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We apply an extended contraction principle and superexponential con-
vergence in probability to show that a functional large deviation principle
for a sequence of stochastic processes implies a corresponding functional
large deviation principle for an associated sequence of first-passage-time
or inverse processes. Large deviation principles are established for both
inverse processes and centered inverse processes, based on corresponding
results for the original process. We apply these results to obtain functional
large deviation principles for renewal processes and superpositions of in-
dependent renewal processes.

1. Introduction. In this paper we investigate how a (functional) large
deviation principle (LDP) for a sequence of stochastic processes can be used to
deduce a corresponding (functional) LDP for an associated sequence of first-
passage-time or inverse processes. Given a real-valued stochastic process X ≡
�X�t�; t ≥ 0� with sample paths that are unbounded above and satisfy X�0� ≥
0, the associated inverse process is defined by

X−1�t� ≡ inf�s > 0x X�s� > t�; t ≥ 0:(1.1)

(We use ≡ to denote a definition.)
Previous papers [6, 17, 25, 27, 28] have shown how convergence in dis-

tribution in the function space D ≡ D�0;∞� with one of the Skorohod [22]
topologies of �Xn; n ≥ 1�, where Xn ≡ �Xn�t�; t ≥ 0�, is related to that of
�X−1

n ; n ≥ 1�. Those papers also show how convergence in distribution of the
sequences of centered processes �cn�Xn−e�; n ≥ 1� and �cn�e−X−1

n �; n ≥ 1�
are related, where cn → ∞ as n → ∞ and e is the identity function; that is,
e�t� = t; t ≥ 0.

Our purpose here is to show that these results have fairly direct analogs
in the large deviations context, with the contraction principle playing the role
of the continuous mapping theorem and an extended contraction principle in
[13] and [18], Section 2 (also see [2] and [24]), playing the role of extensions
of the continuous mapping theorem in Theorem 5.5 of [1] and on page 68 of
[28]. The general theme of relating LDP’s to weak convergence is discussed by
Puhalskii [13–16, 18, 19]. This paper extends [3] and [18]. Glynn and Whitt
[3] established some corresponding relations between one-dimensional LDP’s
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for inverse processes. Section 3 of [18] dealt with functional LDP’s for inverse
processes for the weak topology and established functional LDP’s for renewal
processes. This paper corrects functional LDP’s for inverse processes corre-
sponding to Theorems 3.2 and 6.1 here that had been given in a preliminary
draft of [3].

Here is how the present paper is organized. In Section 2 we discuss func-
tion space topologies and restrictions on the limit functions under which the
inverse map (1.1) is continuous. In Section 3 we present LDP’s based directly
on these continuity properties. In Section 4 we establish preliminary results
about superexponential convergence in probability, which plays the role with
LDP’s that ordinary convergence in probability plays with weak convergence,
as in Theorem 4.1 of [1]. In Section 5 we use the results about superexpo-
nential convergence in probability to obtain LDP’s for centered first-passage-
time processes. In Sections 6 and 7 we apply these results to obtain LDP’s
for renewal processes and superpositions of renewal processes. The LDP’s for
centered processes are established in a triangular array setting.

The results in this paper are applied in [21]. There functional LDP’s are es-
tablished for waiting times and departure times in single-server queues with
unlimited waiting space. (The results here and in [21] are briefly summa-
rized in [20].) Just as for the heavy-traffic diffusion limits in [5], the results
for inverse processes help establish large deviation principles for processes
stemming from the basic network operations of superposition, splitting and
departure. We illustrate this phenomenon here by our treatment of superpo-
sition processes. More generally, the large deviation principles are important
for determining the probabilities of rare events in the queueing model, such as
hitting times of high levels. The large deviation principles also are intimately
connected to the asymptotics of steady-state tail probabilities in the queueing
model; for example, see [4] and Section 6 of [18].

We close this introduction by giving an illustrative application. Suppose
that �N�t�; t ≥ 0� is a counting process such that t−1N�t� → c > 0 as
t → ∞, and we want to approximate the probability P�N�t� ≥ at, N�2t� ≤
�a+ b�t� for large t, where a > c > b. Thus we are considering the probability
that N has unusually large values in the interval �0; t� and unusually small
values in the interval �t;2t�. By the methods here, it may be possible to show
that ��n−1N�nt�; t ≥ 0�, n ≥ 1� obeys an LDP in function space with rate
function

I�x� =
∫ ∞

0
λ�ẋ�t��dt

for absolutely continuous x with x�0� = 0 and I�x� = ∞ otherwise, where λ is
a (nonnegative convex) “local” rate function on R with λ�c� = 0. Then we may
apply the contraction principle with this LDP to deduce that

lim sup
t→∞

t−1 logP�t−1N�t� ≥ a; t−1N�2t� ≤ a+ b� ≤ −�λ�a� + λ�b��



364 A. A. PUHALSKII AND W. WHITT

and

lim inf
t→∞

t−1 logP�t−1N�t� > a; t−1N�2t� < a+ b� ≥ −�λ�a� + λ�b��;

which supports the rough approximation

P�t−1N�t� ≥ a; t−1N�2t� ≤ a+ b� ≈ exp�−t�λ�a� + λ�b���
for large t.

2. Functions and topologies on D and its subsets. This section
largely follows Section 7 of [28], but there will be a few changes. In par-
ticular, there will be a correction for treating the inverse function with the
M1 topology. (This correction is relevant for convergence in distribution as
well as for LDP’s.) Let D be the space of all right-continuous real-valued
functions x ≡ �x�t�; t ≥ 0� on the nonnegative half line �0;∞� with left
limits everywhere in �0;∞�. Let E be the subset of functions x in D that are
unbounded above and satisfy x�0� ≥ 0. Let D↑ be the subset of nondecreasing
functions in D and let E↑ = E ∩D↑.

