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Microbial interactions with plant roots play an imperial role in tomato

plant growth and defense against the Rhizoctonia solani. This study

performed a field experiment with two antagonistic bacteria (Pseudomonas

and Bacillus) inoculated in healthy and Rhizoctonia solani treated soil in

tomato rhizosphere to understand the metabolic pattern and microbial

function during plant disease suppression. In the present study, we

assessed soil and microbial enzymes, bacterial and fungal cell forming

unit (CFU), and carbon utilization profiling through Bio-Eco plates of

rhizoplane samples. Antagonist bacteria and pathogen interaction significantly

(p < 0.05) influenced the bacterial count, soil enzymes (chitinase and

glucanase), and bacterial function (siderophore and chitinase production).

These results indicated that these variables had an imperial role in disease

suppression during plant development. Furthermore, the metabolic profiling

showed that carbon source utilization enhanced under fruit development

and ripening stages. These results suggested that carbon sources were

essential in plant/pathogen/antagonist interaction. Substrates like β-methyl-

D-glucoside, D-mannitol, D-galacturonic acid, N-acetyl-D-glucosamine, and

phenylethylamine strongly connect with the suppuration of root rot disease.
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These carbon sources may help to propagate a healthy microbial community

to reduce the pathogen invasion in the plant root system, and these carbon

sources can be stimulators of antagonists against pathogens in the future.

KEYWORDS

pseudomonas, bacillus, BIOLOG, community-level physiological profile, disease
incidence

Introduction

Soil is a reservoir of microbial activities that are driven
through numerous signaling molecules that helps them to
sustain in harsh environments (Haldar and Sengupta, 2015;
Jacoby et al., 2017). Rhizospheric microbes are the significant
players in nutrient cycling that play an essential role in plant
development (Bulgarelli et al., 2013; Francioli et al., 2016;
Müller et al., 2016). The plant rhizosphere contains beneficial
and pathogenic microbes competing for nutrients and space
(Raaijmakers et al., 2009; Adesemoye et al., 2009; Beans, 2017; Li
et al., 2021). Tomato root rot caused by sclerotia forming fungus
Rhizoctonia solani, is a highly destructive disease that severely
affects crop development and yield (Patil and Solanki, 2016b).
To control R. solani, chemical fungicides must be applied,
creating many environmental problems (Le Cointe et al., 2016).
In the pathogen-treated rhizosphere, many physicochemical
and biological processes are mechanized surrounding the plant
root through the microbes (Reva et al., 2004; Raaijmakers
et al., 2009; Mhlongo et al., 2018; Berendsen et al., 2018;
Pascale et al., 2020a; Tahat et al., 2020). Moreover, antagonistic
microbes’ application against soilborne plant pathogens is one
of the most numerous anthropogenic activities that reform
soil health and plant defense (Solanki et al., 2012b, 2014; Yin
et al., 2013; Abbas et al., 2019; Lahlali et al., 2022). The role
of the different carbon substrates in multitrophic interaction
(plant/antagonist/pathogen) needs to be studied in depth to
improve plant disease management techniques.

A wide range of natural bacterial antagonists are utilized as
biocontrol agents against seed and soilborne plant pathogens
(Patil and Solanki, 2016a; Solanki et al., 2019, 2020). Bacillus
and Pseudomonas genera are the most prevalent biological
agents (Solanki et al., 2014, 2015; Cao et al., 2018; Abbas et al.,
2019). Most bacterial antagonists create an obliging interaction
with plant roots that can modulate by the selective pressure
of changing environment (Bais et al., 2006; Falardeau et al.,
2013). For example, it is well known that pathogens influence
the production and diffusion of root exudates (Guo et al.,
2015; Hoysted et al., 2018; Pascale et al., 2020a; Li et al.,
2021). Interestingly, plant-pathogen associations are modulated
through native microbial communities during infestation and
resistance (Chiu et al., 2017; Stevens et al., 2021; Dubey

et al., 2022). Root exudates generally release carbohydrates,
carboxylic acids, amino acids, sugars, phenolics, proteins, and
allelochemicals (Moe, 2013; Guo et al., 2015; Olanrewaju et al.,
2019; Scavo et al., 2019). It indirectly regulates the controls
of the biotic and abiotic processes by shaping the microbial
communities that can metabolize the substrates and nutrients
(Vacheron et al., 2013; Antoniou et al., 2017; Bakker et al.,
2018; Lladó et al., 2018). Different sites of plant roots have been
characterized for releasing specific exudates, such as the sub-
apical zone, root-hair zone, and emerging areas of secondary
ramifications (Bais et al., 2006), and these areas play a vital role
in plant-plant and plant-microbes interaction (Vacheron et al.,
2013; Khashi et al., 2019). Exudates are a suitable source of
carbon (and possibly nitrogen) and energy for root-associated
microbes (Haldar and Sengupta, 2015; Sun et al., 2019; Canarini
et al., 2019). The microbial communities that metabolize these
carbon sources survive easily in the root zone (Compant et al.,
2010; Pascale et al., 2020b).

