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Abstract

Interactome networks represent sets of possible physical interactions between proteins. They lack spatio-temporal
information by construction. However, the specialized functions of the differentiated cell types which are assembled into
tissues or organs depend on the combinatorial arrangements of proteins and their physical interactions. Is tissue-specificity,
therefore, encoded within the interactome? In order to address this question, we combined protein-protein interactions,
expression data, functional annotations and interactome topology. We first identified a subnetwork formed exclusively of
proteins whose interactions were observed in all tested tissues. These are mainly involved in housekeeping functions and
are located at the topological center of the interactome. This ‘Largest Common Interactome Network’ represents a
‘functional interactome core’. Interestingly, two types of tissue-specific interactions are distinguished when considering
function and network topology: tissue-specific interactions involved in regulatory and developmental functions are central
whereas tissue-specific interactions involved in organ physiological functions are peripheral. Overall, the functional
organization of the human interactome reflects several integrative levels of functions with housekeeping and regulatory
tissue-specific functions at the center and physiological tissue-specific functions at the periphery. This gradient of functions
recapitulates the organization of organs, from cells to organs. Given that several gradients have already been identified
across interactomes, we propose that gradients may represent a general principle of protein-protein interaction network
organization.
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Introduction

In metazoans, differentiation and ontogeny processes lead to the

formation of differentiated tissues. Ultimately, these tissues, alone

or in combination, constitute organs and ensure specific

physiological functions. Deciphering the combinatorial arrange-

ments of transcription factors that lead to tissue-specific gene

expression can help explain the diversity of the differentiated

tissues and the fundaments of their differences at a global scale

[1,2]. However, the combinatorial arrangements of proteins, other

than transcription factors, also contribute to the diversity of the

hundreds of different differentiated cell types. Therefore, studying

the organization of the protein-protein interaction networks could

reveal novel information insight on tissue diversity. Furthermore,

tissue-specific interactions can occur between proteins which are

not strictly tissue-specifically expressed [3], therefore reinforcing

the relevance of considering tissue specificity from an interactome

perspective.

Protein-protein interaction maps (or interactomes) are sets of

interactions that have been experimentally identified using either

high throughput technologies (such as large-scale two hybrid

screens and affinity purifications mass spectrometry [4–14]) or

regular low-scale experiments. They are assembled into large

networks representing sets of possible biophysical interactions

between the tested proteins. However, because of the experimental

methods used to identify interactions, interactomes lack spatio-

temporal information, thereby hindering any studies on specific

biological contexts or conditions. This has been overcome by the

integration of secondary data types such as (i) gene expression to

identify different types of hubs and sub-network markers in cancer

[15–18] and (ii) functional annotations to highlight context-specific

interactions [19].

In the work described here (Figure 1), we aim at understanding

the influence of function on interactome topology and answering

questions such as ‘Does interactome topology reflect functional

issues? Does function ‘shape’ the interactome? Is there an

organizational ‘functional logic’ in the interactome?’. For this,

we classified the interactions according to gene expression and the

proteins according to network topology. By interpreting the results

functionally using GO annotations, we address tissue diversity from
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Figure 1. Workflow. The human interactome network is analyzed with two classification processes. (Left side) Using ESTs as source of gene
expression, 22 tissular interactomes are inferred. The Interaction Usage of each interaction is determined, i.e. the number of tissues in which the
interaction is possible given the co-expression of the partners in tissues. For each IU bin containing interactions with respect to their interaction
usage, enrichment or depletion of GO Biological Process (BP) are computed and represented as a heatmap, which is ultimately clusterized using a k-
means algorithm. (Right side) Following a k-core decomposition of the graph, enrichment or depletion of GO Biological Process are computed for
proteins of coreness 1 to 9 and represented as a heatmap. (Bottom) For each UI cluster, enrichment/depletion profiles according to UI and topology
are compared.
doi:10.1371/journal.pone.0022051.g001