We are primarily interested in the inverse function, defined for any x ∈ E
by (1.1); there x is a sample path of X. Also define the supremum function for
any x ∈ D by

x↑�t� ≡ sup�x�s�x 0 ≤ s ≤ t�; t ≥ 0:(2.1)

Obviously, if x ∈ E, then x−1 ∈ E↑ and x↑ ∈ E↑.
We consider the Skorohod [22] J1 and M1 topologies on D and a minor

modification of the M1 topology denoted by M′1. For these topologies, D is
metrizable as a separable metric space. Let D have the Borel σ-field induced
by its topology. For the topologies we consider, the Borel σ-fields coincide with
the usual Kolmogorov σ-field generated by the finite-dimensional projection
maps. The J1 topology is quite familiar; it is as in [1], [7], [28]. Recall that
the M1 topology on D is defined in terms of the completed graph

0�x� ≡
{
�u; t� ∈ R×R+\�0�x u ∈ �x�t−� ∧ x�t�; x�t−� ∨ x�t��

}

∪ ��x�0�;0��;
(2.2)

where x�t−� denotes the left limit of x at t; ∧ denotes the minimum and ∨
denotes the maximum; see [12], [22], [27], [28]. We will call a pair of continuous
functions �u; t� ≡ ��u�s�; t�s��; s ≥ 0� such that t�s� is nondecreasing with
t�0� = 0 a parameterization of 0�x� if 0�x� = ∪��u�s�; t�s��x s ≥ 0�. A sequence
�xn; n ≥ 1� in D converges to x in D�M1� if there exist parameterizations
�un; tn� of xn, n ≥ 1, and �u; t� of x such that

sup
s≤T
��un�s� − u�s�� + �tn�s� − t�s��� → 0 as n→∞(2.3)

for all T > 0.
What we would like is for the inverse function in (1.1) to be continuous on

E, but we must impose constraints when we work with the Skorohod [22] J1
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and M1 topologies with domain extended from �0;1� to �0;∞�. We have the
following result.

Lemma 2.1. (a) The supremum function is continuous in the J1 and M1
topologies. (b) The inverse function in (1.1) is measurable on E, is continuous
in the M1 topology at those x for which x−1�0� = 0, and is continuous in the
J1 topology at each strictly increasing x.

Part (a) is in Section 6 of [28]. The J1 result in part (b) and the need for the
J1 condition are given on page 82 of [28]. However, theM1 condition is missing
in [27] and Theorem 7.1 of [28]. To see that the M1 condition is needed, let
xn�t� = t/n, 0 ≤ t < 1, and xn�t� = t − 1, t ≥ 1. Clearly xn → x �M1� where
x�t� = 0, 0 ≤ t < 1 and x�t� = t− 1, t ≥ 1. However, x−1

n �0� = 0 6→ x−1�0� = 1
as n→∞, so that x−1

n 6→ x−1 �M1� as n→∞.
With the M1 condition added, the M1 continuity proof is as in [27]. We look

at the inverse as the composition of the inverse and supremum maps. Hence, it
suffices to consider the inverse map on E↑. Continuity is established by noting
that, given the M1 condition, each parameterization �u; t� of x can serve as a
parametric representation of x−1 when the roles of u and t are switched.

Another approach to the problem of the continuity of the inverse mapping
onD is to change the topology instead of adding the extra condition. In [18] the
continuity for the weak topology was proved. Here we use a weaker topology,
which we call M′1 and which is defined in the same way as M1, except that
we change 0�x� to

0′�x� ≡ ��u; t� ∈ R×R+x u ∈ �x�t−� ∧ x�t�; x�t−� ∨ x�t���;(2.4)

where x�0−� = 0. Stated another way, 0′�x� is the extended graph 0�x� com-
plemented by adding the segment �0; x�0�� if x�0� ≥ 0 or �x�0�;0� if x�0� ≤ 0.
We say that xn → x in D�M′1� if (2.3) holds for some parameterizations of
0′�xn� and 0′�x�. More rigorously, D�M′1� is a metric space with metric d′ de-
fined as follows. If x ≡ �x�t�; t ≥ 0� and y ≡ �y�t�; t ≥ 0� are elements of D,
let

d′k�x;y� ≡ inf
{
sup
s≤k
��u�s�gk�t�p�� − v�s�gk�r�s���

+ �t�s�gk�t�s�� − r�s�gk�t�s����
}
;

(2.5)

where gk�t� equals 1 for t less than k, equals 0 for t greater than k + 1 and
is a linear interpolation between k and k + 1, and �u�s�; t�s�; s ≥ 0� and
�v�s�; r�s�; s ≥ 0� are parameterizations of x and y, respectively, and the
infimum is taken over all the parameterizations. Then

d′�x;y� ≡
∞∑
k=1

d′k�x;y� ∧ 1
2k

:(2.6)

metrizes M′1. It is not difficult to show that �D;d′� is a separable metric
space and d′ induces the Kolmogorov σ-field. In addition, the M1 topology is
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stronger than the M′1 topology; that is, overall the topologies are ordered by
J1 → M1 → M′1. Convergence xn → x is equivalent for all three topologies
at continuous x with x�0� = 0. Moreover, on E↑ with the M′1 topology xn→ x
is equivalent to pointwise convergence xn�t� → x�t� at all continuity points
except possibly for t = 0. The following is the key lemma.

Lemma 2.2. The supremum function in (2.1) on D and the inverse function
in (1.1) on E are continuous in the M′1 topology.

Proof. The argument for the supremum function is straightforward. The
claim for the inverse function follows since if �u; t� is a 0′-parameterization of
x ∈ E↑, then �t; u� is a 0′-parameterization of x−1. 2

We will need another basic lemma. Let e be the identity function; e�t� = t
for t ≥ 0. Let c be any real number.

Lemma 2.3. If x ∈ E↑, then

d′�c�x− e�; c�e− x−1�� ≤ d′�x; e�:

Proof. For any k and ε > 0, let �u�s�; t�s�; s > 0� and �t′�s�; t′�s�; s ≥ 0�
be 0′-parameterizations of x and e, respectively, so that

sup
s≤k
��u�s� − t′�s�� + �t�s� − t′�s��� ≤ d′k�x; e� + ε:

Note that �c�u�s� − t�s��; t�s�; s ≥ 0� is a 0′-parameterization of c�x − e�.
Moreover, since x ∈ E↑, �c�u�s� − t�s��; u�s�; s ≥ 0� is a 0′-parameterization
of c�e− x−1�. Using these parameterizations, we see that, for any c,

d′k�c�x− e�; c�e− x−1�� ≤ sup
s≤k
��u�s� − t�s���

≤ sup
s≤k
��u�s� − t′�s�� + �t�s� − t′�s���

≤ d′k�x; e� + ε:
Since ε was arbitrary, d′k�c�x−e�; c�e−x−1�� ≤ d′k�x; e� for each k, from which
the conclusion follows.