Subsequently, essential soil functions are crosslinked
with rhizospheric microbial activities such as iron chelation,
phosphate solubilization, nitrogen fixation, antagonism, and
bioremediation (Patil and Solanki, 2016a; Li et al., 2018).
To identify the metabolic potential of antagonistic microbes
through BIOLOG ECO plates that contain 31 various carbon
sources have been used (Di Bonito and Biagiotti, 2021; Németh
et al., 2021; Moreno et al., 2021; Petkova et al., 2022; Koner
et al., 2022). Nine of the 31 substrates of ECO plates are
known as components of exudates of plant roots (Insam, 1997).
The Community level physiological profiles (CLPP) approach
has often been used to assess the functional diversity that is
influenced by microbes or other environmental practices (Iliev
et al., 2021; Koner et al., 2021; Aleksova et al., 2021; Sneha
et al., 2021; Jacobs-Hoffman and Hills, 2021; Kumar et al., 2021;
Dubey et al., 2022).

The plant pathogenic fungi can infect plants at any
developmental stage, but the infection is particularly favored
when plants are weakened due to nutritional disorders in
response to climatic pressure (Divon and Fluhr, 2007; Velásquez
et al., 2018). Therefore, the present study focused on a
few essential questions that need to be answered: What
relationship is undergoing between native microbial responses
and antagonists? What are the significant metabolic linkages in
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pathogen inhibition by antagonists? What is the significance of
different kinds of substrates in disease inhibition? Therefore, we
hypothesize that rhizodeposition influences microbial activity
and diversity indices during plant development. To unlock the
above queries, two biocontrol agents, Pseudomonas fluorescens
MPF47 (Solanki et al., 2014) and Bacillus velezensis MB101
(heterotypic synonym of B. amyloliquefaciens) (Solanki et al.,
2012a, 2019) were used as an antagonist against R. solani
in this study and an filed experiment was performed. Next,
BIOLOG ECO plates have been used to assess community-level
physiological profiles of different treatments with and without
pathogen. Soil microbial dynamics and enzymes and bacterial
activities have been assessed to see the links between substrate
diversity and microbial activities.

Materials and methods

Antagonist inoculum preparation

Active culture (1 mL) of strains (Pseudomonas fluorescens
MPF47 and Bacillus velezensis MB101) was inoculated in a
500 mL flask containing 250 mL of nutrient broth (HiMedia,
India) on a rotary shaker (120 rpm) at 28 ± 2◦C for 24 h.
Bacterial cells were pelleted by centrifugation 6,000 × g for
10 min (Sigma 3K30 centrifuge, Germany) and suspended
(108 cells mL−1) in 100 mL sterile solution (2.0% polyvinyl
pyrrolidine (PVP), 1.5% polyethylene glycol (PEG) and
2.5% glycerol), mixed aseptically and stored in sterile glass
bottles for treatment.

Plant material and experiment setup

Surface sterilized tomato (Lycopersicon esculentum Mill.)
seeds of a native variety were grown in seedling trays that were
treated with three different kinds of treatments: 1) antagonist
MPF47 (1 × 108 cells ml) inoculum 10 ml kg−1, 2) antagonist
MB101 (1 × 108 cells ml) inoculum 10 ml kg−1 and 3)
sterilized liquid suspension without bacteria. All trays were
incubated for four weeks under a glasshouse (RH 80%, 12:12 h
28◦C day, and 22◦C night). After four weeks, seedlings were
again treated with the same bacterial formulations using the
root dipping method. All treated seedlings were air dried
and manually transplanted into the experimental field. The
soil had the following characters: clay 22.4%; bulk density
48.2 g/cm3; sand 57%; silt 24.1%; water holding capacity 67.28%;
pH 6.02; ECe 1.40dS m−1; organic matter 2.94%; organic
C 138.02 kg ha−1; total N 94 kg ha−1; P 10.21 kg ha−1;
Zn 0.510 mg kg−1; Mn 22.11 mg kg−1; Fe 15.21 mg kg−1;
Cu 1.8 mg kg−1; and S 9.1 mg kg−1 and microbial density
bacteria (7.10 log CFU g−1 soil), and fungus (5.50 log CFU
g−1 soil). R. solani culture was grown in pearl millet seeds

under aseptic conditions, according to Solanki et al. (2011).
Pathogen-sick plots were prepared before transplantation by
inoculating the pearl millet culture of R. solani, according to
Solanki et al. (2019). A healthy plot mixed with the autoclaved
pearl millet culture of R. solani served as control. Bacterial
antagonist-treated seedlings were transplanted in field soil by
the following treatments: (T1) Pseudomonas alone, (T2) Bacillus
alone, (T3) healthy control (autoclaved liquid suspension
without bacteria), (T4) antagonist Pseudomonas + R. solani,
(T5) Bacillus + R. solani, and (T6) R. solani alone with
autoclaved liquid suspension without bacteria. Each treatment
was replicated three times, and treatments were arranged in
field plots (4 × 4 m) comprising five rows per plot and five
plants per row in a completely randomized block design. All
the agronomic practices such as hand weeding and fertilizers
((120 kg ha−1 nitrogen (N), 50 kg ha−1 phosphorus (P2O5), and
50 kg ha−1 potash (K2O)) at the same rate for all the treatments
was followed.

Plant parameters

All treated tomato seedlings were removed from the
soil at different growth stages, and roots were washed with
sterile distilled water. The disease index (DI%) was calculated
according to Solanki et al. (2011). Twenty randomly selected
plants from each plot were carefully uprooted after 110 days of
transplanting and used for measurement of root length (cm),
plant height (cm), total plant biomass without fruits (g), and
fruit biomass (g).