Tissue-Specificity and Topology in the Interactome

PLoS ONE | www.plosone.org 2 July 2011 | Volume 6 | Issue 7 | e22051



an interactome point of view. We first defined the Largest Common

Interactome Network (LCIN) which consists of those interactions

possible in all the tissues tested, and whose proteins are mainly

involved in housekeeping functions. We show that this LCIN

corresponds to a ‘functional interactome core’, lying at the

topological center of the interactome, and that tissue-specific

interactions by definition excluded from the LCIN, are interestingly

(i) centrally located when involved in regulatory and developmental

functions and (ii) located at the periphery when involved in organ

physiological functions. Combining interactions, expression, inter-

actome network topology with cellular function annotations, we

show that the organization of the interactome follows a functional

gradient recapitulating the organization of organs.

Results

Inferring contextualized tissular interactomes
A human interactome composed of 27286 high confidence

binary interactions between 9596 proteins was built by joining

manually curated interactions derived from the literature, to those

reported in APID [20]. First, using the EST clusters from the

UniGene database [21] for gene expression data, we inferred

several possible tissue-specific proteomes (Table S1). EST clusters

were chosen as gene expression data rather than microarray data

for coverage and function representation concerns. Indeed, in

accordance with Zhu et al. [22] who have shown that microarray

data exhibit a high rate of false negative, leading to an

underestimation of the number of housekeeping genes, we

confirmed the depletion of housekeeping gene detected in

microarray data compared to ESTs (File S1).

Second, we postulated that if genes encoding two interactors are

co-expressed in a given tissue, then that interaction is possible in

that tissue. If either of the genes is not expressed in that tissue, it is

assumed that the gene product is also absent, and therefore, that

the interaction is impossible. In this way, we recovered 45 inferred

proteomes and interactomes corresponding to the ‘body sites’

proposed by UniGene. We eliminated small and relatively

incomplete interactomes due to poor EST coverage of certain

tissue transcriptomes [22], and only considered the 22 largest

contextualized interactomes, which contain more than 10 000

interactions, for further studies (Table S1).

Interaction usage and Functions
Distribution of the ‘interaction usage’. A tissue-specific

interaction may exist between proteins that are not necessarily

tissue-specifically expressed. This is why it is different to investigate

tissue-specific interactions rather than tissue-specific genes/

proteins. Indeed, although the genes may be widely expressed,

their shared tissular expression may be restricted to only few

tissues, therefore leading to a tissue-specific interaction between

gene products not tissue-specifically expressed. This accounts for

20% of the most tissue-specific interactions in our dataset (data not

shown).

To reflect this difference, we defined the notion of ‘interaction

usage’ (IU) as the number of tissues in which an interaction is possible.

This corresponds to the number of tissues in which both interactors

are co-expressed (Table S1). The distribution of the IU values

(Figure 2) shows first, the scarcity of strictly tissue-specific interactions:

only 5% of the interactions are possible in less than 3 tissues and 11%

in less than 6 tissues; second, that 77% of the interactions are possible

in more than half of the tissues; and third, that 21% of the interactions

are common to all the considered tissues.

The relevance of the IU distribution was assessed by showing

that (i) it significantly differs from that obtained when randomly

assigning proteins to tissue proteomes (Mood’s median test, p-

val = 0,03; Table S2); (ii) a similar distribution is obtained on a

larger contextualized interactomes built from an interaction

dataset of lower confidence (58189 interactions, 12531 proteins)

(Table S3); (iii) it is in accordance with the human protein

expression profiles recently revealed by immunological detection

across a large number of cell types [23], in which only 2% of the

tested proteins show a strict tissue-specificity and 20% are

ubiquitously expressed (Table 1); (iv) it significantly differs from

the distribution of gene/protein usage ( = number of tissues in

which the genes are expressed; Wilcoxon test, p-value ,2.2e-16;

(data not shown)). The validity of using EST information for

proteome and interactome inferences is further validated by such

agreement with experimentally derived protein localization data.

