
who stutter show disrupted motor activity in the articulatory, 
laryngeal, and respiratory systems during speech (Zimmerman, 
1980; Conture et al., 1986; Peters and Boves, 1988; Zocchi et al., 
1990; Denny and Smith, 1992; Smith et al., 1993; McClean and 
Runyan, 2000). There is evidence, however, that linguistic demands 
and changes in auditory inputs affect stuttering frequency. The 
disfluency tends to increase when the planned utterances are 
long and the speech rate is altered (Jayaram, 1984; Zackheim and 
Conture, 2003; Blomgren and Goberman, 2008; Sawyer et al., 
2008) or the syntax is complex (Gordon et al., 1986; Melnick 
and Conture, 2000). It has been also reported that the phono-
logical complexity affects the speech motor dynamics in adults 
who stutter (Smith et al., 2010). Better fluency can be induced 
with changes in the auditory input, such as delayed or frequency-
altered auditory feedback of speech, choral reading (in unison 
with other speakers), masking by white noise, and external rhyth-
mic cues (e.g., metronome) (Johnson and Rosen, 1937; Cherry 
and Sayers, 1956; van Riper, 1971; Trotter and Silverman, 1974; 

INTRODUCTION

Developmental stuttering is a disorder of speech fluency character-
ized by involuntary repetitions, prolongations, and silent blocks, 
especially in the initial parts of utterances. It typically starts between 
2 and 6 years of age, occurring in 4–5% of all preschool children 
(Bloodstein, 1995; Yairi and Ambrose, 1999). Although 70–80% of 
these children recover spontaneously, the stuttering persists after 
puberty in approximately 1% of the general population, more often 
in males than in females (Bloodstein, 1995; Yairi and Ambrose, 
1999). Despite the previous physiological research including brain 
imaging techniques, the pathophysiology and the neural basis 
underlying developmental stuttering remains poorly understood 
(Brown et al., 2005; Watkins et al., 2008).

Because stuttering manifests as a motor dysfunction in speech, 
it has been argued that the symptoms represent breakdowns in the 
control, timing, and coordination of speech musculature (Brady, 
1969; Bruce and Adams, 1978; Jayaram, 1984; Smith, 1995; Ludlow 
and Loucks, 2003). Moreover, it has been reported that persons 
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Developmental stuttering is a speech disorder in fluency characterized by repetitions, 

prolongations, and silent blocks, especially in the initial parts of utterances. Although their 

symptoms are motor related, people who stutter show abnormal patterns of cerebral 

hemispheric dominance in both anterior and posterior language areas. It is unknown whether 

the abnormal functional lateralization in the posterior language area starts during childhood 

or emerges as a consequence of many years of stuttering. In order to address this issue, we 

measured the lateralization of hemodynamic responses in the auditory cortex during auditory 

speech processing in adults and children who stutter, including preschoolers, with near-

infrared spectroscopy. We used the analysis–resynthesis technique to prepare two types of 

stimuli: (i) a phonemic contrast embedded in Japanese spoken words (/itta/ vs. /itte/) and (ii) a 

prosodic contrast (/itta/ vs. /itta?/). In the baseline blocks, only /itta/ tokens were presented. In 

phonemic contrast blocks, /itta/ and /itte/ tokens were presented pseudo-randomly, and /itta/ 

and /itta?/ tokens in prosodic contrast blocks. In adults and children who do not stutter, there 

was a clear left-hemispheric advantage for the phonemic contrast compared to the prosodic 

contrast. Adults and children who stutter, however, showed no significant difference between 

the two stimulus conditions. A subject-by-subject analysis revealed that not a single subject 

who stutters showed a left advantage in the phonemic contrast over the prosodic contrast 

condition. These results indicate that the functional lateralization for auditory speech processing 

is in disarray among those who stutter, even at preschool age. These results shed light on the 

neural pathophysiology of developmental stuttering.
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Hargrave et al., 1994; Bloodstein, 1995). These findings suggest 
that stuttering is not simply an impairment in the motor system. 
As Hampton and Weber-Fox (2008) argue, many current models 
of stuttering incorporate other factors: atypical neurophysiology, 
genetic factors, environment, personality, learning ability, audi-
tory processing, and the ability to produce speech and language 
(Bloodstein, 1995; Lawrence and Barclay, 1998; Guitar, 2006).This 
indicates that not only a motor disability but many factors can 
influence stuttering.