Soil microbial activity and enzymes

Rhizosphere soil sampling was performed from each
treatment, and a composite soil sample was collected and
analyzed according to Figure 1. Samplings were conducted
on three occasions in accord to stages of the plant on a
different days after transplantation (DAT) at different growth
stages; Stage 1 = vegetative stage (25 DAT), stage 2 = fruit
development stage (60 DAT), stage 3 = fruit ripening and
harvesting (110 DAT). All soil samples were sieved to 2 mm
particle size and used immediately, as presented in Figure 1.
The total active microbial biomass was enumerated from soils
by the serial dilution method. Different agar media were
employed for the isolation and enumeration of bacterial and
fungal biomass. The population of bacteria was enumerated on
nutrient agar (HiMedia, India), and the total fungal biomass
population was isolated using potato dextrose agar (HiMedia,
India) supplemented with antibacterial antibiotics streptomycin
(500 µg mL−1) and chloramphenicol (25 µg mL−1). Moreover,
three soil enzymes were assessed: dehydrogenase, chitinase, and
β-1, 3 Glucanase. Soil dehydrogenase activity was evaluated
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by the method of Singh and Singh (2005). Soil chitinase
was determined using the modified method of Trotta et al.
(1996). β-1, 3 Glucanase was assayed by a modified protocol
using laminarin as a substrate, according to Lethbridge et al.
(1978). Isolated soil bacteria were purified and used for
the chitinase and siderophore production assays. Bacterial
siderophore production was detected using the chrome azurol
S (CAS) method according to Solanki et al. (2014), and chitinase
enzyme production was determined according to Solanki et al.
(2012b) and. All screening experiments were repeated three
times.

BIOLOG ECO plate assays and analysis

BIOLOG ECO plates (Biolog, Inc., Hayward, CA,
United States) were used to determine substrate utilization
by the microbial community from the rhizosphere soil of
the tomato plant. The soil from each composite sample was
homogenized, and 5 g was used for the analysis. Triplicate
5 g fresh samples were suspended in 45 mL sterile saline
solution (NaCl, 0.85%) with 3 mm glass beads (5 g) on a rotary
shaker at 220 rpm for 30 min at 25◦C. The suspensions were
allowed to settle for 5 min, and then 10-fold diluted samples
were prepared, and 125 µL aliquots of dilutions were added
to each plate well. The absorbance (590 nm) was read using
an automated BIOLOG Microplate TM Reader, and data
were collected using the MicroLog 4.01 software. The plates
were then sealed inside a plastic bag, incubated at 25◦C in
darkness, and read every 24 h for seven days. To analyze the
BIOLOG reader data, the absorption value of the control well
was subtracted from each substrate absorption value, while
substrates with negative values were considered non-oxidized.
The average well color development (AWCD), calculated as
the average optical density across all wells per plate, was used
to indicate general microbial activity (Garland and Mills, 1991;
Garland, 2006; Grzadziel et al., 2019). AWCD value at 120 h
was used to describe the difference in rhizoplane microbial
activities among the different treatments. AWCD = 6(C−R)/n
C-reading of the well OD; R-reading of the control well OD;
n-the number of substrates on an EcoPlateTM (31).

Statistical analysis

Microbial siderophore and chitinase data were represented
through a bar plot. Mean catabolic activity and mean of AWCD
were calculated from data of all three developmental stages.
Shannon, McIntosh, Simpson diversity indices, and evenness
were estimated using BIOLOGTM ECO plates and generated
box plot. Boxplots of the mean, standard deviation (SD) and
boxes include the interquartile range and the line inside the
box represents group median values. The whiskers bars indicate

the minimum and maximum values excluding outliers (circles).
The notch displays the 95% confidence interval around the
median. Principal coordinate analysis (PCoA) was performed
on the BIOLOGTM ECO plate data to characterize the microbial
response in different growth stages. A response heatmap was
generated by the TB tools (Chen et al., 2020). Moreover,
individual values of optical density (OD) were grouped into
six categories, namely, amines and amides, amino acids,
carboxylic and acetic acids, carbohydrates, acid derivatives of
carbohydrates, and polymers. BIOLOG data, along with values
concerning diversity parameters, soil parameters, and plant
parameters, were analyzed through a Two-way PERMANOVA
(Permutation N-9999), with treatments and time (growth
stages) as grouping variables of the healthy (-RS) and
pathogen-treated soil (+ RS). For additional multiple post hoc
comparisons, a Duncan’s Multiple Range Test (DMRT) was
used for ANOVA analysis by using IBM SPSS Statistics, version
25, IBM Corp., Armonk, NY, United States. Moreover, the
correlation analysis between the substrate and all plant and soil
parameters was performed using Past3 software. A correlation
heatmap was generated using TB tools.

Results

Plant growth, biomass, and disease
incidence

Treatment T1 (Pseudomonas) and T2 (Bacillus) enhanced
the root and shoot length up to 1.16-1.29 and 1.25-1.34 times
higher than healthy control (T3), respectively. However, in
pathogen-treated soil, Pseudomonas + RS (T4) and Bacillus + RS
(T5) increased root length by 2.36- 2.55 times and plant
shoot length by 2.05- 2.45 times as compared to pathogen
control (T6) (Supplementary Figure 1A). Bacillus-treated
plants showed higher plant dry biomass and fruit biomass in
healthy and pathogen-treated soil (Supplementary Figure 1B).
The symptoms of Rhizoctonia root rot appeared in stage 2
and stage 3 (Supplementary Figure 1C). The disease indices
estimated at stages 2 and 3 were significantly higher in R. solani
(T6) compared to both antagonists with pathogen (T4 and T5).
A significant disease reduction resulted in both antagonists over
the pathogen control (Supplementary Figure 1D).