3. Initial large deviation conclusions. We now draw large deviation
conclusions from the continuity properties in Section 2. Recall that all spaces
we consider are separable metric spaces. Following Varadhan [23, 24], we say
that a function I�x� defined on a metric space S and taking values in �0;∞�
is a rate function if the sets �x ∈ Sx I�x� ≤ a� are compact for all a ≥ 0, and a
sequence �Pn; n ≥ 1� of probability measures on the Borel σ-field of S (or a
sequence of random elements �Xn; n ≥ 1� with values in S and distributions
Pn) obeys the LDP with the rate function I if

lim sup
n→∞

1
n

logPn�F� ≤ − inf
x∈F

I�x�



FIRST-PASSAGE-TIME PROCESSES 367

for all closed F ⊂ S, and

lim inf
n→∞

1
n

logPn�G� ≥ − inf
x∈G

I�x�

for all open G ⊂ S.
We establish new LDP’s from previously established ones by applying the

contraction principle [23, 24] or an extension [13] and [18], Section 2. Here
are statements: the contraction principle states that if �Xn; n ≥ 1� obeys an
LDP with rate function I and if f is continuous, then �f�Xn�; n ≥ 1� obeys
an LDP with rate function

I′�y� ≡ inf
xx f�x�=y

I�x�:(3.1)

Our extended contraction principle states that if �Xn; n ≥ 1� obeys an LDP
with rate function I, if �fn; n ≥ 1� is a sequence of measurable functions, if
the function f is continuous in restriction to the sets �xx I�x� ≤ a�; a ≥ 0;
and if fn�xn� → f�x� as n→∞ for all xn for which xn→ x as n→∞ for all
x for which I�x� <∞, then �fn�Xn�; n ≥ 1� obeys an LDP with rate function
(3.1). (This statement is actually a consequence of a more general result in
[18]; see Theorem 2.1 and following Remarks 1 and 2 there.) An important
special case is fn = f, as in the contraction principle, where f is continuous
at each x with I�x� <∞. In either case, if in addition f is a bijection, then we
can write I′�y� = I�f−1�y��. The applications here illustrate the importance
of the extended contraction principle. We consider both single functions that
are not continuous everywhere and sequences of functions.

The next three theorems follow immediately from Lemmas 2.1 and 2.2 and
the contraction principle or its extension.

Theorem 3.1. If �Xn; n ≥ 1� obeys the LDP in E�J1� with rate function
IX, then �X↑n; n ≥ 1� obeys the LDP in E↑�J1� with rate function

IX↑�x� ≡ inf
y∈Ex
x=y↑
�IX�y��; x ∈ E↑:(3.2)

If in addition IX�x� = ∞ whenever x is not strictly increasing, then �X−1
n ;

n ≥ 1� obeys the LDP in E↑�J1� with rate function

IX−1�x� ≡ inf
y∈E

yx y−1=x

�IX�y�� = IX↑�x−1�; x ∈ E↑:(3.3)

[As a consequence, IX−1�x� = ∞ if x is not continuous.]

Theorem 3.2. If �Xn; n ≥ 1� obeys the LDP in E�M1� with rate function
IX, then �X↑n; n ≥ 1� obeys the LDP in E↑�M1� with rate function IX↑ in
(3.2). If IX�x� = ∞ whenever x−1�0� > 0, then �X−1

n ; n ≥ 1� obeys the LDP
in E↑�M1� with rate function IX−1 in (3.3). [As a consequence IX−1�x� = ∞ if
x�0� > 0�.
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Theorem 3.3. If �Xn; n ≥ 1� obeys the LDP in E�M′1� with rate function
IX, then �X↑n; n ≥ 1� obeys the LDP in E↑�M′1� with rate function IX↑ in (3.2)
and �X−1

n ; n ≥ 1� obeys the LDP in E↑�M′1� with rate function IX−1 in (3.3).

In (3.3) we have used the fact that the inverse map is a bijection on E↑ in
order to write IX−1�x� = IX↑�x−1�.

Remark 3.1. It may be convenient to establish an LDP for an inverse pro-
cess by applying Theorems 3.2 or 3.3 for the M1 or M′1 topology instead of the
stronger J1 topology, but the LDP extends to the stronger J1 topology from
M1 or M′1 if the rate function IX−1�x� is infinite at discontinuous x and for M′1
if in addition the rate function IX−1�x� = ∞ when x�0� 6= 0. This is because
convergence xn→ x for continuous x with x�0� = 0 is equivalent for the three
topologies and we can apply the extended contraction principle to the identity
maps. Indeed, the LDP extends to the stronger uniform topology, under which
D is nonseparable, provided that X−1

n remains a bonafide random element.
However, in general this need not be the case since the Borel σ-field is richer
than the Kolmogorov σ-field; see [1], Section 18. Indeed, measurability with
respect to the Borel σ-field associated with the uniform topology fails even
for the Poisson process. Thus, for general LDP’s on D it is often important
to work with topologies like the Skorohod topologies, for which the Borel and
Kolmogorov σ-fields coincide.

In many (but not all) cases, the rate functions IX�x� for Xn and IX−1�x� for
X−1
n have the form

IX�x� =
∫ ∞

0
λX�ẋ�t��dt(3.4)

if x is absolutely continuous and x�0� = 0 and IX�x� = ∞ otherwise, and

IX−1�x� =
∫ ∞

0
λX−1�ẋ�t��dt(3.5)

if x is absolutely continuous and x�0� = 0 and IX−1�x� = ∞ otherwise, where
λX and λX−1 are convex local rate functions on R. We can then apply Theo-
rems 3.1–3.3 to deduce the relation between the rate functions λX and λX−1

on R, which is consistent with what was established directly by [3].