Neuroimaging studies during the last 15 years have reported 
that adults who stutter demonstrate both structural and func-
tional abnormalities compared to people who do not stutter (Wu 
et al., 1995; Fox et al., 1996, 2000; Braun et al., 1997; Salmelin 
et al., 1998, 2000; De Nil et al., 2000, 2008; Ingham et al., 2000, 
2004; Foundas et al., 2001, 2003; Ingham, 2001; Sommer et al., 
2002; Preibisch et al., 2003; Jäncke et al., 2004; Weber-Fox et al., 
2004, 2008; Biermann-Ruben et al., 2005; Brown et al., 2005; 
Corbera et al., 2005; Cykowski et al., 2008; Giraud et al., 2008; 
Watkins et al., 2008; Weber-Fox and Hampton, 2008; Chang 
et al., 2009; Kell et al., 2009; Sakai et al., 2009; Beal et al., 2010, 
2011; Kaganovich et al., 2010; Liotti et al., 2010; Lu et al., 2010; 
Kikuchi et al., 2011). Among various theories of the pathophysi-
ology of stuttering (Bloodstein, 1995; Lawrence and Barclay, 
1998; Guitar, 2006), abnormal patterns of cerebral hemispheric 
dominance for speech processing have been consistently dem-
onstrated. During speech production, people who stutter (PWS) 
show anomalous patterns characterized by overactivation, par-
ticularly in the right hemisphere, in speech-motor related brain 
areas, and by reduced activation in the left superior temporal, 
fronto-temporal, and temporo-parietal areas compared with flu-
ency inducing conditions or fluent speakers (Wu et al., 1995; 
Fox et al., 1996; Braun et al., 1997; De Nil et al., 2000; Ingham 
et al., 2000). It has been reported that there are differences in 
brain responses to auditory processing during speech or passive 
listening tasks, and non-linguistic auditory processing between 
adults or children who do and do not stutter (Hampton and 
Weber-Fox, 2008; Beal et al., 2010, 2011; Kaganovich et al., 2010; 
Kikuchi et al., 2011).

Although these imaging data generally suggest that the structural 
and functional lateralization in language-related brain regions for 
speech perception or production differs between adults who do 
and do not stutter, the crucial question remains unresolved with 
regard to the possible causal relationship between stuttering and 
brain lateralization. Since previous studies have mainly examined 
adults, it has been a matter of debate whether the anatomical and 
functional increases in the right hemisphere in adults who stutter 
are the results of compensatory mechanisms used over a lifetime 
of stuttering (Braun et al., 1997; Preibisch et al., 2003; Chang et al., 
2008; Lu et al., 2010). Alternatively, it is possible that the abnor-
mal functional lateralization is observed in children who stutter 
if it is related to the onset of the stuttering. Data from children 
who stutter may shed light on this issue, but few such studies have 
been conducted (Özge et al., 2004; Chang et al., 2008; Weber-Fox 
et al., 2008; Kaganovich et al., 2010; Beal et al., 2011). Since stut-
tering typically starts prior to 6 years of age, a method that enables 
studying functional lateralization in this age group is necessary 
for elucidating the pathophysiology of developmental stuttering.

Conventional brain imaging techniques, such as functional 
magnetic resonance imaging (fMRI) and positron emission 
tomography (PET) are not well-suited for young subjects, due 
to safety concerns and/or the requirement for rigorous restraint. 
Magnetoencephalography (MEG) must be applicable for young 
infants for its safety, but may have difficulties to measure children 
younger than around 5 years. Although electroencephalography 
(EEG) can be applicable to young subjects, its ability to localize the 
focus of activity is generally poor (Minagawa-Kawai et al., 2008). 
In contrast, near-infrared spectroscopy (NIRS) can non-invasively 
measure human brain function under a variety of conditions with 
little restraint on young subjects, even neonates (Chen et al., 2002; 
Kennan et al., 2002; Peña et al., 2003; Homae et al., 2006, 2007; 
Minagawa-Kawai et al., 2007, 2011; Sato et al., 2010; Zaramella et al., 
2001). NIRS has a reasonable resolution for exploring functional 
lateralization due to the limited spread of near-infrared light in the 
brain (Yamashita et al., 1996; Yamamoto et al. 2002; Fukui et al., 
2003), unlike evoked potentials. Consequently, NIRS was our logi-
cal method of choice for examining the functional lateralization in 
children and adults who stutter.