Soil microbial activity and different
enzymes

The microbial count of rhizosphere soil represents the soil
biology, and total bacterial counts and bacterial CFU increased
significantly (P ≤ 0.05) in stage 2 in all treatments. Higher CFU
resulted in antagonist treatments (T1, T2, T4, and T5) over
the plant growth. Besides, different growth stages determined
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FIGURE 1

Schematic representation of the present study. CFU-Colony forming unit, CLPP- community-level physiological profiling.

the lower bacterial count resulting in the pathogen-treated
soil samples (Figure 2). Significant effects on bacterial CFU
were observed for antagonists (p = 0.001) and growth stage
(p < 0.001) and their interaction (p = 0.001) in healthy soil.
Similarly, pathogen-treated soil bacterial CFU were observed
for antagonists (p = 0.054) and growth stage (p < 0.001) and
their interaction (p = 0.002) (Table 1). Total fungal count
significantly (p < 0.05) impacted with the antagonist (T4 and
T5) in the pathogen-treated soil, and it was least affected in
the healthy soil treatments (T1, T2, and T3). However, Bacillus
(T2 and T5) treated plants reduced the fungal counts in the
healthy and pathogen-treated soil (Figure 2). Compared to
other treatments, a higher fungal population was recorded with
pathogen-treated (T6) and healthy controls (T3) (Figure 2). In
the case of soil enzymes, healthy soil treatments (T1, T2, and T3)
showed higher dehydrogenase activity than R. solani treated soil
samples (T4, T5, and T6) during plant growth. Both bacterial
antagonist samples have higher biological activity in the absence
of pathogen. Besides, soil chitinase activity was found to be
strong in pathogen-treated soil, and both antagonists treatments
(T4 and T5) samples showed higher chitinase activity in stages 1
and 3. For soil glucanases, higher activity was revealed in healthy
soil treatments compared to pathogen-treated soil (Figure 2).

Significant effects on the two enzymes chitinase and glucanase
were observed for antagonist treatments (p < 0.06) and growth
stage (p < 0.001) and their interaction (p < 0.01) in pathogen-
treated soil (Table 1).

Bacterial frequency in siderophore and
chitinase production

All treatments showed a differential pattern of siderophore-
producing bacteria in the healthy and R. solani treated soil
(Figure 3 and Table 1). A higher frequency of siderophore
bacteria was found in Pseudomonas + RS (T4) and only
Pseudomonas (T1), followed by only Bacillus (T2). The stage 3
soil samples showed a higher frequency among the three growth
stages. Moreover, a treatment-wise comparison revealed that
Pseudomonas + RS treated soil samples have a higher number
of siderophore-producing bacterial communities (Figure 3).
A differential pattern of chitinase activity was also revealed
among the treatments. Bacterial antagonists (T5 and T2) showed
higher chitinase-producing bacteria frequency in all growth
stages, especially in stage 3 (Figure 3). Results from a two-
way PERMANOVA showed significant (p < 0.01) interaction
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FIGURE 2

Impact of pathogen and antagonist treated soil on the microbial count and soil enzymes. Treatments: (T1) Pseudomonas alone, (T2) Bacillus
alone, (T3) healthy control (autoclaved liquid suspension without bacteria), (T4) antagonist Pseudomonas + R. solani, (T5) Bacillus + R. solani,
and (T6) R. solani alone with autoclaved liquid suspension without bacteria. Stage 1 (vegetative stage), Stage 2 (flowering stage), and Stage 3
(fruit ripening stage). Mean values (n = 3) in the same column followed by the same letter(s) are not significantly different at (P < 0.05) according
to the DMRT test.

of pathogen in siderophore and chitinase-producing bacteria
frequency (Table 1).

Community-level physiological profile

The AWCD, as a measure of the total microbial activity,
generally followed the different patterns with treatments. The

microbial activities tended to increase in the vegetative stage and
changed gradually. We recorded maximum AWCD response in
Bacillus (T2) and Pseudomonas + RS (T4) treatments in stage 1
and stage 3 (Supplementary Figure 2). The pathogen-treated
soil has lower AWCD responses as compared to healthy soil.
In case of CMD response, antagonistic bacteria show higher
activity (Supplementary Figure 2). The P-values for the AWCD
parameter presented in Table 1 showed that antagonists and
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TABLE 1 The P-values of PERMANOVA for soil parameters, microbial count, diversity indices, and different classes of AWCD rate in R. solani
infected and healthy soil.

Parameters Healthy soil (-RS) Pathogen-infected soil (+ RS)

