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Functional Integral Approach to the Bound State 

Due to the s-d Exchange Interaction*> 
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Roppongi, Tokyo 

(Received November 2, 1970) 

The Stratonovich-Hubbard transformation is applied to the partition function of the 

s-d exchange system to bring it into a functional average form over fluctuating fictitious 

s-d admixtures in order to study the singlet bound state. The static approximation is 
examined and effects of fluctuating components are taken into account by a perturbational 

method from the static approximation in the approximation of the most divergent 

terms. The correct binding energy is derived at 0°K. Calculations at low temperatures 

or at weak magnetic fields are achieved, on an assumption, to lead the normal behavior 

of the system. Green functions are also transformed similarly and their general property 

is discussed. 

§ 1. Introduction 

On the basis of the Yosida theory/) the ground state of a localized 

impurity spin in metals coupled with conduction electrons via the antiferro

magnetic s-d exchange interaction has been worked out in the approximation 

of the most divergent terms by Yosida, Okiji, Ishii and Yoshimori.2
)·

3
> Important 

conclusions are: The ground state is the collective bound state with a binding 

energy anomalous in the interaction strength, which is a local singlet. Phase 

shifts of conduction electrons at the Fermi level are rc/2.2
) The field depend

ence of magnetic properties of the bound state is shown to be normal. 3
) 

In the present paper we investigate the singlet bound state in the s-d 

model, using the functional integral approach by Stratonovich and Hubbard,4
) 

which has been recently applied to the Anderson model by Wang, Evenson 

and Schrieffer5
) and by Hamann. 6

) Results are compared with those of the 

Yosida theory and a calculation of properties of the bound state at low tem

peratures is attempted. 

The basic idea of the present approach is to bring the partition function 

of the system into a form of a functional average over fluctuating fictitious 

s-d mixing matrix elements by the Stratonovich-Hubbard transformation. In 

order to do that, we describe a localized spin in terms of an electron operator. 
This electron will be referred to as a d electron. Then we allow states of 

*) Parts of this work were reported at the 12th International Conference on Low Temperature 
Physics, Kyoto, 1970. 
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Functional Integral Approach to the Bound State 163 

the d electron number na, 0 and 2 besides the proper states of nd= 1, in which 

the localized spin is defined. A part of the partition function from those 

allowed states should be separated after the functional average. The starting 

Hamiltonian does not connect the states of presence of a localized spin with 

states of no localized spin. For mathematical simplicity, appropriate potential 

terms are added to the Hamiltonian, which are irrelevant to the formation of 

the singlet bound state. 

Not only the partition function but also the Green functions can be ex

pressed in a functional average form. 7
) However mainly calculation of the 

partition function is aimed, though a general pror;erty of Green functions is 

discussed. In order to perform the functional average, the fluctuating matrix 

elements are Fourier-transformed and a functional is expanded with respect to 

all the non-zero frequency components. That is, we have a perturbational 

expansion, of which unperturbed part contains the zero frequency component. 

If one keeps only the unperturbed part (this is referred to as the static 

approximation) trace of the density matrix with the transformed Hamiltonian 

can be easily evaluated. One has an integral over amplitude of the zero 

frequency component left. When the extremal approximation is made for the 

integration, the result corresponds to the anomalous Green function method by 

Takano and Ogawa.8
) In the course of calculation we have the anomalous 

Green function similar to that by Takano and Ogawa and by Abrikosov,9
) but 

after the functional average this is proved to vanish completely, as it should 

be. This corresponds to a procedure of projecting states of presence of a 

localized spin by using a phase factor introduced to the anomalous average due 

to Nakajima.10
) However this kind of a procedure is built-in in the present 

formalism as a natural result due to the property of the starting Hamiltonian. 

Higher order perturbational terms due to the non-zero frequency components 

are analyzed. After integrations over amplitudes of the non-zero frequency 

components, the most divergent terms, which can be identified as parquet dia

grams/5) are found. On the assumption of the weak coupling limit, only those 

terms are summed up to obtain an integrand in a closed form to a final inte

gration over amplitude of zero frequency component. This integrand is correct 

within logarithmic accuracy. We sum the most divergent terms, referring to 

a series appearing in the x-ray singularity in metals with the s-d exchange 

interaction treated by Kato, Okiji and Osaka.11
) The final integration is 

performed in an approximation in accord with accuracy to the integrand to 

complete the calculation of the partition function. The regular terms with 

respect to the coupling constant appear in the expansion, but these are out 

of scope of this paper. 

The antiferromagnetic isotropic exchange interaction is assumed here. 

Extension to the anisotropic case is not straightforward. One needs seemingly 

more complicated fluctuating parameters than in the present case. 
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164 A. Y oshimori and A. Sakurai 

This paper is organized as follows. In §2, the partition function is trans

formed into the functional average form. The same transformation is applied 

to the Green function. The static approximation is examined in §3. Higher 

order effects due to the finite frequency components are analyzed by the 

perturbation method in §4. In §5, the most divergent terms are picked up 

to bring into a closed form. A final integration is performed approximately 

in §6. Some concluding remarks are given in §7. 