The Largest Common Interactome Network: a functional

interactome core devoted to housekeeping functions. The

peculiarity of the distribution of the IU suggests a possible

relationship between the usage of the interactions and the cellular

functions they contribute to. We therefore investigated the

interactions possible in all the studied tissues. They form the

Largest Common Interactome Network (LCIN), which contains

4200 interactions between 1996 expressed proteins in all the tested

tissues. This organization is not fortuitous, because when

interactomes are inferred from randomly generated proteomes,

none of the interactions are possible in all tested tissues, rendering

the delineation of a LCIN impossible (Materials and Methods,

Table S2).

Interactions of the LCIN are expected to participate in

housekeeping cellular functions which occur in all cell types.

Indeed, GO term analysis shows that the LCIN is particularly

enriched (p-val,1025) in proteins involved in nucleic acid and

protein metabolic processes, intracellular transport, and cellular

processes linked to cell cycle and nuclear organization. Conversely,

interactions involved in organ morphogenesis, systems develop-

ment and establishment (such as the nervous or immunological

systems) or cell communication are particularly under-represented

(p-val,1025) in the LCIN (Figure 3A, 3B; Table S4). We believe,

therefore, that the LCIN represents a functional interactome core

devoted to housekeeping functions.

Additional features of the LCIN support this assertion. First, only

33% of the LCIN interactions involve disease genes (p-

val = 1,73610235) compared to 43,5% in the rest of the interactome

(cf. Material and Methods, Figure 3C), as expected from the

observation that disease genes are generally expressed in a tissue-

specific manner [24,25]. Second, housekeeping proteins tend to be

‘ancient’ genes, highly conserved throughout evolution [26].

Accordingly, the LCIN shows a 1.3 to 1.5-fold enrichment in

proteins having distant orthologues according to InParanoid (see

Material and Methods, [27]): 35,5 to 42,2% of the orthologues

found in D. melanogaster, C. elegans and S. cerevisiae belong to the

LCIN (p-valD.m = 1,58610252, p-valC.e = 3,41610256, p-valS.c =

2,13610257) (Figure 3D).

Interaction usage profiles according to cellular

functions. As shown above, the more common interactions

are mainly involved in housekeeping functions. To investigate the

remaining interactions, which should account for the functional

and morphological differences between cells and tissues, we

extended the previous LCIN analysis to the other IU categories

(interactions binned according to the number of tissues in which

they are possible; Figure 2). A heatmap representing the

enrichment/depletion of GO Biological Process terms for the

proteins in each IU category, is shown in Figure 4A (see Material

and Methods). The observed enrichment/depletion profiles of the

1023 GO terms common to all IU categories were then grouped in

Tissue-Specificity and Topology in the Interactome
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15 clusters using the k-means algorithm (6 clusters are detailed in

Figure 4, the 9 others in Figure S1, S2, S3). The GO terms

grouped in each cluster were represented using SimCT, a web-

based tool that provides a simplified subgraph of the ontology,

facilitating the interpretation of functional annotations [28]. Two

main annotation profiles are distinguishable (Figure 4D): GO

terms that are over-represented among proteins whose interactions

were detected in many tissues and under-represented in the rest,

and conversely, terms that are overrepresented among proteins

whose interactions are possible in only few tissues and depleted in

the rest. These annotation profiles are discretized by the

classification process, leading to clusters into which the

enrichment or the depletion status of terms progressively extends

from the categories containing the more common interactions to

the others.

Firstly, the clusters 6, 5 and 4 (Figure 4B) and 9, 10, 14 (Figure

S1) group terms over-represented among the more common

interactions (possible in 7 to 22 tissues according to the cluster) and

depleted among interactions possible in only a few tissues. As

expected and detailed in the previous paragraph, GO terms

enriched solely in the more common interactions correspond to

housekeeping functions (such as ‘DNA replication’, ‘DNA repair’,

‘mRNA processing’, ‘translation’ and ‘transport’, Figure 4D).