T GS T × GS T GS T × GS

CFU Bacterial 0.001** 0.00*** 0.001** 0.054 0.00*** 0.002**

Fungal 0.566 0.321 0.898 0.210 0.051 0.762

Soil enzymes Dehydrogenase 0.118 0.00*** 0.017* 0.00*** 0.00*** 0.846

Chitinase 0.00*** 0.001** 0.113 0.024* 0.00*** 0.00***

Glucanase 0.012* 0.00*** 0.114 0.065 0.00*** 0.003**

Bacterial Siderophore (%) 0.001** 0.00*** 0.122 0.00*** 0.00*** 0.001**

Chitinase (%) 0.00*** 0.00*** 0.021* 0.00*** 0.00*** 0.008**

Metabolic responce AWCD (120 h) 0.003** 0.090 0.520 0.00*** 0.003** 0.012*

CMD 0.031* 0.00*** 0.366 0.00*** 0.024* 0.199

Diversity indices Shannon index 0.146 0.989 0.465 0.00*** 0.001** 0.00***

Simpson index 0.00*** 0.011* 0.069 0.003** 0.398 0.134

McIntosh index 0.003** 0.020* 0.823 0.00*** 0.018* 0.037*

Substrate richness 0.350 0.661 0.189 0.00*** 0.00*** 0.020*

Substrate evenness 0.292 0.946 0.694 0.001** 0.001** 0.00***

Substracte classes Amines/amides 0.018* 0.011* 0.100 0.026* 0.025* 0.089

Amino acids 0.132 0.020* 0.209 0.00*** 0.199 0.730

Carbohydrates 0.322 0.015* 0.036* 0.00*** 0.027* 0.040*

Acids derived from carbohydrate 0.218 0.002** 0.059 0.084 0.166 0.138

Carboxylic & acetic acids 0.057 0.285 0.010** 0.00*** 0.001** 0.415

Polymers 0.108 0.664 0.608 0.001** 0.241 0.072

Average well color development (AWCD), community metabolic diversity (CMD), Rhizoctonia solani (RS), Colony forming unit (CFU); Bacterial treatments (T): Pseudomonas and
Bacillus; Growth stages (GS): different growth stages of tomato; Significance level *p < 0.05, **p < 0.01 and ***p < 0.001.

pathogen treatment significantly (p = 0.003) affect the microbial
metabolic activity. The AWCD values showed that pathogen-
treated soil significantly changed during the plant growth than
the healthy soil. In the case of CMD, no significant interaction
was found between treatments and time (Table 1). Microbial
responses of antagonists showed stability with pathogen-treated
soil alone up to stage 3. PCA soil showed that Psudomonase (T1)
grouped well in stage 2 and stage 3 but detached in stage 1 in
healthy soil (Supplementary Figure 3A). Bacillus (T2) bacteria
showed grouping in stage 1 and stage 3 in healthy soil. However,
control (T3) samples grouped well in stage 2 and stage 3. In the
case of R. solani infected soil, Pseudomonas (T4) and Bacillus
(T5) showed closeness with each other in all three growth stages,
and only Rhizoctonia control (T6) separated from others in stage
1 and 3 (Supplementary Figure 3B).

Additionally, the tendency of different carbon substrates
between PC1 and PC2 was separated in pathogen-treated soil
compared to healthy soil (Supplementary Figure 3C). In the
case of healthy soil, five carbon substrates, such as C10, C16,
C17, C25, and C30, showed separation from other carbon
substrates (Supplementary Figure 3C). In the pathogen-treated
soil case, five carbon substrates, such as C5, C7, C8, C10, C13,
C15, C27, and C31, were separated from other carbon substrates
(Supplementary Figure 3D). The microbial response is also

represented through a circular cluster tree based on the substrate
response of all treatments in different growth stages, revealing
the impact of pathogen infestation on the substrate grouping
and treatment clustering (Figure 4). Pseudomonas and Bacillus
treatment grouped well, while R. solani infested soil samples
separated and showed low substrate utilization response in
different growth stages (Figure 4). Cluster analysis revealed that
pathogen and antagonist bacteria interaction could considerably
affect the community-level physiological profile.

Shannon, subtract evenness, Simpson, and the McIntosh
diversity indices showed different catabolic diversity with both
antagonistic bacteria during the plant growth (Supplementary
Figure 4). Moreover, the highest values for all diversity
parameters were recorded during stage 2 and stage 3 with all
treatments (Supplementary Figure 4). The interactive effect
of the independent variables for most parameters proved
non-significant in healthy soil but significant with pathogen-
treated soil (Table 1). Except for the Shannon diversity index,
all treatments without pathogen had higher diversity indices
than pathogen-treated soil (Table 1). Multiple comparisons
detected a significantly higher Simpson diversity index in
stage 3 with or without pathogen (Supplementary Figure 4).
Likewise, the McIntosh diversity index showed a significant
interaction between treatments and time. Pathogen and
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FIGURE 3

Microbial siderophore and chitinase frequency of bacteria
isolated from different treatments. Mean values (n = 3) in the
same column followed by the same letter(s) are not significantly
different at (P < 0.05) according to the DMRT test. Treatment
details as Figure 2.

antagonist application induced the catabolic diversity through
the substrate richness and evenness (Supplementary Figure 4).
Maximum substrate richness found 31 carbon and minimum 28
substrates in the treatments.