§2. Stratonovich-Hubbard transformation 

The partition function in question for the system of conduction electrons 

and a localized spin 1/2 1s 

Z=tr exp( -f]H), (2·1) 

(2·2) 

where Hz is the external magnetic field acting only on a localized spin, J is 

negative so that the interaction is antiferromagnetic, the band energy is meas

ured from the Fermi energy, and other notations are obvious. Instead of 

calculating the partition function given above, we shall calculate Z with V 

replaced to V.a. 

(J/8) [(~aa~ca+ ~adaa)
2 

c~(jaJca- ~acJaa-)
2
]' 

_N-112~ C(j- L..JkCka. 

We can rewrite V as 

with 

(2·4) 

(2·5) 

(2·6) 

(2·7) 

where a~ and a(j are Fermi-operators to describe the localized d spin. In (2·1) 

trace is taken over states of presence of the localized spin. That is, trace is 

confined in states of na 1 (na a\at +a~a,v). We extend trace here to states 

of na 0 and na 2. As we can see in (2· 6), in the sub-space of na= 1, V 

is essentially V.a and in the sub-spaces of na 0 and na = 2 V is merely a 

spin-independent potential ( V.a=O here). 

Now we apply the Stratonovich-Hubbard transformaion to Z, 

Z=tr exp [ -fj(Ho+ V)] 

~ac(~)Z(C(~))exp( ~:niCC~) l 2 d~), (2·8) 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

s
/a

rtic
le

/d
o
i/1

0
.1

1
4
3
/P

T
P

S
.4

6
.1

6
2
/1

8
7

4
9
8
4
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



Functional Integral Approach to the Bound State 165 

Z(((r))=trT-rexp[ -\>H-r(((r))dr], (2·9) 

-[3Hr(((7:)) [3Ho-r-c[((7:)b(Ta~c<T-r+(*(7:)bo-C~aO"'r], (2·10) 

c= ( rr:[3J/2) 112 , (2 ·11) 

where ((7:) is a fictitious s-d mixing matrix element, its real part comes from 

the transformation of the first term of (2· 4), its imaginary part from of the 

second term, T-r is the ordering operator for the imaginary time 1:, and sub

script 1: attached for operators is the ordering label by Feynman.12
) Now the 

problem is to find motion of the s-d admixture system with a time-dependent 

mixing matrix element, which is a one-body problem, and then to make the 

functional average over all the possible time-dependent matrix elements. 

If one multiplies ((1:) by A in Eq. (2 · 9) and differentiates both the sides 

of logarithm of Eq. (2 · 9) with respect to A, one gets 

(8/fJA) logZ(A((7:)) = -c\:d7: [((7:) b(T<a~-rC<T-r)+(*(7:) b(T<c~aO"'r)], 

(2·12) 

where <A-r) is defined as 

(2 ·13) 

and AT stands for any operator. If one has Green functions known, 

the right-hand side of Eq. (2 ·12) can be calculated. 

The Fourier transformation of g is made, 

U~a(7:1, 1:2) b U~an,n' exp( iwn7:ct-iwn,7:2), 
(x)HWn' 

U~c ( 7:'!, 1:2) b U~c n,n' exp ( iw, 1:1 + iwnt7:z), 
ronoon 1 

with Wn (2n+ 1)rr:. If the Fourier transform of ((7:) is introduced, 

00 

((7:) = b Cv exp(2rr:iv7:), 
V=-oo 

Eq. (2·12) can be written in an integrated form as 

Z(Cv) Z(O) exp[ cpdAb((vU~an+v,n+C:u~cn-v,n)J. Jo Q'VII 

(2·14) 

(2·15) 

(2·16) 

(2·17) 

(2·18) 

(2·19) 
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166 A. Y oshimori and A. Sakurai 

In the following we assume Hz 0 for the time being. Effects of the 

magnetic field will be considered in §5. 

From the equation of motion, 

(i(J)n- {3ek) Uka n,n' = J..cN- 112 ~(~ Ua n-v,nt, (2 · 20) 

where Ukan,n' and Uan,n' are the Fourier transforms of Uka(t'1,t'z) and Ua(t'l,t'z), 

respectively, defined by 

and 

N -1/2~ 
Ucan,nl L .. JkUka n,nl • (2·22) 

A formal solution ofEqs. (2·20) and (2·21) in a matrix notation is given by 

where 

Ua= (Uan,nl), 

(
'. 2 ) -1 Un= l(J)n-A ~n , 

Fn ~k( iaJn ~ {3ek) -\ 

Y) = (r;n,n')' 

{

c
2 
N-

1 
~ r::-n'+vCvFn+v 

Y)n,nl 

C
2N-l ~I Cvl 2Fn+v 

v"cO 

for n=Fn', 

for n=n'. 

