types of functional inputs are tested for predictions: g9(x) = sin(α1x1+

α2x2), g10(x) = β + x2
1 + x3

2, and g11(x) = exp{−κx1x2}, where α1, α2, β, κ ∈

[0, 1]. Based on 100 random samples of α1, α2, β and κ from [0, 1], the prediction

performance is evaluated by averaging the mean squared errors (MSEs), where
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MSE = 1
3

∑11
j=9(f(gj)− f̂(gj))

2.

The proposed method is performed with the Matérn kernel function with the

smoothness parameter ν = 5/2, which leads to a simplified form of (3.7):

ψ(r) =

(
1 +
√

5r +
5

3
r2

)
exp

(
−
√

5r
)
. (4.3)

Other parameters, including Θ, σ2 and γ, are estimated via maximum likelihood

estimation. Both of the linear kernel (3.1) and the nonlinear kernel (3.12) are

performed for the proposed functional input GP and their LOOCV errors are

reported in Table 1. According to Section 3.3, LOOCV is then used to identify the

optimal kernel. By minimizing the LOOCV errors, the linear kernel is identified

as the optimal choice for the linear synthetic example, f1(g), and the nonlinear

kernel is identified as the optimal choice for the nonlinear synthetic examples,

f2(g) and f3(g). For the three synthetic examples, their MSEs are summarized in

Table 1. It appears that the optimal kernels selected by LOOCV are consistent

with the selections based on minimizing the MSEs, which shows that LOOCV is

a reasonable indicator of the optimal kernel when the ground truth is unknown.

The computational cost is also assessed for the two kernel choices. The

numerical experiments were performed on a MacBook Pro laptop with Apple M1

Max of Chip and 32 GB of RAM. The computation for linear kernels in each of
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Measurements Kernel f1(g) f2(g) f3(g)

LOOCV
linear 7.9 × 10−7 1.813 0.454

nonlinear 2.2× 10−6 0.227 0.017

MSE
linear 6.4 × 10−10 1.087 0.140

nonlinear 3.1× 10−7 0.012 0.016

Table 1: The leave-one-out cross-validation errors (LOOCVs) and the mean squared
errors (MSEs) for three testing functions, where f1(g) =

∫
Ω

∫
Ω g, f2(g) =

∫
Ω

∫
Ω g3, and

f3(g) =
∫

Ω

∫
Ω sin(g2). The errors corresponding to the optimal kernel are boldfaced.

the examples takes about 9 seconds, while that for nonlinear kernels takes less

than 1 second, indicating that the linear kernel requires more computation than

the nonlinear kernel. This is not surprising, because the computation for linear

kernels involves double integrals (see (3.1)) which in turn requiresN2 evaluations

for the quasi-Monte Carlo integration as in (4.1), while the nonlinear kernel (see

(3.12) and (4.2)) only requires N evaluations. Furthermore, the linear kernel has

d lengthscale parameters that need to be estimated, while the nonlinear kernel

only has one lengthscale parameter. Nonetheless, fitting the functional-input GP

model is reasonably efficient with either a linear or nonlinear kernel, both of

which take less than 10 seconds.

As a comparison, we consider a basis-expansion approach discussed in

Section 3.2. That is, consider a functional principal component analysis (FPCA)
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with truncated components (Rice and Silverman, 1991; Wang et al., 2016):

gi(x) ≈ u(x) +
M∑
j=1

zijψj(x),

with the leadingM eigenfunctions {ψj(x)}Mj=1 and the corresponding coefficients

{zij} given by:

ψj(x) = argmax
‖φ‖2=1,

〈φ,ψl〉=0,∀l<j

n∑
i=1

{∫
(gi(x)− u(x))φ(x)dx

}2

,

zij =

∫
(gi(x)− u(x))ψj(x) dx, (4.4)

where n = 8 in this example. The number of components, M = 3, is chosen that

explains 99.46% of variance. We refer more details regarding the expansion to

Wang et al. (2016) and Mak et al. (2018). Given the training input-output pairs,

{zi, yi}ni=1 where zi = (zi,1, . . . , zi,M), a conventional GP (with a Matérn kernel)

is adopted to fit the training data. The test input, {zi}11
i=9 can be similarly obtained

by (4.4), and their outputs are predicted by the fitted GP.

In addition to FPCA, we also consider a Maclaurin series expansion of degree

3, which is a Taylor series expansion of a function evaluated at 0 truncated to
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degree 3 (labeled T3). That is,

gj(x) ≈
∑

a=0,b=0
a+b≤3

∂a+bgj(0, 0)

∂xa1∂x
b
2

xa1x
b
2

The series expansion can approximate the functional inputs of the examples

reasonably well with only a few non-zero coefficients. For example, the training

functional input g1(x) = x1 + x2, has the coefficient 1 for both terms of x1 and

x2 and 0 for other terms.

To evaluate the prediction performance and quantify the uncertainty, in

addition to MSEs, we further consider two numerical measurements: an average

coverage rate of the 95% prediction intervals and an average proper scores.

Coverage rate is the proportion of the times that the interval contains the true

value, and the proper score is the scoring rule by Gneiting and Raftery (2007),

which is an overall measure of the accuracy of the combined prediction mean and

variance predictions. Specifically, the proper score has the following form:

proper score = −
(
y − µP
σP

)2

− log σ2
P ,

where y is the true output, µP is the predictive mean, and σ2
P is the predictive

variance. A larger proper score indicates a better prediction. The results are sum-
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marized in Table S2, which shows that the proposed method, FIGP, outperforms

the two basis-expansion approaches in terms of both predictions and uncertainty

quantification. The average coverages of FIGP are close to the nominal coverage

95%, and the scores of FIGP are much higher than the two basis-expansion

approaches.