Next, the microbial activity response of all substrates is
categorized into six classes based on the AWCD values of all
31 substrates. Bacillus (T4) utilized the maximum amount of
substrate amines in stage 1 and stage 2 in pathogen-treated
soil, and Pseudomonas (T1) was used in stage 2 in healthy
soil (Figure 5). The maximum rate of substrate Amino acids
used by Pseudomonas (T1) and Bacillus (T2) in stage 2 in
healthy soil. Bacillus (T4) utilized maximum concentration of
substrate carbohydrate and Acids derived from carbohydrates
in stage 2 in pathogen-treated soil. In the case of Carboxylic
& acetic acids, a higher utilization rate resulted in Bacillus
(T2) in the healthy soil. Bacillus (T4) showed a higher rate of
polymer utilization in stage 2 and stage 3, and Bacillus (T2) was
utilized in stage 1 (Figure 5). Significant effects on carbohydrate
utilization were observed for antagonist treatments (p < 0.001)
and growth stage (p < 0.05) and their interaction (p < 0.05)
in pathogen-treated soil (Table 1). Two-way PERMANOVA
results of all 31 substrates showed a significant effect on
the microbial activity in the pathogen-treated soil samples

(Table 2). In the case of carbohydrates, we observed substantial
impacts on D-cellobiose, β-methyl-D-glucoside, D-xylose, and
D-mannitol utilization in antagonist treatments (p < 0.05)
and growth stage (p < 0.06) and their interaction (p < 0.05)
in pathogen-treated soil (Table 2). A significant (p < 0.05)
interactive effect of D-cellobiose (carbohydrate), D-malic acid
(carboxylic & acetic acids), and L-phenylalanine (amino acids)
also resulted in healthy soil samples. Moreover, substrates like
D-galacturonic acid (carboxylic & acetic acids), L-asparagine
(Amino acids), phenylethylamine (amines/amides), and
putrescine (amines/amides) showed a significant interaction
with treatments and plant growth with the pathogens (Table 2).

Correlation between soil and plant
parameters with the substrates

The correlation between plant and soil parameters and
carbon substrates is represented in Figure 6, and the p-value
is indicated in supplementary Table 1. Among the substrates,
Alpha-D-lactose, D-glucosaminic acid, and itaconic acid
negatively (p < 0.05) correlated with the bacterial CFU.
A significant (p < 0.1) negative correlation of fungal CFU
resulted with i-erythritol and L-serine, and D-malic acid
showed a positive correlation (p < 0.01) with fungal CFU. Soil
Dehydrogenase showed a positive correlation (p < 0.05) with
Tween 80 and D-malic acid. D-galacturonic acid was positively
linked with soil chitinase, and L-arginine correlated negatively.
Likewise, soil glucanase negatively correlated with the substrates
like Alpha-D-lactose, Beta-methyl-D-glucoside, and 2-Hydroxy
benzoic acid. However, D-malic acid is positively associated
with soil glucanase. In the case of bacterial siderophore, Tween
40 and D-galacturonic acid are associated positively, and
Alpha-D-lactose was associated negatively. Bacterial chitinase
is associated positively with D-cellobiose and associated
negatively with Beta-methyl-D-glucoside. Interestingly,
Rhizoctonia disease incidence negatively correlated (p < 0.05)
with different substrates such as Gamma-hydroxybutyric
acid, Alpha-D-lactose, Beta-methyl-D-glucoside, D-xylose,
D-mannitol, N-acetyl-D-glucosamine, D-L-alpha-glycerol
phosphate, itaconic acid, D-malic acid, L-asparagine, and
putrescine. However, plant parameters correlated positively
with different substrates like plant biomass, fruit biomass, and
root length with L-phenylalanine. Fruit biomass and root length
also positively correlated with the D-xylose (Figure 6 and
Supplementary Table 1).

Discussion

The rhizoplane is generally considered a hub of microbial
activities that are driven by plant exudates and soil nutrients
(Moe, 2013; Jones et al., 2018; Olanrewaju et al., 2019;
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FIGURE 4

Circular heat map and hierarchical cluster analysis based on the average well color development (AWCD) at 120 h of soil microbial communities
under pathogen and antagonist treated soil. Higher to low AWCD response indicated via red to blue gradient. Treatment details as Figure 2.

Zhao et al., 2021). The major group of plant rhizospheric
bacteria, known as plant growth-promoting rhizobacteria
(PGPR), performed direct or indirect events to support
plant growth through rhizosphere or endosphere colonization
(Mhlongo et al., 2018; Shah et al., 2021; Vandana et al., 2021).
The genus Pseudomonas and Bacillus are considered important
PGPR candidates (Vocciante et al., 2022). They can aggressively
colonize the rhizoplane and participate in many activities
like plant growth promotion, stress tolerance, biocontrol and
mineral mobilization, etc. (Solanki et al., 2012a, 2014; Wang
et al., 2020). The antagonistic bacteria (Pseudomonas and
Bacillus) used in the present study significantly enhanced the
plant growth in healthy and R. solani-treated soil (Solanki
et al., 2012a, 2014). Soil and bacterial enzymatic activities
played an essential role in the biocontrol of R. solani (Solanki
et al., 2012b; Berendsen et al., 2018; Wu et al., 2019). Soil

enzymes such as dehydrogenase, chitinase, and glucanase are
all hydrolytic enzymes involved in the hydrolysis and lysis of
complex molecules and improves the plant systemic defense
(Gurung et al., 2013; Shafi et al., 2017; Wu et al., 2019; Prasad
and Raghuwanshi, 2022).