(2·23) 

(2· 24) 

(2·25) 

(2·26) 

(2·27) 

(2·28) 

An expression of Uca is easily found, and a similar calculation for Uac can be 

done to have the same contribution from the Uac term in (2·19) as that from 

Uca term. Finally, we have 

(2·29) 

where p, = J..
2 and a matrix ~ is defined by 

(2·30) 

The partition function is now expressed as 

(2·31) 

where integrations are over complex plane of (v. 
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Functional Integral Approach to the Bound State 167 

If a formal expansion with respect to p.gr; for (1- p.gr;)-1 and the use of 

relation dgjdp.=g~g are made, one has 

Z(Cv) =Z(O) exp(Ao+A), (2·32) 

(2·33) 

00 

A=- 2 bP-1 tr(g(p.= 1)r;)P. 
P=l 

(2·34) 

We show here the result that the Stratonovich-Hubbard transformation is 

applied for Green functions and that anomalous Green functions vanish after 

the functional integration. A Green function can be defined by using the 

ordering label of Feynman as 

(2·35) 

After a similar calculation of the exponential factor in (2 · 35) to that in Z, 

we have, for the Fourier transform of GAB defined in the same way as in 

(2·16) and (2·17), 

GABn,nf z- 1 ~ f!d 2 (vUABn,nf(Cv)Z(Cv) exp( -n:~ I Cvl 2
), (2·36) 

where UAB is a Green function similar to Uca subjected to the effective Hamil

tonian H'T(Cv) with given (,/s. 

Let us consider the anomalous Green function Gca. The corresponding 

Green function Uca can be found easily from Eqs. (2·20)-...(2·23) as 

Ura "·"' = cN-1Fn ~ (~ [ (1- gr;) -
1
] n-v,n'U"'. (2·37) 

v 

If we expand (1- gr;)-1 with respect to gr;, together with the expansion of 

(2· 32), we see that each term of the expansion of UcaZ(Cv) contains always 

at least one Cv with exponent of an odd integer. Note r;n,n' is a quadratic 

form of Cv and Un contains only the absolute square of Co. As we see in the 

later section, the gaussian average of Cv with an odd number exponent always 

vanishes because of the angular integration on the complex plane of Cv. 

Therefore Gca necessarily vanishes after the functional average in (2 · 36). We 

can prove this in general for the anomalous Green functions GAB in which a 

product operator AB connects states with different values of na. Hence an 

anomalous average <AB)t vanishes also. The average < )t here denotes average 

with the total Hamiltonian. 
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168 A. Y oshimori and A. Sakurai 

§3. Static approximation 

In this section we examine the static approximation. When (('C') is as
sumed to be 7:'-independent, that is, all the (v except (o are neglected, Z((o) 
is given by 

Z((o) = Z(O) expA0 , (3·1) 

from (2·32)---(2·34). The definitions (2·24), (2·25), (2·30) and (2·33) 
give 

(3·2) 

The summation over n is converted to a contour integral around the imaginary 
axis as usual. One can change the contour for it along the real axis. After 
.a-integration one has 

where the constant density of states p is assumed for the conduction band 
(the band width is 2D and the Fermi level is at its center), F(e+iO+) is 
approximated by irr:p/ (3 for I e I <D and by zero otherwise, and y is defined as 

(3· 4) 

The e:X:pression (3· 3) can be evaluated with the assumption (3y~1 as 

Ao= (2/rr:)[jy [log(y/D) -1 + (rr:/(3y) log2 (rr:2/6) ([jy)-2 + ···], (3· 5) 

with the use of relations, (f3D~1) 

Then Z in the static approximation is given by 

Z = Zc(2(3/rr:) (- N/ Jp) ~~ dy exp [ (2(3/rr:) (N/ Jp)yBo(Y)], (3 · 6) 

where Zc is the partition function for the system of conduction electrons with 
J=O, the angular integration over the complex plane of ( 0 has been made, 
and Bo(Y) is defined by 

Bo(y) 1 (JpjN) log(y/D) + (JpjN) + (Jp/N) (rr:2/6) (f3y)-2 + .... 
(3·7) 

We note a factor 4 in Z(O) = 4Zo which is due to the degeneracy of d electron 
levels in the J = 0 case, is canceled by the third term in the square brackets 
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Functional Integral Approach to the Bound State 169 

of (3 · 5). This means there is no degeneracy of the ground state for any 

given ( o , as should be from the form of the effective Hamiltonian, H ( ( 0). 