We focused on cortical auditory speech processing in this 
study, based on its suggested involvement in stuttering (Hall and 
Jerger, 1978; Toscher and Rupp, 1978). Disfluency in PWS can be 
ameliorated by manipulating the auditory input (Johnson and 
Rosen, 1937; Cherry and Sayers, 1956; van Riper, 1971; Trotter and 
Silverman, 1974; Hargrave et al., 1994; Bloodstein, 1995), and choral 
reading has been shown to reverse the deactivation in the cerebral 
auditory regions during speech in PWS (Fox et al., 1996). While 
these are related to the auditory functions for self-monitoring of 
one’s own speech, behavioral studies using a dichotic listening para-
digm have demonstrated abnormal linguistic processing in PWS 
in terms of cerebral hemispheric dominance (Curry and Gregory, 
1969; Brady and Berson, 1975; Sommers et al., 1975; Blood, 1985). 
Although these paradigms would be useful for examining the cer-
ebral differences between people who do and do not stutter, young 
children may fail to accomplish tasks requiring overt and prompt 
speech responses. Similarly, tasks requiring intensive attention, like 
a dichotic listening test, may not be reliably performed. Thus, we 
used a simple listening task that is applicable to even very young 
subjects, and can measure functional lateralization for language 
processing in the absence of overt speech planning or production 
(Sato et al., 2003; Minagawa-Kawai et al., 2007). We used words 
with phonemic and prosodic contrasts as auditory stimuli. Using 
the same stimuli, functional brain mapping with NIRS has demon-
strated a left-side advantage for the phonemic contrast compared to 
the prosodic contrast in normal adults, school-age, and preschool 
children, as well as infants older than 1 year (Furuya et al., 2001; 
Furuya and Mori, 2003; Sato et al., 2003).

MATERIALS AND METHODS

PARTICIPANTS

Ten adults (10 males, age range 18–44 years), seven school-age 
children (two females and five males, age rage 6–12 years), and 
six preschool-age children (one female and five males, age range 
3–5 years) who stutter participated in the present study. All sub-
jects were native Japanese speakers with no reported history of 
hearing impairments. They did not show impairments in speech 
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Colchester, VT, USA). The 3-D coordinates were superimposed onto 
T1-weighted MR brain images for each adult subject to identify 
the centers of recording sites. T1-weighted anatomical images were 
acquired in 80 contiguous axial slices with a thickness of 2.0 mm 
using a 1.5-T scanner [Excelart, Toshiba Medical, Japan; repetition 
time/echo time (TR/TE) 15/3.4 ms, flip angle (FA) 20°, matrix 
256 × 192, field-of-view (FOV) 22 cm × 22 cm]. The channels close to 
the lateral end of the border between the transverse temporal gyrus 
and the planum temporale (PT), as projected onto a  parasagittal 
MRI, should be in the auditory area and were referred to as auditory 
channels (Minagawa-Kawai et al., 2002; Furuya and Mori, 2003). 
This procedure selected the recording channels whose centers were 
within a 1.5-cm radius of the above-mentioned border. Thus, the 
channels should include the signals in the auditory cortex due to 
the spread of the laser in the brain tissue (Yamashita et al., 1996). 
Since it was difficult to acquire MR brain images of some young 
subjects, the positions of optical probes were recorded either with 
a 3-D digitizer or a digital camera for identification of approximate 
recording locations. Because the primary auditory cortex is located 
approximately 6 cm perpendicularly above the plane containing 
the bilateral preauricular point (PA) and the nasion, the channels 
at and around the height above, and the anteroposterior position 
at, the PA were presumed to be in or close to the auditory area, and 
referred to as auditory channels.