Interestingly, in addition to terms related to housekeeping

functions, cluster 4 also contains terms referring to the regulation

of housekeeping functions (as ‘regulation of cell cycle’). Unlike

interactions mediating the housekeeping functions themselves,

interactions regulating these processes are not expected to be

shared by all tissue types but to be more tissue-specific. Indeed,

cluster 4 contains terms over-expressed in all tissues as expected for

housekeeping interactions, as well as in a more restrained number

of tissues, as expected from regulatory interactions. This cluster

may illustrate the specificity of the regulation of common processes

in particular tissues.

Second, clusters 7, 2, and 15 (Figure 4C) and 1, 3, 8, 11, and 12

(Figure S2, S3) group terms depleted among the more common

interactions and over-represented elsewhere. These terms

(Figure 4D) are related to regulation and signal transduction

(such as ‘regulation of MAP kinase activity’, ‘Wnt receptor

signaling pathway’ or ‘EGFR signaling pathway’ in cluster 7),

Figure 2. Distribution of the interaction usage in the human interactome. Bins correspond to the number of tissues in which interactions
are possible.
doi:10.1371/journal.pone.0022051.g002

Table 1. Human protein expression profiles revealed by immunological detection [23] vs. inferred from ESTs.

Human Protein Atlas [23] 1 This study 2

Nb investigated cell types / tissues 65 22

Method Immunological detections Data integration, inference from EST expression

% expressed proteins1/proteome2

(out of 48421/17141 proteins2)
68 % 69%

Proteins commonly expressed
(.60 cell types1/22 tissues2)

20% 20%

Proteins specifically expressed (,6 cell types1/1 tissue2) 3% 1.3%

doi:10.1371/journal.pone.0022051.t001
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organ development (as ‘central nervous system development’,

‘heart development’ or ‘hemopoiesis’ in cluster 2), and the

physiological functions of the organs (for instance ‘muscle

contraction’, ‘blood circulation’ or ‘visual perception’ in cluster

15). Therefore, regulatory and physiological processes appear to

be excluded from the more common interactions, therefore

mediated by tissue-specific interactions.

Functions, Interaction Usage and Network Topology
Intuitively, as the LCIN forms the core cellular machinery

common to all tissues, it is tempting to speculate that it should be

buried in the innermost part of the interactome, leaving the

topological periphery of the interactome to more tissue-specific

functions. To verify this hypothesis, we used the k-core

decomposition of the graph to define the topological layers of

the interactome [29]. Essentially, this means progressively pruning

the graph vertices (proteins) according to the number of edges

(interactions) linking them to the connected component [30].

Proteins of high k-core are topologically central in the network

whereas proteins of low k-core are peripheral. In the studied

interactome, proteins of the highest k-core (k-core 9) are almost

double what would be expected by chance in the LCIN (p-

val = 3,78610214), indicating a correlation between the centrality

of a protein and its involvement in common interactions. By

extension, proteins of the highest k-core should be involved in

housekeeping functions. Building on this idea, we addressed the

possible relationship between the IU, network topology and

function. As before, we calculated over- and under-representation

of Gene Ontology terms annotating the proteins in each k-core

category. The resulting data, for each of the clusters previously

defined according to the IU categories, are shown as heatmaps

and graphs in Figure 5 and Figures S4, S5, S6.

Housekeeping functions are common to all tissues and

topologically central. Functions that are over-represented in

the LCIN and therefore mediated by the more common

interactions are also enriched among the high k-core proteins

and depleted in the low k-core ones (cluster 4, 5, 6 on Figure 5, and

9, 10 on Figure S4). In this case, the enrichment/depletion profiles

Figure 3. Largest Common Interactome Network analyses. (A) The sets of the most enriched (p-val,1025) Biological Process (BP) annotations
in the LCIN, visualized using SimCT [28] (http://tagc.univ-mrs.fr/SimCT/), a tool to visualize relationships between biological objects annotated to an
ontology. (B) The sets of the most depleted (p-val,1025) Biological Process (BP) annotations in the LCIN. (C) Distribution of interactions involving
disease genes (according to OMIM) across the IU bins. (D) The LCIN is enriched in distant orthologues. Percentages of orthologs above the expected
value (27%) are shown in orange. Enrichment p-values are given per organism.
doi:10.1371/journal.pone.0022051.g003
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of the GO terms show the same tendency with respect to the IU

and the topology. Housekeeping functions and their regulation are

therefore mediated by interactions present in a large number of

tissues (from 7 to 22) and are centrally located in the interactome.