Theorem 3.4. If �Xn; n ≥ 1� obeys the LDP in E↑ for one of the topologies
J1, M1 or M′1 with the rate function IX satisfying (3.4), where λX�0� = ∞,
then �X−1

n ; n ≥ 1� obeys the LDP in E↑�J1� with the rate function IX−1 from
(3.5), where

λX−1�z� = zλX�1/z�; λX−1�0� = ∞:(3.6)

If the function λX (respectively, λX−1 ) is convex downwards, then the sequence
of random variables �Xn�1�; n ≥ 1� (respectively, �X−1

n �1�; n ≥ 1�) obeys the
LDP in R with rate function λX (respectively, λX−1 ).
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Proof. Since λX�0� = ∞, IX�x� = ∞ if x−1 is not absolutely continuous
(as follows from Lemma 3.6 in [18]). By Remark 3.1, the LDP for �Xn; n ≥ 1�
holds in E↑�J1�. By Theorem 3.1 �X−1

n ; n ≥ 1� obeys the LDP in E↑�J1� with
rate function IX−1 which, for absolutely continuous x and x−1 = y, is given by

IX−1�x� = IX�x−1� = IX�y� =
∫ ∞

0
λX�ẏ�s��ds

=
∫ ∞

0
λX�ẏ�x�s���ẋ�s�ds

=
∫ ∞

0
λX−1�ẋ�s��ds since y ◦ x = e

by performing a change of variables. Hence (3.6) holds. As indicated above, we
next apply the extended contraction principle with the projection map defined
by π�x� = x�1� to obtain the LDP’s in R. Since λX is convex, the infimum over
x such that x�1� = z is attained at ẋ�t� = z for 0 ≤ t ≤ 1. The relation between
λX and λX−1 was established in [3]. 2

It is important to note, however, that the rate functions IX of �Xn; n ≥ 1�
and IX−1 of �X−1

n ; n ≥ 1� may involve functions with jumps, so that (3.4) and
(3.5) need not hold; see [9], [11], [18] and Section 6 below. Then the connections
to LDP’s on R is more complicated, for example, because the projection map
is not necessarily continuous. Functions with jumps may play a role in either
IX or IX−1 or both. However, Theorem 3.4 does apply to the renewal theory
examples in Sections 6 and 7 under regularity conditions.

4. Superexponential convergence in probability. As a basis for es-
tablishing relations between LDP’s for centered processes and associated cen-
tered inverse processes, paralleling Theorems 7.3–7.5 of [28], we establish
some preliminary results about superexponential convergence in probability.

As in [16], we say that a sequence �Xn; n ≥ 1� of random elements of a
metric space �S;ρ� converges superexponentially in probability to an element
x0 ∈ S if, for all ε > 0,

lim
n→∞

P1/n�ρ�Xn; x0� > ε� = 0(4.1)

and we write Xn

P1/n

−→x0. This mode of convergence plays a role in large devia-
tions similar to the role convergence in probability plays in weak convergence.
We collect some simple properties of superexponential convergence in proba-
bility in the following lemmas. The similarity with weak convergence should
be evident; for example, see [1], [28]. In the following lemmas, S is the space
D with any of the topologies J1, M1 or M′1.

Parts of the next lemma can obviously be extended to general metric spaces;
for example, see [15], [16]. Note the similarity of parts (b) and (c) to The-
orems 4.1 and 4.4 of [1]. Part (c) follows directly from part (b) (also it is
Lemma 3.3 in [16]).
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Lemma 4.1. (a) Xn

P1/n

−→x0 if and only if �Xn; n ≥ 1� obeys the LDP with
rate function

δ�x− x0� ≡
{

0; x = x0;
∞; x 6= x0:

(4.2)

(b) If �Xn; n ≥ 1� obeys the LDP in D for one of the topologies J1;M1 and

M′1 with rate function I and Yn

P1/n

−→y0, then ��Xn;Yn�; n ≥ 1� obeys the LDP
in D × D for the product topology with rate function I�x� + δ�y − y0�, and
�Xn+Yn; n ≥ 1� obeys the LDP in D for the same topology with rate function
I�x− y0�; x ∈ D.

(c) If �Xn; n ≥ 1� obeys the LDP in D for metric m with rate function I

and m�Xn;Yn�
P1/n

−→0, then �Yn; n ≥ 1� obeys the LDP in D for metric m with
rate function I.

Lemma 4.2. (a) Let x0 ≡ �x0�t�; t ≥ 0� be continuous with x�0� = 0 if the

topology is M′1. Then Xn

P1/n

−→x0 if and only if

lim
n→∞

P1/n
(

sup
t≤T
�Xn�t� − x0�t�� > ε

)
= 0

for all ε > 0 and T > 0.
(b) If, for cn → ∞, �cnXn; n ≥ 1� obeys the LDP with some rate function,

then Xn

P1/n

−→ θ as n→∞, where θ�t� = 0; t ≥ 0.

(c) If Xn has paths in E for n ≥ 1 and Xn

P1/n

−→ e, then X−1
n

P1/n

−→ e.

Proof. For part (a), we do the proof only for the J1 topology; the proof for
the other topologies is similar. By the triangle inequality,

sup
0≤t≤T

�Xn�t� − x0�t�� ≤ sup
0≤t≤T

��Xn�t� − x0�λn�t��� + �x0�λn�t�� − x0�t���;

where λn�t�, for 0 ≤ t ≤ T, is any homeomorphism of �0;T�. Hence,

sup
0≤t≤T

�Xn�t� − x0�t�� ≤ dT�Xn; x0� +wx0
�dT�Xn; x0��;

where dT is the Skorohod J1 metric on D�0;T� and wx�δ� is the modulus
of continuity of x as in [1], page 54. For any x0 and ε, let δ be such that
wx0
�δ� ≤ ε, which is possible because x0 is continuous. Then