PROCEDURE

The experiments were carried out in a sound-attenuated room. 
Stimuli were presented at a comfortable level (60–70 dB SPL) 
via insert earphones (EAR TONE 3A) for adults and a loud-
speaker (i15, TANNOY) for children in accordance with the 
previous studies for the control subjects (Furuya et al., 2001; 
Furuya and Mori, 2003; Sato et al., 2003). Because it was dif-
ficult to confirm that ear plugs were tightly pushed into ears in 
the measurements of children, the speaker was used for them. 
Each participant was tested in two conditions in respective ses-
sions with a block design paradigm. In the phonemic condi-
tion, the baseline block contained only /itta/ which was repeated 

 understanding. They were all right-handed, as assessed by the 
Edinburgh Handedness Inventory (Oldfield, 1971). Participants 
were recruited from a hospital or a self-help group for stuttering. 
An additional seven subjects (two adults, four school-age children, 
and one preschooler) were tested, but excluded from the analy-
sis due to non-right-handedness. Stuttering severity was assessed 
with a 7-scale rating system from 1 (very mild) to 7 (very severe; 
Akahoshi et al., 1981; Johnson et al., 1963). The stuttering severity 
ranged from 2 to 7 in adults (2, n = 2; 4, n = 4; 5, n = 2; 6, n = 1; 
7, n = 1), from 2 to 5 in school-age children (2, n = 2; 3, n = 2; 4, 
n = 2; 5, n = 1), and from 2 to 4 in preschoolers (2, n = 2; 3, n = 3; 4, 
n = 1). As data of age-matched normal controls for each stuttering 
group, we referred to data measured in previous studies (10 normal 
adults, 10 males, age range 20–32 years; 10 normal school-age chil-
dren, 3 females and 7 males, age range 6–10 years; 8 preschool-age 
children, 4 females and 4 males, age range 3–5 years; Furuya et al., 
2001; Furuya and Mori, 2003; Sato et al., 2003). The participants or 
their parents gave written informed consent before the experiment. 
This study was approved by the Ethical Committees of National 
Rehabilitation Center for Persons with Disabilities (NRCD).

STIMULI

Three different inflected forms of a Japanese verb /iku/ (meaning 
“to go”) were produced with a synthesis-by-analysis system (ASL, 
Kay Elemetrics Corp., USA) based on a speech signal recorded 
by a male adult (Imaizumi et al., 1998). By changing the formant 
frequencies and the vocal pitch contour, (A) past declarative /itta/ 
(“went”), (B) imperative /itte/ (“Go away”), and (C) interrogative 
/itta?/ (“went?”) forms of the verb were synthesized. These words 
consisted of a common initial /i/ vowel with a length of 80 ms, a 
200-ms silent interval, and then the final syllable with a length of 
80 ms. Only the final syllable was changed in the two derived words. 
The phonemic contrasting pair /itta/ and /itte/ had different final 
vowels due to the manipulation of the frequencies of their form-
ants 1 and 2 but has an identical falling pitch pattern. The prosodic 
contrasting pair /itta/ and /itta?/ were only different in the pitch 
contours of the same final vowel.

NIRS RECORDING

Recordings of the changes in hemoglobin (Hb) concentrations in the 
bilateral temporal areas were made with multi-channel NIRS (ETG-
100, Hitachi Medical Co., Japan; OMM-2001, Shimadzu, Japan), 
using near-infrared lasers at two (780 and 830 nm; ETG-100) or 
three wavelengths (780, 800, and 830 nm; OMM-2001). OMM-2001 
was used only for the measurement of the school-age control group. 
OMM-2001 used the additional middle wavelength (800 nm), which 
should have the almost identical path-length in vivo as the other 
wavelengths. The recording channels resided in the optical path in 
the brain between the nearest pairs of incident and detection probes, 
which were separated by 3 cm on the scalp surface (Nakajima et al., 
1993; Fukui et al., 2003). Five incident and four detection probes 
arranged in a 3 × 3 square lattice were placed on each lateral side 
of the head, which made the total number of recording channels 
12 on either side because each pair of adjacent incident and detec-
tion probes constituted a single measurement channel (Figure 1). 
After the optical measurement, the positions of the optical probes 
were recorded with a  three-dimensional (3-D) digitizer (Polhemus, 