Thus, we show that all these interactions, including those of the

functional core previously defined, map to the topological center

of the interactome.

Regulatory and developmental functions are tissue-

specific and topologically central. Interestingly, other

functions, although depleted among the more common

interactions, are found enriched among the more central

proteins of the interactome (clusters 1, 2, 3, 7 and 11, Figure 5,

Figure S5), as shown by the inversion of their enrichment/

depletion profiles in the more central and common parts of the

interactome. This suggests that these functions, although almost

excluded from the functional core, are mediated by topologically

central interactions. More particularly, they correspond to the

regulation of biological and cellular processes (such as ‘regulation

of apoptosis’, ‘positive regulation of T cell activation’) and the

molecular regulatory processes themselves (for instance, ‘signal

transduction’ or ‘protein amino acid phosphorylation’) (Figure 5).

They are also related to the developmental processes of the organs

Figure 5. Interaction usage, cellular functions and interactome topology. (A) Comparison of the heatmaps of enrichment/depletion of GO
terms annotating the proteins of each IU bin (middle panel) and each k-core category (left panel). The right panel represents the subtrees
summarizing the relationships between GO terms grouped within the shown clusters. (B) The tendency of each cluster according to each criterion
(topology in pink and interaction usage in blue) is visualized by transforming the juxtaposed heatmap representation into a graph in which each IU
and k-core category is represented by its median value. (C) Gradients as a trend of interactome organization. Interactome layers corresponding to the
k-core categories of the graph are visualized using the Caida tool [42]. Proteins of k-core 9 are red, k-core 8 are brown, k-core 7 are yellow, etc. For
clarity, only 10% of the graph edges are shown.
doi:10.1371/journal.pone.0022051.g005

Figure 4. Interaction usage profiles according to cellular functions. (A) Heatmap representing the enrichment (in red)/depletion (in green)
status of the 1023 GO Biological Process terms (lines) annotating the proteins participating in each IU bin (columns). (B) Representative clusters
grouping GO terms highly enriched among common interactions and depleted in others. (C) Subtrees summarizing the relationships between GO
terms grouped within clusters. For clarity, groups of tree branches are highlighted and annotated to the GO term corresponding to the deeper node
of the subtree (framed GO terms). (D) Representative clusters of GO terms enriched among interactions possible in only a few tissues and depleted
among common interactions. Dotted lines link clusters from the initial heatmap to the corresponding enlargements and GO term subtrees.
doi:10.1371/journal.pone.0022051.g004
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and organisms (such as ‘regionalization’, ‘embryonic develop-

ment’, ‘organ morphogenesis’).

Physiological functions are tissue-specific and topo-

logically peripheral. Finally, a third type of functions

mediated by tissue-specific interactions is found relatively enriched

among proteins of the lowest k-core (clusters 8, 12 and 15) (Figure 5,

Figure S6). These tissue-specific interactions are related to

physiological processes and their underlying molecular processes

(such as ‘cognition’, ‘spermatogenesis’, ‘synaptic transmission’ or

‘cation transport’) and lie at the periphery of the interactome.

It appears that the tissue-specific interactions excluded from the

functional core are located at the center as well as at the periphery

of the interactome, each location corresponding primarily to a

particular type of tissue-specific function. The topological

criterion, therefore, distinguishes between a tissue-specificity

related to the regulatory and the developmental processes on

one hand and the physiological processes on the other.

Discussion

Tissue-specific interactions can occur between proteins that are

not necessarily tissue-specifically expressed [3]. Indeed, a tissue-

specific function can be performed by proteins that, while not

exclusive to the tissue of interest, can only interact in that tissue.