If one makes the extremal approximation for the integral in (3 · 6), that 

is, the integral is approximated by the maximum of the integrand, one gets 

Z=Zc exp [13(2/n:)yo], yo=D exp(N/Jp), (3·8) 

where J3--oo is assumed. One can calculate easily effects of an external 

magnetic field and properties at finite temperatures. Results correspond to 

those of the anomalous Green function method by Takano-Ogawa8
> and Klein. 13

> 

The value of the binding energy given in (3· 8) is different from that by 

them and looks correct. However this is spurious because our starting Hamil

tonian contains the potential term and it gives a spurious contribution in the 

static approximation to lead incidentally the correct value. This can be checked 

by using the anomalous Green function method for the starting Hamiltonian. 

The correction terms to the extremal approximation can be calculated 

from (3 · 6) by the steepest descent method. This does not improve the results. 

So we must take into account the effects of the fluctuating component of (('C'), 

which is the main subject of the remaining part of the paper. 

It is noted here that the ground state in this static approximation is a 

local singlet. This can be seen from the value of <a· S )1, which should be 

-3/4 for singlet. Here, a is the total spin of the conduction electrons and 

average is over only the state with the localized spin. In the static approxi

mation one can show easily 

(3·9) 

where the average is over all the states with any na value and under the 

effective Hamiltonian with any given (o. Considering that the states with 

na=O, 2 give no contribution to this and that the absolute square of the ampli

tude of the ground state (for a given (o) projected into the sub-space of nd= 1 

has the weight 1/2 to the total, one may conclude <a·S)l is -3/4. There

fore the static approximation would be a good zeroth approximation on which 

effects of the fluctuating components are taken into account as perturbation. 

We note furthermore that the anomalous Green functions like Gca vanish even 

in the static approximation as in the general proof given in the previous 

section. 

§4. Higher order perturbation 

We consider here effects of the fluctuating components (v (v=FO). That 

Is, the term A (2 · 34) neglected by the static approximation is now taken 

into account. Let us introduce an average which represents the integral over 

(v (v=FO) for given (o by 
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170 A. Yoshimori and A. Sakurai 

(4·1) 

Then the partition function Z is expressed as 

(4·2) 

The last factor which results from fluctuations of the mixing IS rewritten in 
terms of cumulant averages, < · ·· )'0 ,1

4
) as 

(4·3) 

We are going to calculate the averages <Am)'0 or <Am)so perturbationally with 
the aid of a diagrammatic representation. Rules for the correspondence of a 
term in the formula to a diagram element are summarized in Table I. Then, 
for instance, the p-th term in the expansion of A (2 · 34), 

Table I. 

term in the formula element in the diagram 

n 
Un 

___ .,. __ _ 
n 

Fn ----ilo---

v 
• - - - - - - - -ilo- - -

is represented by Fig. 1. In (4· 4), (i 1) =p for 

i = 1 and a dash attached to the summation means 

that each vi should not satisfy v; v;-t + i (i -1) 
=0, because of the definition of r;, (2·27), (2·28). 

In the diagram, frequencies associated with g, F 
and t; are conserved at any vertex point. When 
we average ( 4· 4) over the frequencies, there remain 

only terms with same number of Cv and C~ for 
each frequency v because of 

(spin line) 

(electron line) 

(mixing line) 

(mixing line) 

(4·4) 

p 

I 
I I 

I 4 I 

\ II / 

\ \-p+Vp I 
I 
I 

v\ 

i-(i -\)+Vj-\ 

f'i \ 

I \ 
I 

/ 
/ 

/ 2. 

Fig. 1. The p-th term in 

the expansion of A. 

In the diagram, after the averaging procedure, we connect dotted arrows with 
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Functional Integral Approach to the Bound State 171 

same frequencies together. There are several possibilities to do so and to give 

non-vanishing elements in the result. Here we write down the first few terms 

of the resulting averaged expansion of <A>'o, some of which are shown by 

the diagrams in Fig. 2 ; 

+2~ ~'F;uLv} 
1 v 

+ 3 ~,~, Fi F2 oLv1 U1-v2 
12 Jll V2 

+rei (o 1
2
6 ~'FtFaoiUt+t-a} 

13 

+ [other terms of 0 ( J 3
)] 

( 1) 

ed ./v 
~~ ,.~~ 

/ 

I 

I 2 

(2b) (2c) 

2 

3 2 

(3a) (40) (5o) 

Fig. 2. Diagrammatic representation of (A)(
0

, (4·5). 

(4·5-1) 

(4·5-2a) 

(4·5-2b) 

(4·5-2c) 

( 4· 5-2d) *) 

(4·5-3a) 

(4·5-3b) 

(4·5-3c) 

( 4· 5-3d) **) 

(2d) 

*) (2d) should not be included if the restrictions l=t=2 in (2c) and v=t=v' in (2b) are omitted. 