�dT�Xn; x0� ≤ δ ∧ ε� ⊆
{

sup
0≤t≤T

�Xn�t� − x0�t�� ≤ 2ε
}

⊆ �dT�Xn; x0� ≤ 2ε�;
which implies the result. We also use the fact that a J1 metric d on D�0;∞�
can be related to the metric dT on D�0;T� for large T; see (2.2) of [28]; that
is, for any ε > 0, �d�Xn; x0� ≤ ε� ⊆ �dT�Xn; x0� ≤ 2ε� ⊆ �d�Xn; x0� ≤ 3ε�
for T suitably large. For (b), note that by the definition of the LDP and using
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that cn→∞, we have, for ε > 0, A > 0, and metric m (associated with one of
the topologies J1, M1 or M′1),

lim sup
n→∞

P1/n�m�Xn; θ� > ε� ≤ lim sup
n→∞

P1/n�m�cnXn; θ� ≥ Aε�

≤ sup
xx m�x;θ�≥Aε

exp�−I�x��;

and the latter goes to 0 as A → ∞ since the sets �xx I�x� ≤ a�, a ≥ 0, are
compact and hence bounded. For part (c), we apply Lemmas 2.1, 2.2 and part
(a) of Lemma 4.1. 2

We now discuss the composition map, denoted by ◦. Recall that if x ≡
�x�t�; t ≥ 0� ∈ D and y ≡ �y�t�; t ≥ 0� ∈ E↑, then x◦y = �x�y�t��; t ≥ 0� ∈ D;
see [28]. Note the similarity of this lemma with [1], page 145.

Lemma 4.3. Let �Xn; n ≥ 1� obey an LDP for one of the topologies J1; M1
and M′1 with rate function I, and let �Yn; n ≥ 1� be a sequence of nonnegative

processes with paths from E↑ such that Yn

P1/n

−→y0. If the topology is M, then
let y0 be continuous. If the topology is M′1, then let y0 be continuous with
y0�0� = 0. If I�x� = ∞ for discontinuous x, or y0 is continuous and strictly
increasing, then �Xn ◦Yn; n ≥ 1� obeys the LDP with rate function

I′�z� ≡ inf
xx x◦y0=z

I�x�; z ∈ D:

Proof. By Lemma 4.2, ��Xn;Yn�; n ≥ 1� obeys the LDP in D ×D with
I�x�+δ�y−y0�. The claim then follows by Theorem 3.1 in [28] and the extended
contraction principle. An analog of Theorem 3.1 of [28] holds for M1 and M′1
if the limit y there is continuous.

5. LDPs for centered processes. We now apply the lemmas in Section
4 to deduce the following results. For them, we assume that the processes Xn

have paths in E and cn→∞ as n→∞.

Theorem 5.1. If the sequence �cn�Xn − e�; n ≥ 1� obeys the LDP in D for
the J1 topology with rate function I such that I�x� = ∞ for functions x which
have positive jumps or have x�0� 6= 0, then the sequence �cn�e−X−1

n �; n ≥ 1�
also obeys the LDP in D for the J1 topology with the rate function I.

Proof. We follow the argument in [28], Theorem 7.3. By Lemma 4.2(b),

Xn

P1/n

−→ e and by Lemma 4.2(c), X−1
n

P1/n

−→ e. Lemma 4.3 then implies that
�cn�Xn − e� ◦X−1

n ; n ≥ 1� obeys the LDP with I. Since

cn�e−X−1
n � = cn�Xn − e� ◦X−1

n + cn�e−Xn ◦X−1
n � ;

by Lemma 4.1(b), the theorem would follow from

cn�e−Xn ◦X−1
n �

P1/n

−→0;
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which in turn, by Lemma 4.2(a), follows by

sup
t≤T

cn�Xn ◦X−1
n �t� − t�

P1/n

−→0; T > 0:(5.1)

Since (cf. [28])

0 ≤ sup
t≤T
�Xn ◦X−1

n �t� − t� ≤ sup
t≤X−1

n �T�
�1Xn�t��+;

where 1x�t�, for x = �x�t�; t ≥ 0�, denotes the jump of x at twith 1x�0� = x�0�,
we have for A > 0, ε > 0, that

P1/n
(
sup
t≤T

cn�Xn ◦X−1
n �t� − t� > ε

)

≤ P1/n�X−1
n �T� > A� +P1/n

(
sup
t≤A

cn�1Xn�t��+ > ε
)
:

(5.2)

Now it is not difficult to see that the function x→ supt≤A�1x�t��+ is contin-
uous in the J1 topology at each x with no positive jumps; for example, see
[8], Chapter 6, Section 2. Then, by the extended contraction principle and the
LDP for �cn�Xn − e�; n ≥ 1�,

lim sup
n→∞

P1/n
(
sup
t≤A

cn�1Xn�t��+ ≥ ε
)
≤ sup

xx supt≤A�1x�t��+≥ε
exp�−I�x�� = 0;

proving that the second term on the right-hand side of (5.2) goes to 0 as n→∞.

The first term goes to 0 as n → ∞ and A → ∞ since X−1
n

P1/n

−→ e. Hence, the
limit (5.1) has been proved, so the theorem has been proved. 2

In order to obtain a result paralleling Theorem 5.1 for the M′1 topology, we
first establish a result for centered supremum processes.

Theorem 5.2. If the sequence �cn�Xn − e�; n ≥ 1� obeys the LDP in D for
either M1 or the M′1 topology with rate function I, then �cn�X↑n − e�; n ≥ 1�
obeys the LDP in D↑ for the same topology with rate function I.

Proof. We can use the extended contraction principle with the func-
tions fn�y� = �y+ cne�↑ − cne. Assume that yn = cn�xn − e� → y ≡ x. Since
fn�yn� = cn�x↑n − e�, it suffices to show that fn�yn� → y whenever yn→ y in
D for the M1 or M′1 topology, which follows by Theorem 6.3(ii) in [28]. (The
proof there needs changing when x has negative jumps.)

Theorem 5.3. If the sequence �cn�Xn − e�; n ≥ 1� obeys the LDP in D for
the M′1 topology with rate function I, then the sequence �cn�e−X−1

n �; n ≥ 1�
obeys the LDP in D for the M′1 topology with the rate function I.

Proof. First apply Theorem 5.2 to see that it suffices to assume that Xn ∈
E↑ for each n. By Lemma 4.2(b), d′�Xn; e�

P1/n

−→0, so that d′�cn�Xn − e�; cn�e−
X−1
n ��

P1/n

−→0 by Lemma 2.3. Finally, apply Lemma 4.1(c).
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The last result of the section is a straightforward extension of Theorems 5.1
and 5.3, but is quite useful in applications.