This explains why considering tissue-specific interactions rather

than proteins should, therefore, bring a deeper functional insight

to the understanding of cell and tissue diversity. We adopted this

point of view to investigate whether the topology of the

interactome reflects functional issues. To do so, we classified

interactions according to gene expression on one hand, proteins

according to their network topological features on the other hand,

aiming to finally interpret the results in the light of functional

annotations. The novelty of the approach relies on the common

functional interpretation of two independent classification

schemes. This allowed distinguishing two types of tissue-specific

interactions which would not have been detected otherwise, by a

global interactome study.

Classifying interactions by integrating gene expression allows

estimating their level of tissue-specificity. Although proteomic data

would have been the data of choice for protein tissue expression,

such comprehensive data are not yet available to our knowledge.

We then chose EST as tissular gene expression source to

contextualize protein interaction rather than microarray data

mainly for two reasons: interactome coverage and protein function

representation. Indeed, the coverage of the used expression data is a

concern because the studied interactome is only a subset of limited

size. As shown in File S1 and in accordance with Zhu et al. [22], the

number of housekeeping genes detected with microarrays (taken

from Gene Expression Atlas [31] in this study and from [32] in [22])

is underestimated when compared to EST and immuno-detected

proteins. This fact is probably due to the stringent thresholds chosen

for microarray analyses. Moreover, the use of microarray data for

contextualization and the consequent high rate of false negative

among housekeeping genes would (i) trivially lead to very small

tissular interactomes and more importantly, (ii) introduce a bias in

the functional analyses of the inferred interactomes, ie. a depletion

of interactions occurring between housekeeping gene products and

tissue-specifically expressed proteins.

Centrally located tissue-specific interactions mediate regulatory

and developmental functions while peripheral ones carry out

physiological functions. This appears illustrating the differences

between, for instance, the tissue-specificity of (i) the regulatory

interactions that can occur between regulators and housekeeping

proteins and lead to tissue-specific transcriptional activation of

gene expression, and (ii) the interactions responsible of the

assembly of tissue-specific protein complexes involved in physio-

logical functions.

With regards to housekeeping interactions, this work defines an

interactome functional core present in all the investigated tissues

and essentially formed by interactions devoted to ubiquitous

functions. This centrality of the housekeeping functions is

reminiscent of the organization evoked for unicellular organisms

by Vinogradov [33], while studying the modularity of the yeast

interactome. Noticeably, this is, to the best of our knowledge, the

first time that such evidence emerges from the interactome analysis

of a metazoan organism, suggesting that such organization may be

a trend of the functional interactome organization across species.

Bossi and Lehner [3] demonstrated that housekeeping proteins

interact with tissue-specifically expressed proteins, without pro-

viding functional insights on these particular interactions. Our

analysis interestingly extends their results by showing that some of

those interactions are regulatory. Specifically, the annotation

‘intracellular signaling cascade’ is the most over-represented (p-

val = 2.3661028, data not shown) among those proteins of the

functional core that interact with tissue-specifically expressed

proteins. Finally, regulatory interactions appear as topologically

central, irrespective of the biological process considered (house-

keeping or tissue-specific).

Together, these results led to the proposal that the functional

core subnetwork formed by the common interactions combined

with the tissue-specific regulatory interactions corresponds to the

topological center of the interactome. Interestingly, this particular

organization may be a hallmark of the metazoan interactome since

noticeably, the topologically central part of the yeast interactome

has been previously demonstrated to be rather enriched in

evolutionary conserved and essential proteins [29] mainly

dedicated to housekeeping functions [33].

Tissue-specific interactions involved in physiological functions

are found at the periphery of the interactome. Noticeably, this

links the observations that tissue-specific proteins are more likely to

be recent evolutionary innovations [34], that rapidly evolving

genes are expressed in a narrow range of tissues [35] and that

proteins having the higher potential to evolve are located at the

interactome periphery [36].