5. Applications to Inverse Scattering Problem

In this section, we revisit the inverse scattering problem shown in Figure 2. Let

D ⊂ R2 denote an inhomogeneous isotropic scattering region of interest, and the

functional input g, the support of which is D, is related to the refractive index for

the region D of the unknown scatterer. Given a set of finite element simulations

as the training data, the goal of inverse scattering is to recover the functional

input from a given far-field pattern. To achieve this goal, an important task is to

construct a surrogate model for functional inputs.

In this study, 10 functional inputs, including 1, 1 + x1, 1− x1, 1 + x1x2, 1−

x1x2, 1 + x2, 1 + x2
1, 1 − x2

1, 1 + x2
2, and 1 − x2

2, are conducted in the training

set and the corresponding far-field patterns are shown in Figure 2. Note that

the inputs herein are given with explicit functional forms. In other applications

where discrete realizations of functions are available, the kernel functions can be

numerically approximated by the discrete realizations as in (4.1) and (4.2). The
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Figure 2: Training data in the application of the inverse scattering problem.

pre-processing of using principal component analysis (PCA) is first applied to

reduce the dimension of the output images. The first three principal components,

denoted by ul ∈ R1024, l = 1, 2, 3, are shown in Figure S3, which explain

more than 99.99% variability of the data. Therefore, given the functional input

gi for i = 1, . . . , 10, the output of far-field images can be approximated by∑3
l=1 fl(gi)ul, where f1(gi), f2(gi), f3(gi) are the first three PC scores.

After the dimension reduction, the three-dimensional outputs f1(g), f2(g)

and f3(g) are assumed to be mutually independent and follow the functional-input

GP as the surrogate model. For any untried functional input g ∈ V , based on the

results of (2.2) and (2.3), the far-field pattern can be predicted by the following

normal distribution:

N

(
3∑
l=1

kl(g)TK−1
n,l(fl − µl1n)ul,

3∑
l=1

(Kl(g, g)− kl(g)TK−1
n,lkl(g))u2

l

)
,
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where fl = (fl(g1), . . . , fl(gn)), kl(g) = (Kl(g, g1), . . . , Kl(g, gn))T , (Kn,l)i,j =

Kl(gi, gj), andKl is the kernel function with the hyperparameters estimated based

on fl.

The linear kernel of (3.1) and the nonlinear kernel of (3.12) are both per-

formed. The optimal kernel is selected by comparing the LOOCV errors in

predicting the far-field pattern. The LOOCV error based on the linear kernel

is 3.6 × 10−6, which is smaller than that of the nonlinear kernel, 1.2 × 10−5.

Therefore, we apply the linear kernel and examine its prediction performance for

the test function, g(x) = 1− sin(x2). Similar to Section 4, two basis-expansion

approaches, FPCA and T3, are compared. The images of the true far-field patterns

and their predictions, along with their variances (in logarithm), are illustrated in

Figure S4. Compared to the ground truth, the predictions of FIGP can capture

the underlying structures reasonably well with some discrepancies appearing on

the lower right corner. On the other hand, both of the predictions of FPCA and T3

appear to deviate more from the ground truth. The MSEs and average scores are

reported in Table 2, which indicates that the proposed method can outperform the

two basis-expansion approaches in terms of prediction accuracy and uncertainty

quantification.
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Measurements FIGP FPCA T3

MSE 1.10 × 10−6 1.07× 10−4 9.06× 10−5

Score 12.13 6.89 6.39

Table 2: Prediction performance of the FIGP and basis-expansion approaches in the
inverse scattering problem application (FPCA indicates an FPCA expansion approach
and T3 indicates the Taylor series expansion of degree 3), including MSEs and the
average proper scores, in which the values with better performances are boldfaced.

6. Concluding Remarks

Although GP surrogates are widely used in the analysis of complex system as an

alternative to the direct analysis using computer experiments, most of the existing

work are not applicable to the problems with functional inputs. To address this

issue, two new types of kernel functions are introduced for functional-input GPs,

including a linear and nonlinear kernel. Theoretical properties of the proposed

surrogates, such as the convergence rate of the mean squared prediction error,

are discussed. Numerical studies and the application to surrogate modeling in

an inverse scattering problem show high prediction accuracy of the proposed

method.

There are extensive studies in experimental design for conventional GP

surrogate models, but the study of optimal designs for GPs with functional inputs

remains scarce. In this paper, it is shown that space-fillingness is a desirable

property in controlling the convergence rate of MSPE. An interesting topic
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for future research is to explore the construction procedure for efficient space-

filling designs with functional inputs. Apart from experimental designs, another

important future work is to explore systematic approaches to efficiently identify

the functional input given an observed far-field pattern, which is the ultimate goal

of inverse scattering problems. Based on the proposed GP surrogate, we will

explore a Bayesian inverse framework that integrates computer experiments and

real observations. Last but not the least, even though the numerical studies in

Supplementary Material S8 indicate that the smoothness parameter ν in the linear

kernel function does not much affect the sample paths, it is worth exploring the

theoretical properties regarding the choice of the parameter. We leave it for the

future work.

Supplementary Material

Additional supporting materials can be found in Supplemental Materials, in-

cluding the theoretical proofs of Propositions 1 and 3, Theorems 1 and 2, and

Corollaries 1 and 2, the sample paths of the functional-input GP, the supporting

tables and figures for Sections 4 and 5, and the data, R code for reproducing the

results in Sections 4 and 5.
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