Theorem 5.4. If the sequence �cn�Xn − ane�; n ≥ 1�, where an are real
numbers converging to a > 0, obeys the LDP in D for the M′1 topology with
rate function I�x�, then the sequence ��cn�Xn − ane�; cn�X−1

n − a−1
n e��; n ≥ 1�

obeys the LDP in D × D for (the product topology associated with) the M′1
topology with rate function I1�x;y� = I�x�, when y = −a−1x ◦ �a−1e�, and
I1�x;y� = ∞ otherwise.

If the LDP for �cn�Xn − ane�; n ≥ 1� holds for the J1 topology with I equal
to infinity at functions x with positive jumps or with x�0� 6= 0, then the LDP
for �cn�Xn − ane�; cn�X−1

n − a−1
n e��; n ≥ 1� holds for (the product topology

associated with) the J1 topology with the rate function I1.

Proof. Noting that x−1−a−1
n e = −�e−�a−1

n x�−1�◦�a−1
n e�, we have as in the

preceding argument that d′�cn�X−1
n −a−1

n e�;−cna−1
n �X

↑
n−ane�◦�a−1

n e��
P1/n

−→0 so
that in the statement of the theorem we can replace ��cn�Xn−ane�; cn�X−1

n −
a−1
n e��; n ≥ 1� by ��cn�Xn − ane�;−a−1

n gn�cn�Xn − ane�� ◦ �a−1
n e��; n ≥ 1�,

where gn�x� = �x+ cnane�↑ − cnane. The claim follows by Lemma 4.3 and the
extended contraction principle since gn�xn� → x as xn→ x and an→ a.

On writing

cn�a−1
n e−X−1

n � = cna−1
n �Xn − ane� ◦X−1

n + cna−1
n �e−Xn ◦X−1

n �;
we can apply for the case of the J1 topology the argument of the proof of
Theorem 5.1. 2

6. Large deviations for renewal processes. In this section, we apply
the results of previous sections to derive LDP’s for sequences of renewal proc-
esses. Corresponding results can be established for cases in which the i.i.d.
condition is relaxed, drawing upon Zajic [29] and references therein. We first
assume that the Xn are defined by

Xn�t� ≡
1
n

�nt�∑
i=1

ξi;(6.1)

where ξi, i ≥ 1, are i.i.d., nonnegative, Eξ1 > 0.
Let �N�t�; t ≥ 0� be the renewal process with ξ1; ξ2; : : : as the times be-

tween renewals; that is,

N�t� ≡ max
{
k ≥ 1x

k∑
i=1

ξi ≤ t
}
; t ≥ 0;(6.2)

with N�t� = 0 if ξ1 > t, and let Nn ≡ �N�nt�/n; t ≥ 0�, n ≥ 1. We are going to
derive the LDP for the sequence �Nn; n ≥ 1�. This will be done by reducing
this problem to the LDP for �Xn; n ≥ 1� and by invoking earlier results for
�Xn; n ≥ 1�. For this purpose, note that

N�nt�/n =X−1
n �t� − 1/n:(6.3)
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The following theorem is a version of Theorem 3.1 in [18]. Part (b) is the
same. Part (a) is also equivalent, because the M′1 topology here and the weak
topology in [18] coincide onE↑, since both correspond to pointwise convergence
at all continuity points except 0.

Theorem 6.1. Assume that E exp�αξ1� < ∞ for some α > 0. Let α∗ =
sup�αx E exp�αξ1� < ∞�. (a) Then �Nn; n ≥ 1� obeys the LDP in E↑ for the
M′1 topology with rate function

IN�x� ≡
∫ ∞

0
sup
α<α∗

{
α− ẋl1�t� logE exp�αξ1�

}
dt− logP�ξ1 = 0�xl2�∞�;(6.4)

where x = xl1 + xl2 is the Lebesgue decomposition of x with respect to Lebesgue

measure; xl1 is the absolutely continuous component with xl1�0� = 0, xl2 is the

singular component and ẋl1�t� is the derivative. In (6.4) it is assumed, that the

product on the right-hand side is 0 if P�ξ1 = 0� = 0 and xl2�∞� = 0.
(b) If, in addition, P�ξ1 = 0� = 0, then the LDP holds for the J1 topology

with IN�x� = ∞ if x is not absolutely continuous, or x�0� 6= 0.

Proof. By [18], Lemma 3.2, �Xn; n ≥ 1� obeys the LDP on E↑ for the
weak (and hence the M′1� topology with rate function

IX�x� ≡
∫ ∞

0
sup
α<α∗

{
αẋl1�t� − logE exp�αξ1�

}
dt+ α∗xl2�∞�;(6.5)

where ∞ · 0 = 0. (Note that if α∗ = ∞, then IX�x� = ∞ whenever x is not
absolutely continuous, but otherwise this is not the case.) The first part of
the proof of part (a) is completed by applying Theorem 3.3, Lemma 4.3 and
(6.3); see [18] for details. For part (b), note that the extra condition makes
IN�x� = ∞ for discontinuous x or if x�0� 6= 0. Then we use the fact that
xn → x�J1� is equivalent to xn → x�M′1� for continuous x with x�0� = 0.
Hence, we can apply the extended contraction principle with the identity map
to strengthen the topology, as noted in Section 3. 2

Remark 6.1. In the setting of Theorem 6.1 assume, in addition, that
E exp�αξ1� <∞ for all α and P�ξ1 = 0� = 0. Then we can use Theorem 3.4 to
get the familiar LDP’s in R for the projections at t = 1. Under the assump-
tions, IX�x� = ∞, when x is either not absolutely continuous, or x�0� 6= 0, or
x is not strictly increasing for the rate function (6.5), so that the conditions
of Theorem 3.4 are satisfied with the local rate functions in R being

λX�z� = sup
α
�αz− logE exp�αξ1��

and

λX−1�z� = zλX�1/z� = sup
α
�α− z logE exp�αξ1��:

An application of the theorem provides the one-dimensional LDP’s.
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We now establish an LDP in D for centered renewal processes, which is a
form of moderate deviations; see page 79 of [15]. Motivated by applications to
queues in heavy traffic, we choose to work in the more general setting of tri-
angular arrays. More specifically, we consider a sequence of renewal processes
indexed by n and denote by ξn; i; i ≥ 1; the times between renewals. We next
define

N′n�t� = max
(
k ≥ 1x

k∑
i=1

ξn;i ≤ t
)
;(6.6)

Nn�t� =
1
an
N′n�ant�;(6.7)

where an/n → ∞. For completeness, we first state the result of Example
7.2 [15] on “the moderate deviation invariance principle” for partial sums
of triangular arrays (prototypes for partial sums of r.v. are in [10] and [26],
Theorem 4.4.3).