**) The factor 6 in (3d) changes to 3 if the restriction l=t=2 of the sum in ·(3a) is omitted. 
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172 A. Y oshimori and A. Sakurai 

-+ [other terms of O(J4
)] 

+ (1/5) [J5rc I (o 1
2 5 ~~ F1FzFa F~}~OtOzOa 01+2-502+3-4 

1-5 

+ [other terms of O(J5
)] + ... } , 

(4·5-4a) 

(4·5-5a) 

(4·5) 

where U =c2
/ (nN) ex:. J. The dash attached to the summation designates that 

all the frequencies are to be summed with special attentions not to equate a 

dotted line frequency to another independent one or to zero if there is no 

indication. On the other hand a small cross at the center in the diagram (2d) 

represents that all the dotted lines connected to it have the same frequencies. 
In a similar way we obtain the following expansion for <A 2 )~ 0 , which corre
sponds to Fig. 3 ; 

<A
2
)~ 0 <A

2
)~ 0 <A)~o 

=4{U 2
~ ~'F1Fz01-vOz-v 
12 v 

+ U 3 
{rc I (o 1

2 
2 ~ ~' FiF20tUt-vUz-v 

12 v 

(2a) (3a) 

3 

(3d) (4b) 

(3b) 

3 

(4a) 

Fig. 3. Diagrammatic representation of (A2>co, (4·6). 

(4·6-2a) 

(4·6-3a) 

(4·6-3b) 

(4·6-3c) 

(4·6-3d) 

(4·6-4a) 

(4·6-4b) 

(3c) 

(4c) 
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Functional Integral Approach to the Bound State 173 

+ b
1 
F1FzFa F4UtU4U1+4-zU1·f·4-a} ( 4· 6-4c) 

1234 

+[other terms of order O(J4)] + ... }. (4·6) 

The higher order cumulants are obtainable by using formulae, 

In these expansions, terms which are factorizable into more than two 

independently averaged traces and so correspond to disconnected graphs have 

disappeared from the result, according to a general property of the cumulant.14) 

Each term of <A")~o, being an averaged product of n traces, has n circles 

made of g- and }?-lines in the diagram representation. <A ")~ 0 forms a series 

beginning with O(Jn) terms. 

§5. Most divergent terms 

By examining each term of the cumulant expansions discussed above we 

can find they contain divergent terms like (JpjN)m(log{y/D} )n, among which 

the most divergent ones (with n = m) are chosen to sum. 

At first, a series with the coefficient n I Co 1
2 is discussed. An only one 

candidate of second order, ( 4· 5-2a), is not divergent. Among the third order 

terms, ( 4 · 5-3a) can be evaluated by contour integrals in the logarithmic ac

curacy as 

-2niCoi 2
U

3
bU1UzF1Fz 

2 
~J dzf(z)-

0 
+. + .F(--e~;) +. +. ) 

1 2 nt J c pZ tah UiJz c; z lW1 lWz 

~2nl Co 12 ( Upj[j) 3 Re\\v dede'f(e)f(e')]g __ ~{ (e:e' +, iy~ / D} 
JJ_v (e+zy) (e +zy) 

~ nl Co 1
2 

1

1

2 
(Jpj N) 3 {log3 (y/ D)+ 3log2 (y/ D) (rc2/6) ([jy )-2

}, (5 ·1) 

where the integral path is shown in Fig. 4, and the result is expanded up to 

([jy )-2
• Although the temperature dependent term itself seems to be next 

divergent in comparison with the independent ones, we retain it because it is 

the highest in temperature dependent terms. Other third order terms like 

( 4 · 5-3d) are not most divergent. The fourth order n1ost divergent contri

butions come from <A 2 )~ 0 , namely terms (4·6-4a), (4·6-4b) and (4·6-4c). 

The former two give the argument of the exponential ( 4 · 3) the value 

-rc I Co 1

2 
2( Up/ [j)

4 Re~:v de1/Ce1) ~:v dez/(ez) 

X \
0 d log{(ez+e3 +iy)/D} 

J_v 83 
(e1+iy)(ez+iy)(e1+e2+ea+iy) 

1 ( J, )4 ~ -rc I Co 1 2 -6~4- - -}y [log4 (y/ D)+ 4log3 (y/ JJ) · (rc2 /6) ([jy )-2
], 

(5·2) 
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174 A. Y oshimori and A. Sakurai 

where we have used 

~ F4 UzH-3:::::::::. (pi {3) log { [imz- ims- ~(imz- ims)] I (-{3D)}, 
4 

~ F ~ F ~ ( 1 )2~ 0 
d log{ [{3e imz-f;(imz)] / (-{3D)} 

.L..J sU1+2-a.L..J 402+4-a~- P {3 e + c· · )jr.J e:c· + · --)--lr.; · a 4 -D e zm1 tmz p - ..,- tm1 Zmz p 

On the other hand the latter ( 4 · 6-4c) is evaluated as 

nl Co !
2

( Uplf3)
4 Re~def(e) ~ds'i(e') loC;~c;y~~' ~~~~;?} 

:::::::::.-1 X (5·2). (5·3) 

That is, these three terms of fourth order cancel one another giving no most 
divergent contribution. 