FIGURE 1 | Arrangement of NIRS recording probes. A schematic top view 

of the head shows that five emission and four detection probes were placed 

on the temporal scalp with a thermoplastic shell in a 3 × 3 square lattice, 3 cm 

apart from the nearest others, which constituted 12 recording sites on each 

side. The light incident probes are represented by filled circles; the detection 

probes, by open circles; measurement channels, by numerals.
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In addition, the response peaks during the test blocks were com-
pared with 0 (the average of the 10-s pre-test baseline) in each 
condition, side and group (one-sample t-test with false discovery 
rate (FDR) correction at q < 0.05 for each group). This was done 
to determine whether or not the phonemic or prosodic changes 
in the test blocks elicited significantly larger total Hb changes than 
the baseline blocks.

RESULTS

HEMODYNAMIC RESPONSES OF PEOPLE WHO DO AND DO NOT 

STUTTER

Figure 2 shows NIRS responses in adult, school-aged, and preschool-
aged PWS, in addition to typical responses of a non-stuttering adult 
(Furuya and Mori, 2003). This figure indicates the averaged time 
courses of the total Hb during test blocks in each condition for a 
non-stuttering adult and all stuttering participants. Whereas the 
adult who did not stutter showed a larger response on the left side 
under the phonemic condition and a larger response on the right 
side under the prosodic condition, few of the stuttering participants 
showed such left–right reversal between the two conditions.

Figure 3 shows the averaged peak values of the total Hb 
responses in the left and right sides under the two conditions. All 
groups showed significant responses during the test blocks against 
zero baselines on the left and the right sides under each condition 
(one-sample t-test, p < 0.05 respectively).

The lateralization pattern across the phonemic and prosodic con-
ditions differed between the stuttering and control groups. Results 
of two-way ANOVA, with condition (phoneme and prosody) and 
side (left and right) as within-subject factors in each adult group 
showed that the PWS exhibited no significant interaction or main 
effects for the two factors [F(1,9) = 0.30, p > 0.10; F(1,9) = 0.02, 
p > 0.10; F(1,9) = 3.33, p > 0.10, interaction, condition, side respec-
tively], whereas the control (Ctrl) group exhibited a significant 
interaction [F(1,9) = 12.07, p < 0.01] but no effects for condition 
[F(1,9) = 0.32, p > 0.10] or side [F(1,9) = 0.05, p > 0.10], suggest-
ing that the activations in the left and the right differed between 
the conditions only in the control group (Figure 3A). Simple effect 
tests showed that the left-side response was significantly larger than 
the right-side response under the phonemic condition (Holm cor-
rection, p < 0.05).

Similar results were observed in the school-age groups 
(Figure 3B). The school-age children who stutter exhibited no sig-
nificant interaction or main effects for the two factors [F(1,6) = 0.81, 
p > 0.10; F(1,6) = 0.06, p > 0.10; F(1,6) = 0.11, p > 0.10, inter-
action, condition, side respectively]. In contrast, the school-age 
control group exhibited a significant interaction [F(1,9) = 12.29, 
p < 0.01] but no effects for condition [F(1,9) = 0.00, p > 0.10] or 
side [F(1,9) = 1.98, p > 0.10]. Simple effect tests showed the larger 
left-side response (compared to right side) under the phonemic 
condition (p < 0.05) and the larger right-side response (compared 
to left side) under the prosodic condition (p < 0.05).

The preschool children who stutter showed a different response 
pattern all together. They showed no significant interaction or main 
effect for the condition factor [F(1,5) = 0.87, p > 0.10; F(1,5) = 0.00, 
p > 0.10, interaction, condition respectively], but showed a main 
effect for the side factor [F(1,5) = 69.55, p < 0.01], suggesting that 
right-side activation was predominant under both conditions in this 

approximately once every second (0.9–1.1 s), whereas the test 
block consisted of /itta/ and /itte/ presented in a pseudo-random 
order with equal  probabilities at the same rate as in the baseline 
block. Baseline and test blocks each lasted for 20 s, and they were 
presented alternately at least five times. The prosodic condition 
was similar to the phonemic condition, except for the presenta-
tion of the /itta/ and /itta?/ combination in the test block. The 
presentation order of these two conditions was counterbalanced 
across subjects within each group.