Lemma 6.1. Let �ζn; i; i ≥ 1�; n ≥ 1; be a triangular array of row-wise

i.i.d. random variables with Eζn;1 = 0; Var ζn;1 → σ2. Define

Zn�t� =
1√
nan

�ant�∑
i=1

ζn; i:

Let at least one of the following conditions hold:

(i) �log an�/n→∞ and supnE�ζn;1�2+ε <∞ for some ε > 0,

(ii) for some β ∈ �0;1�, aβn/n2−β → ∞ and supnE exp�α�ζn;1�β� < ∞ for
some α > 0.

Then �Zn; n ≥ 1� obeys the LDP in D for the J1 topology with rate function

IX�x� ≡





1
2σ2

∫ ∞
0
ẋ�t�2 dt; if x is absolutely continuous

and x�0� = 0;

∞; otherwise:

(6.8)

The proof is in [15]. (Note that the case β = 1 which is not included there
is dealt with by the same argument.)

Theorem 6.2. Let Nn be defined by (6.6) and (6.7). Let Var ξn;1 → σ2 and

Eξn;1 → λ−1 as n → ∞. Assume that at least one of the following conditions
hold:

(i) �log an�/n→∞ and supnEξ
2+ε
n;1 <∞ for some ε > 0,

(ii) for some β ∈ �0;1�, aβn/n2−β →∞ and supnE exp�αξβn;1� < ∞ for some
α > 0.



376 A. A. PUHALSKII AND W. WHITT

Then �
√
an/n�Nn−e�Eξn;1�−1�; n ≥ 1� obeys the LDP inD for the J1 topology

with rate function

IN�x� ≡





1
2σ2λ3

∫ ∞
0
ẋ�t�2 dt; if x is absolutely continuous

and x�0� = 0;

∞; otherwise.

(6.9)

Proof. By Lemmas 6.1 and 4.1(b), the sequence �
√
an/n�Xn − eEξn;1�;

n ≥ 1�, where Xn�t� = 1/an
∑�ant�
i=1 ξn; i, obeys the LDP in D for the J1 topol-

ogy with rate function IX from (6.8). The proof is completed by observing
that, in analogy with (6.3), Nn = X−1

n − a−1
n and applying Theorem 5.4 and

Lemma 4.1(b) and the contraction principle.

Corollary. Under the assumptions of Theorem 6:2; �
√
an/n�Nn�1� −

�Eξn;1�−1�; n ≥ 1� obeys the LDP in R with rate function

λN�z� =
z2

2σ2λ3
; z ∈ R:

Proof. Apply the extended contraction principle with the projection map.
By (6.9), the resulting rate function is

λN�z� = inf
x∈Dx
x�1�=z

�IN�x�� =
z2

2σ2λ3
: 2

7. Superpositions of renewal processes. The results in Section 6 ex-
tend easily to superpositions of renewal functions provided that the component
rate functions are finite only for continuous functions x. Otherwise, we have
the difficulty that addition is not continuous on D × D [28]. However, from
Theorem 6.1 we see that in general the rate functions can be finite for dis-
continuous x. We avoid this problem by making additional assumptions, as in
Remark 6.1.

Let �ξji ; i ≥ 1�, 1 ≤ j ≤ k, be k independent sequences of i.i.d. nonnegative
random variables with Eξ

j
1 > 0. Let �Nj�t�; t ≥ 0�, 1 ≤ j ≤ k, be the

associated k mutually independent renewal counting processes, defined as in
(6.2), and let N =N1+ · · · +Nk. For each j, let Xj

n be the normalized partial
sum process defined as in (6.1) and let Xn be the normalized partial sum
process associated with the superposition process, defined by

Xn�t� ≡ n−1
�nt�∑
i=1

ξi; t ≥ 0;(7.1)

where ξi is the ith interval between points in the superposition process N.
Let Nj

n and Nn be associated normalized counting processes; that is,

Nj
n�t� ≡ n−1Nj�nt� and Nn�t� ≡ n−1N�nt�; t ≥ 0:(7.2)
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We will derive LDP’s for �Nn; n ≥ 1� and �Xn; n ≥ 1�. For this purpose, note
that Nj

n�t� = �Xj
n�−1�t� − n−1, so that

Nj
n = �Xj

n�−1 − n−1; Nn =X−1
n − n−1;(7.3)

and

Xn = �Nn + n−1�−1:(7.4)

The following theorem extends Theorem 6.1.

Theorem 7.1. Assume that E exp�αξj1� < ∞, 1 ≤ j ≤ k, for some α > 0.
Let α∗j ≡ sup�αx E exp�αξj1� <∞�; 1 ≤ j ≤ k; and α∗ = ∑k

j=1α
∗
j. Also assume

that P�ξj1 = 0� = 0 for all j, 1 ≤ j ≤ k. Then the sequence �Nn; n ≥ 1� in
(7.2) obeys the LDP in E↑ for the J1 topology with rate function

IN�x� =
∫ ∞

0
sup
α<α∗
�α− ẋ�t�ψ�α��dt(7.5)

=
∫ ∞

0
sup
α<α
�φ�α� − αẋ�t��dt;(7.6)

where

ψ�α� = φ−1�α�; φ�α� =
k∑
j=1

φj�α�; φj�α� = ψ−1
j �α�;(7.7)

α = min
1≤j≤k

lim
α↑α∗j

ψj�α� with ψj�α� = logE exp�αξj1�;(7.8)

if x is absolutely continuous and x�0� = 0, while IN�x� = ∞ otherwise. If in

addition there is one j for which E exp�αξj1� <∞ for all α, then �Xn; n ≥ 1�
in (7.1) obeys the LDP in E↑ for the J1 topology with rate function

IX�x� = IN�x−1� =
∫ ∞

0
sup
α∈R
�αẋ�t� − ψ�α��dt

=
∫ ∞

0
sup
α∈R
�ẋ�t�φ�α� − α�dt;

(7.9)

if x is absolutely continuous with x�0� = 0, and IX�x� = ∞ otherwise.