Soil dehydrogenase enzyme is used as an indicator of soil
biological activity that involves the nutrients transformation
between microbes and plants (Grzadziel et al., 2018; Kaur and
Kaur, 2021). Chitinase and glucanase enzymes are involved
in the degradation of fungal cell walls (Adams, 2004), and
many hydrolytic bacteria play an essential role in disease
management (Zachow et al., 2011). In the present study, the
higher enzyme activity improved by applying antagonists in
the pathogen-treated soil directly correlated with the disease
reduction. The application of both antagonistic microbes
influenced the microbial count as determined through the plate
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count method. Yin et al. (2021) reported that selected soil
shaped the beneficial microbial communities that reduced plant
root diseases and enhanced crop productivity. Specific bacterial
communities played a significant role in the suppuration of
Rhizoctonia bare patch and root rot disease of wheat (Yin
et al., 2013). In the present study, the populations of bacteria
and fungi in the rhizoplane soils dramatically increased after
stage 1 in antagonist treatments compared to control soil
samples. Conversely, fungal populations in healthy and infected
soil were markedly lower in antagonist bacteria-treated soil.
Bacterial densities in Pseudomonas and Bacillus treated soil
were dramatically higher than those of healthy and infected
control. These results demonstrate that antagonistic bacteria
can significantly alter microbial community structure via

propagation around the plant root zone. Zachow et al. (2011)
also reported that higher numbers of bacterial groups inhibit
the growth of R. solani in soil. Of these, only the bacterial CFU
showed significant interaction in the biocontrol of R. solani,
but the differences in fungi populations are more related to the
original soil type. Based on AWCD results, the disease incidence
of tomato root rot showed a negative relationship with the
many substrates. It indicates that microbial substrates play an
essential role in pathogen suppression. A significant negative
link between antagonistic bacteria application and interaction
of pathogen was observed in the study that showed the potential
of antagonistic bacteria to reduce disease incidence. Several
PGPR possesses antagonistic properties toward soilborne fungi,
including R. solani (Yin et al., 2013, 2021; Solanki et al., 2014;

TABLE 2 The P-values of PERMANOVA of carbon substrates under healthy and R. solani infected soil during the plant development.

Carbon sources Substrate classes Healthy soil (-RS) Pathogen-infected soil (+ RS)

T GS T × GS T GS T × GS

Pyruvic acid methyl ester Carbohydrate 0.589 0.156 0.006** 0.110 0.071 0.006**

Tween 40 Polymers 0.00*** 0.003** 0.620 0.031* 0.084 0.689

Tween 80 Polymers 0.199 0.006** 0.701 0.805 0.189 0.396

Alpha-cyclodextrin Polymers 0.037 0.931 0.182 0.134 0.781 0.515

Glycogen Polymers 0.133 0.974 0.217 0.018* 0.027* 0.114

D-cellobiose Carbohydrates 0.015* 0.007** 0.024* 0.040* 0.053 0.007**

α-D-lactose Carbohydrates 0.424 0.117 0.595 0.454 0.252 0.114

β-methyl-D-glucoside Carbohydrates 0.654 0.871 0.034 0.00*** 0.00*** 0.001**

D-xylose Carbohydrates 0.006** 0.440 0.028* 0.00*** 0.012* 0.032*

i-erythritol Carbohydrates 0.691 0.864 0.076 0.041* 0.234 0.873

D-mannitol Carbohydrates 0.833 0.146 0.558 0.00*** 0.021* 0.00***

N-Acetyl-D-glucosamine Carbohydrates 0.039* 0.201 0.002** 0.00*** 0.505 0.040*

D-glucosaminic acid Acids derived from carbohydrate 0.355 0.557 0.394 0.056 0.018* 0.701

Glucose-1-phosphate Carbohydrate 0.172 0.00*** 0.021∗ 0.451 0.223 0.004**

D,L-α-glycerol phosphate Carbohydrate 0.038* 0.535 0.013* 0.028* 0.385 0.625

D-galactonic acid-gamma-lactone Acids derived from carbohydrate 0.183 0.466 0.266 0.002** 0.435 0.413

D-galacturonic acid Carboxylic & acetic acids 0.353 0.185 0.774 0.001** 0.010* 0.00***

2-Hydroxy benzoic acid Carboxylic & acetic acids 0.668 0.001** 0.061 0.190 0.018* 0.084

4-Hydroxy benzoic acid Carboxylic & acetic acids 0.828 0.597 0.080 0.268 0.069 0.212

γ-hydroxybutyric acid Carboxylic & acetic acids 0.005** 0.728 0.008** 0.001** 0.055 0.126

Itaconic acid Carboxylic & acetic acids 0.459 0.723 0.064 0.016* 0.811 0.456

α-ketobutyric acid Carboxylic & acetic acids 0.148 0.306 0.097 0.037* 0.076 0.151

D-malic acid Carboxylic & acetic acids 0.001** 0.00*** 0.019** 0.00*** 0.00*** 0.751

L-arginine Amino acids 0.578 0.024* 0.071* 0.356 0.130 0.124

L-asparagine Amino acids 0.676 0.047* 0.295 0.072 0.015* 0.072

L-phenylalanine Amino acids 0.012* 0.00*** 0.025* 0.537 0.497 0.767

L-serine Amino acids 0.816 0.061 0.008** 0.046* 0.172 0.054

L-threonine Amino acids 0.294 0.611 0.050 0.047* 0.226 0.933

Glycyl-L-glutamic acid Amino acids 0.191 0.337 0.784 0.118 0.623 0.172

Phenylethylamine Amines/amides 0.164 0.326 0.738 0.048* 0.067 0.025*

Putrescine Amines/amides 0.418 0.410 0.294 0.004** 0.033* 0.025*

Bacterial treatments (T): Pseudomonas and Bacillus. Growth stages (GS): different growth stages of tomato.
*p < 0.05, **p < 0.01 and ***p < 0.001.
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FIGURE 5

Community-level physiological profiles (CLPP) of pathogen and antagonist treated soil samples. Substrates were classified as amines/amides,
amino acids, carbohydrates, Acids derived from carbohydrates (ADC), Carboxylic & acetic acids (CAA), and polymers. Mean values (n = 3) in the
same column followed by the same letter(s) are not significantly different at (P < 0.05) according to the DMRT test. Treatment details as Figure 2.