DATA PROCESSING

Changes in the concentrations of Hb were calculated from the 
attenuation data of the laser beams. The total Hb responses during 
the test blocks in each condition were averaged synchronously and 
were smoothed with a 5-s moving average after manually excluding 
the blocks with gross motion artifacts. The maximal positive total 
Hb change was evaluated against the 10 s pre-test baseline period 
for each condition and for each auditory channel. To choose one 
of the auditory channels for statistical analysis, we first averaged 
the positive total Hb response across the two conditions and then 
selected the channel that exhibited the maximum value on each 
side (Minagawa-Kawai et al., 2007).

Because the measurement of Hb concentration obtained with 
continuous wave lasers lacks a reference to optical path-length, we 
cannot determine absolute values in principle. Consequently, the 
comparison or integration of data between different channels or 
across subjects may be difficult to justify. However, a recent study 
demonstrated that the optical path-lengths are similar among 
nearby channels and between homologous regions of left and 
right hemispheres within a subject (Katagiri et al., 2010). On the 
basis of these findings, the maximal values of total Hb changes in 
the left and right auditory channels were subjected to a two-way 
analysis of variance (ANOVA), with conditions (phoneme and 
prosody) and sides (left and right) as within-subject factors in each 
group. It should be noted that Katagiri et al.’s (2010) findings do 
not extend to a comparison across different subjects. Moreover, 
the two different NIRS systems that differ in the number of lasers 
used for calculating Hb concentrations (2 vs. 3) were used for the 
school-age children (ETG-100 for school-age children who stut-
ter and OMM-2001 for school-age children who do not stutter). 
Since it is possible that the analyses using the Hb values from these 
machines have different sensitivities, the data were subjected to 
within-subject ANOVAs for each group, in which a single system 
was used.

In order to assess cerebral lateralization, a laterality index, 
LI = (L − R)/(L + R), was calculated from the peaks of the aver-
aged maximal total Hb responses in the left (L) and the right (R) 
auditory channels. Note that LI is not affected by the possible sen-
sitivity difference of the recording systems. LI could range from 
−1 to 1, with a positive value indicating left dominance. We com-
pared LI values between the two conditions (Wilcoxon signed-rank 
test) in each subject group. Subject-by-subject analysis was also 
performed: without averaging over repeated blocks, the left and 
right peaks of total Hb changes were collected from individual 
test blocks, for which respective LIs were calculated for com-
parison between the two contrast conditions within each subject 
(Mann–Whitney U-test).
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FIGURE 2 | Hemoglobin responses evoked by the phonemic and 

prosodic contrasts. Time courses of NIRS responses of total Hb in the 

temporal areas (left and right) are shown for individual subjects: the 

responses of a non-stuttering adult (adult control; data adopted from Furuya 

and Mori, 2003) (A), and the responses of people who stutter (PWS): adults 

(B–K), school-age children (L–R), and preschool children (S–X). The abscissas 

indicate time and the ordinates indicate total Hb concentration changes. 

The vertical lines at 0 and 20 s show the beginning and the end of the test 

blocks, respectively. In (A), the larger responses are seen in the left side 

under the phonemic condition and in the right side under the prosodic 

condition. Few of the stuttering subjects showed this normal response 

pattern under either condition.
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indicate that a system did not show a different sensitivity compared 
with the other one at least in this analysis. Moreover, similar results 
were observed between adults and children in either people who 
do or do not stutter group, suggesting that the different way of 
stimuli presentation, namely, by the earphones or the speaker, did 
not seriously impact on the current results.

ANALYSES OF LATERALITY INDEX

Figure 4 shows individual laterality indices under the phonemic 
and prosodic conditions in the three age groups with respective 
controls. First, we analyzed the differences in LIs between the two 
conditions in each subject group. The group analyses showed that 
each stuttering group failed to show significant differences in LIs 
between the two contrast conditions (Wilcoxon signed-rank test, 
adult, p > 0.10; school-age, p > 0.10; preschool, p > 0.10). On the 
other hand, all control groups showed significant differences in 
LIs between the two contrast conditions (adult control, p < 0.01; 
school-age control, p < 0.01; preschool control, p < 0.05).