We notice here that each most divergent term in the series has one to 
one correspondence to the Abrikosov' s parquet diagram 15

) describing the vertex 
part if one has integrated the vertexes multiplied by external lines with respect 
to external frequencies of electrons, too. For instance, ( 4 · 5-3a) can be rep
resented by Fig. 5 (Sa), while (4·6-4a), (4·6-4b) and (4·6-4c) by Fig. 5 
(4a), (4b) and (4c) respectively. 

The fifth order terms can be also evaluated in a similar way, where the 

terms represented by Fig. 6 are found to be 

most divergent. In Fig. 6 the corresponding 

parquet diagrams are also illustrated. The 

sum of them amounts to 

-D 0 D 

Fig. 4. The integral path used in 

(5·1). The cuts are due to F 
or ~. For the most divergent 

terms, only F's cuts are important. 

-~~--
3 

2 

(3a) (4a) 

2 4 

-~-
2 3 

(4b) (4c) 

Fig. 5. Parquet diagrams corresponding to most diver

gent terms in (4·5) and (4·6). 
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Functional Integral Approach to the Bound State 175 

( l) 

~~ 
~(51 

Fig. 6. Diagrams describing the fifth order most divergent terms. 

If the effects of fluctuations up to fifth order in J are added to the static 

contribution in (3· 6), we obtain, for the argument of the exponential (4· 3), 

where 

g(X, {3) g(X) + y(dg(X) I dy) (n2l6) ({3y)-2
, 

g(X) ==1- X+ (li12)X3
- (7 I 480)X5 + ···, 

X= (JpiN) log(yiD). 

(5·6) 

(5·7) 

Relating to the series g(X), (5 · 7), we note here the following fact: 

When we consider a system of conduction electrons coupled with an impurity 

by both the exchange and potential interactions, V:a+ (JI4)::Eo-c!co-, an ampli

tude of the wave function of the singlet ground state, r(e), satisfies the 

following integral equation in the most divergent approximation, of which 

integration kernel is given by Kato, Okiji and Osaka11
) for the problem of 

singularities in the x-ray absorption, 
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176 A. Y oshimori and A. Sakurai 

r(e) (e- E)+ (Jpl N) ~: de'r(e') + ~~ de'r(e')K(e, e') = 0, (5 · 8) 

K(e,e')= (1I16)(JpiN) 2 log[(e e'-E)IDJ 

+ (3116) (JpiN) 2 log [(e+e'- E) IDJ [1- (JpiN)log( (e+e'- E) I D)] - 1 

+ (318) (Jpl N) log [1- (Jpl N) log( (e E) I D) J . (5 · 9) 

The secular equation for it 1s 

r r D dede'------""--=,...:..-..:.--·--'--c:::::-:·-
,),)0 (e:- (e:'-

+ rrrD de:de:' de:" K(e, e:')K(e', e") +. ··} 
J J j o ( e- E ) ( e:' E ) ( e"- E ) 

. 1-x+ (1l12)x3 (7 I 480)x5 + ... (5·10) 

in an expanded form, or 

(5·11) 

in a closed form which can be derived by the differential equation method16
) 

and gives a root of x 1. We put here x (JpiN) log( El D). Since the 

series for the secular equation (5 ·10) is the same in the result and in the 

structure*) as g(X) we are summing up, we identify g(X) with the right

hand side of (5 ·10) and put 

g(X) {1 + ~~ du(1 u)-312 exp(ul2)} -
1 

(5 ·12) 

m the closed form. 

The other pos!?ibility giving most divergent terms is there in the terms 

with no Co component from r;. For instance let us consider a series of terms 

corresponding diagrams obtainable by changing a v 0 dotted line to v:f:O in 

the most divergent diagrams above discussed. ( 4 · 5-3b) corresponding to 

(4·5-3a) is one of them. Now the sum over v is restricted by v:f:O, then 

all the frequencies (v:f:O) are averaged at once. If the sum is rearranged as 

after averaging, the first term of the right hand gives the result which can be 

interpreted as the regular part of the energy shift, which is out of scope of 

this paper and will not be discussed further. The second term becomes most 

*l For instance, the fifth order term of Fig. 6 (4) corresponds to one of the terms in the third 

integral (5·10) with double K(e, e') integrand, while our other terms appearing so far correspond 

to ones in the first and the second integral. 
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Functional Integral Approach to the Bound State 177 

divergent and this kind of terms form a series which can be summed up as 

g(X) 1 with inclusion of the 

term ( 4· 5-1). 