Araujo et al., 2019). These results agree with previous studies
that have shown that applications of biocontrol agents with
plants positively impact soil microbial communities (Araujo
et al., 2019; Huang et al., 2021). These results suggested
that the application of Bacillus strains reduced the R. solani
population in the soil with antifungal activity, and this action
also reduced the other fungal population. Both antagonistic
bacteria properly modulate the soil enzyme activity levels and
effectively enhance the rhizosphere soil environment, enhancing
the enzyme activities by inducing siderophore and chitinase-
producing bacteria that help to improve nutrient absorption
from the soil that support directly to disease resistance of the
plants.

In contrast, the microbial population actively suppresses
R. solani by competition of carbon substrate or space in
the rhizosphere. The CLPP results indicated that during
stage 1, at the first sampling, the microbial community
response did not vary significantly in the rhizospheric soil
samples. The root zone is a dynamic environment that
provides nutrients like root exudates and space to shape
microbial communities (Haichar et al., 2008; Edwards et al.,
2015). Rhizoplane contains large numbers of diverse types
of bacteria and fungi (Van Der Heijden and Schlaeppi,

2015). In the current study, antagonistic treated soil strongly
affected the microbial diversity and function in healthy and
infected soil, especially in the fruit development stage. The
diversity indices of the pathogen-treated soil with antagonistic
bacteria were higher than in healthy soil. Additionally, disease
incidence was negatively related to all the diversity indexes
and different carbon substrates, and plant biomass positively
correlated with D-xylose and L-phenylalanine. These results
indicated that the microbial communities in the pathogen-
treated soil might be more robust and capable of handling
competition in the presence of R. solani. Plants may stabilize
the rhizoplane microbial community by creating a complex
ecological system under the pathogen-treated soil. Compared
to the pathogen-treated soil, the healthy soil exhibited the
lowest level of microbial activity in stage 1 (vegetative), which
then stabilized in stage 2 (flowering) and stage 3 (fruiting
stage). The pathogen inoculations with antagonists treatment
have dissimilarly shown an effect on the microbial activities.
The microbial activity of the rhizoplane in the pathogen-
treated soil was significantly higher than in healthy soil due
to the substrate competition effect. These results allied with
similar studies that concluded the plant stimulates the beneficial
microbiome to reduce pathogen invasion and improve plant
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FIGURE 6

Correlation heatmap between soil and plant parameters and carbon substrates under pathogen and antagonist treated soil. Positive correlation
indicated via red and negative via blue color.

defense (Chiu et al., 2017; McLaren and Callahan, 2020). The
current study indicates that antagonist microbes influenced
substrate utilization strongly in stage 3 (fruit development
stage) in healthy soil. In the case of the pathogen-treated land,
growth stages-based fluctuations have been observed with soil
enzymes and microbial function as well as substrate diversity
indices. Correlation results provide the significance of different
substrates in the biocontrol of pathogens. Plant, soil, and CLPP
parameter provide insight into the role of carbon substrates in
pathogen suppuration during plant growth. The carboxylic acid
that significantly contributed to the control of R. solani was
pyruvic acid methyl ester, an intermediate of the citric acid cycle
(Frolkis et al., 2010).

Carbohydrates that had a significant interaction with the
biocontrol of R. solani were β-methyl-D-glucoside, D-mannitol,
and N-acetyl-D-glucosamine. These carbohydrates played an
essential role in microbial growth in the plant rhizosphere
(Adams et al., 2017; Weng et al., 2022). N-acetyl-D-glucosamine
is a significant component of R. solani call wall (Benyagoub et al.,
1996). D-galacturonic acid (carboxylic & acetic acids) that had a
significant interactive effect in biocontrol is also known as the
backbone of plants’ mechanical strength (Hongo et al., 2012).
L-asparagine (amino acids) and amines/amides (phenylalanine
and putrescine) are the essential nutrients for microbial growth
in the plant rhizosphere (Haichar et al., 2008; Adams et al., 2017;
Weng et al., 2022).
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In conclusion, carbohydrates, carboxylic & acetic acids,
amino acids, and amines/amides are the major key player
in rhizospheric biology in the presence of the pathogen. It
showed a discernible variation in the rhizoplane communities’
function with pathogen-treated and healthy soil. A significant
shift of microbial function protects the plant from the pathogen
in different growth stages, and microbial substrate utilization
pattern is induced in the fruiting and ripening stage with
antagonists. Current study results answered that the substrate-
based mechanism study of pathogenic and healthy soil might
generate meaningful information that can help to shape or
modify the microbial community to improve the plant disease
management system. However, an in-depth analysis is needed
in the future to understand microbial association in root
pathogenesis, especially microbial transformation, recruitment,
and complex functional mechanism in microbes-microbes
interaction. It can be concluded that the BIOLOG based
EcoPlate method resulted am useful tool to study the variability
of the potential antagonist and pathogen, as significant variation
have been obtained. Additionally, the results obtained from the
EcoPlate analysis correlate with the pathogen reduction and
plant growth stimulation that signifies the current study and
this method can be an excellent tools for the study of pathogen
antagonist, plant-microbes and other interactive filed that have
substrate played the important role.
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