The functional organization of the human interactome

deciphered in this work recapitulates the integrative organization

of organs, from cells to organ, by following a gradient of functions

from center to periphery (Figure 5C). This reflects the fact that

tissues and organs first acquire their specificity from the

developmental and regulatory programs which build on common

molecular mechanisms. Tissues and organs then become fully

functional when physiological functions are established. Our

results suggest that the pace of these events may be encoded in

the organization of the interactome. Interestingly, this gradient is

reminiscent of two other gradients recently described in inter-

actomes: a gradient of evolvability suggested by the observation of

the preferential peripheral location of human proteins under

positive selection, and a gradient of cellular localization reflecting

that proteins located at the cellular periphery are also peripheral in

the network ([36] and data not shown). Gradients (such as of

functions, evolvability or cellular location) may therefore represent

a trend of protein-protein interaction network organization.

Materials and Methods

Protein-protein interaction datasets
A high confidence dataset of 27286 binary interactions

involving 9596 proteins was built by joining (i) 2325 human

Tissue-Specificity and Topology in the Interactome
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interactions manually extracted from the literature and (ii) 24961

binary interactions compiled in APID [20] (Table S1). Interactions

identified by at least one experimental method leading to the

detection of binary interactions (Table S5) were selected. A larger

dataset of lower confidence (comprising 58189 interactions

between 12531 proteins) was built by adding the 2325 manually

curated interactions to the complete set of human interactions

present in APID.

Expression data, proteome and interactome inferences
Clusters of expressed sequence tags (ESTs) from the UniGene

database (Homo sapiens release 214 - June 23rd , 2008) [21] were

used as source of gene expression data. For each cluster, a list of

tissues in which ESTs were expressed was created, independently

of their level of expression. After mapping their corresponding

gene names to protein names by parsing UniProt files, the

composition of 45 proteomes was inferred. Assuming that an

interaction present in the interaction dataset is possible in a given

tissue if both protein partners are expressed in this tissue, 22

tissular interactomes containing more than 10000 interactions

each were inferred (Table S1) and used for further studies.

Globally, 21010 interactions between 7293 proteins were found

possible in at least 1/22 tissues. They formed the Largest Possible

Interactome Network (LPIN).

Interaction Usage
For each protein a, the expression profile is encoded by a vector

ve(a) of 22 Boolean values where (1) represents the presence and (0)

the absence of protein a in each of the 22 tissues. Formally, we

define the interaction usage w(a,b) between protein a and protein b

as the scalar product of the expression vectors w(a,b) = ve(a).ve(b).

Intuitively, w(a,b) represents the number of tissues in which the

interaction between a and b is possible.

Functional Analyses, Heatmaps and Clusters
The functional enrichment/depletion of the LCIN was

determined by comparing the Gene Ontology [37] annotations

of the proteins involved in the LCIN to those involved in the LPIN

using the GOToolBox application [38], which uses an hyper-

geometric law corrected for multiple testing. All three ontologies

were tested (Table S4).

This functional analysis was extended to the other IU bins

(containing interactions with respect to the number of tissues in

which they are possible) to reveal enriched or depleted GO

Biological Process (BP) annotations in each bin. On average, 88%

of the proteins per bin are annotated. Only GO terms annotating

more than 10 proteins of the LPIN are considered in the analysis

(Table S6). As a result, a p-value(go,b) is computed for each

annotation go in each bin b. A global matrix M in which the lines

are the GO BP terms and the columns are the IU bins is built. The

matrix contains 1023 GO BP terms annotating the LPIN proteins.

For each GO annotation go and for each bin b, the matrix M[go,b]

contains 2log(p-value(go,b)) if annotation go is enriched in bin b and

log(p-value(go,b)) if it is depleted.

Heatmap visualization and further analyses were performed

using MeV [39]. A k-means clustering algorithm was applied and

the matrix was split into 15 clusters. The number of clusters was

chosen following a Figure Of Merit (FOM) analysis which

estimates the predictive power of a clustering algorithm [40].