(a) 

fD 
\X}4 

(b) 

We can also gather p pro

ducts of terms each diagram of 

which is obtained by replace

ment of a J.l = 0 dotted line by 

a J.I=#=O line in a most divergent 

graph. Two examples of these 

terms with 2 are shown in 

Fig. 7(a) and (b). In these 

cases the most divergent terms 

are extracted as follows : 

Fig. 7. All the frequencies of the mixing lines are 

confined to be different from each other and 

not to be zero. 

term 

=3·2! U 4 (b b)~-2( -X)(X3/12). 
v v=O 

term 

~(disconnected part)+ ( X) (X3/12). 

Sum of them contributes to the exponential argument as 

- (2/2) ( X) (X3 /12). 

In this way, such terms as them with 2 can be brought to 

- (1/2) [g(X) -1] 2, 

and, in general, 

- ( -1)P /p· [g(X) -1JP (5 ·13) 

can be found in connection with the series for p products. Therefore, the 

most divergent terms without rc: I Co 1
2 coefficients become collected as 

log [g(y, /3)] (5 ·14) 

in all together at finite temperatures. Hereafter the variable in the function 

g will be described by using y rather than X. 

Combining (3·6), (4·2), (5·5) and (5·14) we finally obtain the expres

sion for the partition function in an integral form, 
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178 A. Y oshimori and A. Sakurai 

Z = Zc(2{3/n) (- N/ Jp) ~dyg(y, {3) exp [ (2{3/n) (N/ Jp)yB' (y)], (5 ·15) 

B'(y) g(y, £3) (Jp/N) (n2/3) (£3y)-2 + (Jp/N) 

in the most divergent approximation omitting the regular terms. Comparing 

this with (3· 6), we see a great difference. We note furthermore that the 

expression of the integrand is an expansion of (£3y)-\ (ey>1), in the ex

ponent, where the first three terms are given, and, in each coefficient the most 

divergent terms are summed up into the closed form. 

At the end of this section we consider the effect of the magnetic field 

Hz acting on the localized spin. A magnetic field acting on the conduction 

electrons gives merely the Pauli paramagnetic term in addition to the result 

obtained here. 17
) When we have the Zeeman term in Ho given by (2·2), the 

Green function g~ given by (2 · 25) turns out to be 

(5 ·16) 

where a + 1 for the up spin d-electron and 1 for the down spin. The 

other part of the calculation of the Green functions is the same as in the case 

of Hz 0. Through §§4 and 5 the calculation is also the same. Only care 

to be made is to discriminate between g! and u:. We confine ourselves in 

the case of the weak magnetic field at the absolute zero of temperature. The 

calculation up to H'} is straightforward in parallel with that of Hz 0. Omit

ting details, we show here the expression corresponding to ( 5 · 15), 

Zc(2{3/n) ( N/ Jp) ~dyg(y, Hz) exp [ (2{3/n) (N/ Jp)yB" (y)], (5 ·17) 

B"(y) = g(y, Hz)+ (JpjN) (psHz/y) 2 + (JpjN), 

g(y, Hz) =g(X) +y [dg(X)/dy] (l/2) (PsE/y) 2
, 

where g(X) is defined by (5 · 7). 

§6. Final integration for the partition function 

(5·18) 

First we consider the case at the absolute zero and I-L = 0. For the ex

pression ( 5 · 15) at the absolute zero, 

Z = Zc(2{3/n) (- N/ Jp) ~dyg(X) exp [ (2{3/n)y( (N/ Jp) g(X) + 1)], 

(6·1) 
the extremal approximation being made, we get for e~oo 

Zc exp [ (2{3/n)y], (6·2) 

where y is determined by maximizing the exponent in the approximation of 

the most divergent terms, 
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Functional Integral Approach to the Bound State 179 

g(X) 0, y D exp(N/Jp). (6·3) 

We note here the condition (6 · 3) is the eigenvalue equation (5 ·11) for the 

singlet bound state. The ground state energy - (2/rc)y obtained in (6 · 2) is 

the correct one. 

The fact mentioned above indicates convincingly that the extremal approxi

mation is a good one for deriving the ground state energy and that the 

integrand in the approximation of the most divergent terms is sufficiently 

accurate for it. However, before we proceed to the case at low temperatures 

or at weak magnetic fields, it should be noted that the function g(X) becomes 

complex for X> 1 (y<y) as one can see from (5 ·12). Then, a contribution 

from the integral over O<y<y in (6 ·1) becomes also complex. This is of 

course unreasonable and due to the approximation of the most divergent terms. 

In the following we assume simply this part of the integral for X> 1 can be 

neglected in our approximation in order to carry out the integration over y. *) 

By doing so we show first the result due to the extremal approximation can 

be reproduced correctly and then we proceed to the cases at low temperatures 

or at weak fields. 