Proof. Since the normalized processes N
j
n are independent, by Theo-

rem 6.1 and [9] the sequence ��N1
n;N

2
n; : : : ;N

k
n�; n ≥ 1� of random elements

of D��0;∞�;R�k obeys the LDP for the J1 topology with rate function

I�x1; : : : ; xk� ≡
k∑
j=1

∫ ∞
0

sup
α<α∗j

�α− ẋj�t�ψj�α��dt;(7.10)

when x1; : : : ; xk are absolutely continuous with respect to Lebesgue measure
and xj�0� = 0 for all j, while I�x1; : : : ; xk� = ∞ otherwise. We start working
toward the first expression in (7.5).
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By the extended contraction principle, the superposition Nn obeys the LDP
for the J1 topology with rate function IN�x�, where IN�x� = ∞ if x is not
absolutely continuous or x�0� 6= 0. Using an argument as in [18] (including a
minimax theorem on the third line), if x is absolutely continuous and x�0� = 0,
then

IN�x� = inf
x1+···+xk=x

k∑
j=1

∫ ∞
0

sup
α<α∗j

�α− ẋj�t�ψj�α��dt

=
∫ ∞

0
inf∑k

j=1 ẋj�t�=ẋ�t�
sup
αj<α

∗
j;

j=1;:::;k

{ k∑
j=1

αj −
k∑
j=1

ẋj�t�ψj�αj�
}
dt

=
∫ ∞

0
sup
αj<α

∗
j;

j=1;:::;k

inf∑k
j=1 ẋj�t�=ẋ�t�

{ k∑
j=1

αj −
k∑
j=1

ẋj�t�ψj�αj�
}
dt

=
∫ ∞

0
sup
αj<α

∗
j;

j=1;:::;k

{ k∑
j=1

αj − ẋ�t� max
j=1;:::;k

ψj�αj�
}
dt:

(7.11)

The required now follows since

ψ�α� = inf
{

max
1≤j≤k

ψj�αj�x
k∑
j=1

αj = α; αj < α∗j
}
;

with ∞ being the infimum over the empty set. [The infimum is attained at
points αj for which all the ψj�αj� are equal, for if we have that ψj′�αj′�>
ψj′′�αj′′� we can make αj′ smaller and αj′′ larger keeping their sum un-
changed.] The equality (7.6) is obvious.

Turning to Xn, we observe that α∗ = ∞ if there is a j for which
E exp�αξj1� < ∞ for all α > 0. Hence the local rate function in (7.5) is
∞ at 0, and an application of Theorem 3.4 completes the proof. The second
equality again is obvious. 2

We now establish an extension of Theorem 6.2.

Theorem 7.2. Let ���Nj
n�t�; t ≥ 0�; j = 1; : : : ; k�; n ≥ 1�, be a sequence

of k-tuples of independent renewal processes. Let �ξjn; i; i ≥ 1�; j = 1; : : : ; k
denote their respective interrenewal times. Assume that Var ξjn;1 → σ2

j and
Eξ

j
n;1 → λ−1

j for j = 1; : : : ; k as n→∞. Assume that one of the conditions (i) or
(ii) in Theorem 6.2 holds for all j, 1 ≤ j ≤ k. Then the sequence �

√
an/n�Nn−

e
∑k
j=1�Eξ

j
n;1�−1�, n ≥ 1�, where Nn�t� = 1/an

∑k
j=1N

j
n�ant�, obeys the LDP

in D for the J1 topology with rate function

IN�x� ≡ 1
2

( k∑
j=1

σ2
jλ

3
j

)−1 ∫ ∞
0
ẋ�t�2 dt(7.12)
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for absolutely continuous x with x�0� = 0, and IN�x� = ∞ otherwise. Moreover,

if ξn; i; i ≥ 1; are the times between events in the superposition process
∑k
j=1N

j
n

and Xn�t� = 1/an
∑�ant�
i=1 ξn; i, then �

√
an/n�Xn − e�

∑k
j=1�Eξ

j
n;1�−1�−1�; n ≥ 1�

obeys the LDP in D for the J1 topology with rate function

IX�x� ≡ 1
2

( k∑
j=1

λj

)3( k∑
j=1

σ2
jλ

3
j

)−1 ∫ ∞
0
ẋ�t�2 dt(7.13)

for absolutely continuous x with x�0� = 0, and IX�x� = ∞ otherwise.

Proof. By Theorem 6.2 and in analogy with the proof of Theorem 7.1, the
sequence of processes �

√
an/n�Nn − e

∑k
j=1�Eξ

j
n; i�−1�; n ≥ 1� obeys the LDP

for the J1 topology with rate function IN�x�, which for absolutely continuous
x has the form

IN�x� = inf
x1+···+xk=x

k∑
j=1

1

2σ2
jλ

3
j

∫ ∞
0
ẋj�t�2 dt

= 1
2

∫ ∞
0

inf∑k
j=1 ẋj�t�=ẋ�t�

k∑
j=1

1

σ2
jλ

3
j

ẋj�t�2 dt

= 1
2

( k∑
j=1

σ2
jλ

3
j

)−1 ∫ ∞
0
ẋ�t�2 dt;

with the last line following from the Cauchy–Schwarz inequality. By Theo-
rem 5.4 and Lemma 4.1(b), a corresponding limit holds for Xn. 2

Remark. The rate functions IN in (7.12) and IX in (7.13) have the form

I�x� = 1
2γ

∫ ∞
0
ẋ�t�2 dt;(7.14)

where γ is the asymptotic variance of the processes
∑k
j=1N

j
n and Xn, respec-

tively; that is, for (7.12),

γ = lim
n→∞

a−1
n Var

k∑
j=1

Nj
n�an�;

while for (7.13),

γ = lim
n→∞

a−1
n Var

an∑
i=1

ξn; iy

that is, the constant γ is the same as appears in the central limit theorems.
The form of the coefficient in the rate function as a limit variance is typical
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when one deals with quadratic rate functions (cf. [15], Corollaries 6.3, 6.4
and 6.7).
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