Centrality analysis and k-core decomposition
The interactome can be formally represented by a graph

G = (V,E), where V is the set of vertices and E the set of edges. The

k-core decomposition of the graph [30], can be intuitively seen as a

peeling process. A subgraph H(C, E|C) induced by the set C(V is

a k-core or a core of order k if and only if Vv [ C : degreeH(v) §k,

and H is the maximum subgraph with this category. A vertex v has

a coreness c if it belongs to the c-core but not to the (c+1)-core. The

algorithm used to compute the coreness was extracted from [41].

To explore whether the 15 functional clusters tend to have a

clear behavior in terms of centrality, the enrichment or depletion

of these 1023 annotations was computed for proteins of coreness 1

to 9. As previously explained, the p-values were considered

negative if the annotation is under- and positive if the annotation is

over-represented. These centrality values were not used for the

clustering, but added subsequently.

Supporting Information

Figure S1 Common functions. Interaction usage heat-
maps and SimCity trees for cluster 9, 14 and 10.

(TIF)

Figure S2 Tissue-specific functions. Interaction usage
heatmaps and SimCity trees for cluster 1, 3 and 8.

(TIF)

Figure S3 Tissue-specific functions. Interaction usage
heatmaps and SimCity trees for cluster 11 and 12.

(TIF)

Figure S4 Central and common functions. K-core and
interaction usage heatmaps for cluster 4, 5, 6, 9 and 10.

(TIF)

Figure S5 Central and tissue-specific functions. K-core

and interaction usage heatmaps for cluster 1, 2, 3, 7 and 11.

(TIF)

Figure S6 Peripheral and tissue-specific functions. K-

core and interaction usage heatmaps for cluster 8, 12 and 15.

(TIF)

Table S1 Proteomes and Interactomes. (Sheet Proteins)
Composition of the 22 tissue-specific proteomes. For each protein,

a binary vector indicates if the protein is absent (0) or present (1) in

each tissue. The number of tissues within which the protein is

considered as present is reported in the last column (#T). (Sheet
Interactions) Composition of the 22 tissue-specific interactomes.

For each interaction, the first value indicates the interaction usage,

and then a binary vector indicates if the interaction is possible (1)

or not possible (0) in each tissue.

(XLS)

Table S2 Randomizations and Larger Interactome
(Sheet Randomizations) Observed vs. Randomized distribution

of the interaction usage. 9 randomizations were performed. For each

randomization, 22 proteomes respecting the sizes of the 22 observed

proteomes were selected randomly, thus leading to 22 random tissue-

specific interactomes. Then, the interaction usage of each interaction

was computed. On average, the number of interactions in the LCIN

is null in the randomizations (mean 0.1, standard deviation 0.3).

(Sheet Larger Interactome) High quality vs. larger human

interactome Interaction Usage distributions.

(XLS)

Table S3 Interactome Features.

(XLS)

Table S4 Functional Analyses of the LCIN using the
three ontologies of GO. Terms of the Biological Process sub-

ontology that are found over-represented (Sheet Enriched BP
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annotations) and depleted (Sheet Depleted BP annotations) among

the protein annotations composing the LCIN relatively to the

proteins composing the LPIN. Results are obtained with GOTool-

Box, using an hypergeometric law corrected for multiple testing

with the Benjamini & Hochberg correction. The terms whose

over/under-representation p-value is less than 1E-05 (in red/blue)

have been used to build the SimCT trees (Figure 3). The same

analyses have been performed for the two other sub-ontologies.

(XLS)

Table S5 List of the experimental techniques and their
PSI-MI considered as identifying binary interactions.
(XLS)

Table S6 Matrix. Matrix representing the enrichment or the

depletion of 1073 Biological Process (BP) annotations in different

interaction usage bins, using the LPIN as the reference dataset.

For each annotation, the column NB indicates the abundance of

its instances in the reference dataset. Enrichment is represented by

positive values: the greater the more enriched. Depletion is

represented by negative values: the lower the more depleted. An

help sheet is provided.

(XLS)

File S1 Choosing expression data to contextualize
interactome: ESTs vs. Microarrays.

(DOC)
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