We put g(X) 1+gl(X), then integration by parts for (6·1) gives in 

the approximation of the most divergent terms 

Z/Zc= -exp [(2j9/rc) (N/Jp)y] exp [(2j9/rc) (N/Jp)yBl(y)] g(X) I; 

+ (2j9/rc) (N/ Jp) ~;dy exp [ (2j9/rc) (N/ Jp)y] 

Xexp [(2j9/rc) (NjJp)yB1(y)] g(X)g1(X), 

B1(y) = U1(X) + (JpjN). (6· 4) 

Applying the similar integration by parts repeatedly, we obtain 

Zc exp [ (2j9/rc)y( (N/ Jp)g(X) + 1)] g(X) (1 + Ut(X) )-1
1 Y=Y. (6· 5) 

This gives the result ( 6 · 2) with the use of the condition ( 6 · 3), namely 

g(X) I Y=Y" = 0. We note the factor g(X) in the front of the exponential in 

(6·1) is important to have vanishing zero point entropy as seen in (6·5). 

In the cases at low temperatures or at weak fields given by (5 ·15) or 

(5·17) one has 

g(y, j9) g(X'), g(y, JL) =g(X"), (6·6) 

from (5·6) or (5·18) in the lowest order of (j9y)-2 or (p8 Hjy) 2 for Sy>1 

and tJsHz/y<f:;:), respectively, where X' and X" are defined by 

*) An alternative assumption may be to put g(X) =0 in the exponent for this interval. How

ever this does not change our conclusion at 0°K. 
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180 A. Y oshimori and A. Sakurai 

(Jpl N) log [y(1 + (rc2l6) (f3y )-2
) I D], 

X"= (Jpl N) log [y(1 + (112) (p_nHz/y ) 2
) I D]. 

(6·7) 

(6·8) 

Then neglecting parts of the integrals for X', X"> 1, that is, putting y' or 

y" into the lower limit of the integrals in (5 ·15) or (5 ·17) respectively, 

(X' I Y=Y' 1, X" I Y=Y" 1) 

we can perform the integrations by the method similar to (6 · 4) and (6 · 5). 

In these cases, however, the calculation must be done correctly in the approxi

mation of the most divergent terms for each term up to ([jy)- 2 or (p_8 Hzly) 2
• 

The results are given by 

Zc exp [ (2f3lrc)y( (NI Jp) g(X') + 1 + (rc2 13) ([jy )-2
)] I Y=Y' , (6 ·10) 

Zc exp [ (2{3lrc)y( (NI Jp)g(X") + 1 + (p_nHz/y ) 2
)] I y=y". (6 ·11) 

Note that g(X') and g(X") are valid in the lowest order of ([jy)- 2 and 

(p_niijy) 2
• Since g(X') I Y=Y' 0 and g(X") I Y=Y" 0, we get 

Z = Zc exp [ (2{3lrc)y(1 + (rc2 16) ([jy)-2
) J, 

Zc exp [ (2f3lrc)y(1 + (112) (p_nHzl y) 2
)], 

(6·12) 

(6·13) 

from (6·10) and (6·11) with (6·9) up to ([jy)- 2 and (p_8 HziY) 2
• These 

results give immediately the specific heat at low temperatures and the suscep

tibility at 0°K, 

Cv k~(rcl3) Tly, 

The expression of the susceptibility is in accordance with the result by Ishii 

and Y osida. 17
) These expressions have the same form as those calculated by 

the anomalous Green function theory due to Takano and Ogawa.8
> However, 

the binding energy y appearing in them is replaced by the correct one. The 

obtained normal behavior at low temperatures are in agreement with the ex

pectation by Ishii3
> and by Anderson, Yuval and Hamann18

> and also with 

recent experimental observations. 19
> 

§7. Concluding remarks 

The calculation of the partition function for the s-d exchange system has 

been made in the approximation of the most divergent terms by using the 

functional integral method due to the Stratonovich-Hubbard transformation. 

The correct binding energy has been obtained. In order to derive the expres

sion at low temperatures we made an assumption that a part of the integrand 

for the final integration for the partition function, which cannot be obtained 
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Functional Integral Approach to the Bound State 181 

in the approximation of the most divergent terms, can be neglected. The 

behavior of the free energy is concluded to be normaL 

At the absolute zero the ground state projected into the subspace of nd 1 

for any value of Co in the static approximation is shown to be a singlet. The 

perturbation series g(X) coincides with that appearing in the eigenvalue equa

tion for the singlet bound state, and further, in the extremal approximation, 

the binding energy is determined by the very eigenvalue equation. These 

facts suggest that the final ground state in the present calculation is the singlet 

bound state. 

V·le are unable to derive the contribution from the states in the subspaces 

of nd 0, 2 to the partition function, though physically uninteresting. This will 

be done by having the expression of the integrand neglected in the final inte

gration. In other words, we expect that this part of the integrand will be 

primarily related to this irrelevant contribution. However, it is necessary to 

have a complete expression of the integrand beyond the most divergent terms 

to derive the behavior of the bound state at all temperatures and magnetic 

fields. For this purpose the time dependent approach6
),

7
) may be promising. 
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