SUBJECT-BY-SUBJECT ANALYSIS OF LATERALITY INDEX FOR THE TWO 

CONDITIONS

Subject-by-subject analysis revealed that two adults (20%) and one 
school-age child (14%) who stutter showed significant differences 
between their respective phonemic and prosodic LIs (white circles in 
Figure 4). The remaining subjects who stutter (adults 80%; school-
age 86%; preschool 100%) showed no significant difference in LI 
between the two conditions (filled circles in Figure 4). Note that the 
significant differences of the three subjects who stutter were due to the 
rightward LIs for the phonemic contrast in comparison to that for the 
other condition. This was opposite the normal control subjects: seven 
of the adults (70%), seven of the school-aged (70%), and five of the 
preschool (63%) children who do not stutter showed significant left-
ward LIs for the phonemic contrast. The remaining control subjects 
(adults 30%; school-age 30%; preschool 37%) showed no significant 
difference in the LI between the two conditions. The ratios of subjects 
in the response laterality patterns differed significantly between the 
people who do and do not stutter in each age group (Fisher’s exact 
test, adult, p < 0.01; school-age, p < 0.01; preschool, p < 0.05).

CORRELATION BETWEEN LATERALITY INDEX AND STUTTERING 

SEVERITY

Correlation analyses indicated that stuttering severity was nega-
tively correlated with the LI under the phonemic condition, but 
not significantly correlated with the LI under the prosodic con-
dition in adults who stutter (Spearman’s rho = −0.65, p < 0.05; 
Spearman’s rho = 0.36, p > 0.05, phonemic and prosodic condi-
tions, respectively; Figure 5). In contrast, neither school-age nor 
preschool-age children who stutter showed significant correlations 
between severity and LI under either condition (school-age: pho-
nemic condition, Spearman’s rho = 0.26, p > 0.05; prosodic con-
dition, Spearman’s rho = 0.53, p > 0.05; preschool-age: phonemic 
condition, Spearman’s rho = −0.31, p > 0.05; prosodic condition, 
Spearman’s rho = 0.19, p > 0.05). Although we analyzed the com-
bined data of school-age and preschool children, no significant 
correlation was observed between severity and LI under either 
condition (phonemic condition, Spearman’s rho = 0.03, p > 0.05; 
prosodic condition, Spearman’s rho = 0.45, p > 0.05).

group (Figure 3C). In contrast, the preschool control group exhib-
ited similar results as the adult and school-age control groups: they 
showed a significant interaction [F(1,7) = 13.32, p < 0.01] but no 
effects for condition [F(1,7) = 0.80, p > 0.10] or side [F(1,7) = 0.38, 
p > 0.10]. Simple effect tests showed the larger left-side response 
(compared to right side) under the phonemic condition (p < 0.05). 
Note that all three control groups showed the significant interac-
tion of condition × side factors despite of the use of the different 
measurement system for the school-age control group. This must 

FIGURE 3 | Averaged peak responses to the phonemic and prosodic 

contrasts. Averaged peak responses are shown according to two conditions 

(phoneme and prosody contrasts), people who stutter (PWS) and controls 

(Ctrl), and three age groups (A: adults, B: school-age children, C: preschoolers). 

White bars, left auditory channels; black bars, right auditory channels. Error 

bars: SEM. All the responses are significant. For the conditional differences, 

see text. Only the school-age controls were measured with OMM-2001. 

Control (Ctrl) data were adopted from Furuya and Mori (2003), Furuya et al. 

(2001), and Sato et al. (2003).
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between the two contrast conditions. That is, normal controls 
showed left-side and right-side dominance for the phonemic and 
the prosodic contrasts, respectively, whereas the adult and school-
age stuttering groups showed no lateralized responses to either 
contrast. The preschool children who stutter, on the other hand, 
showed right-side dominance under both conditions. The group 
analysis of LIs found the abnormal lateralization in PWS: all control 
groups showed left-dominant responses to the phonemic contrast 
compared to the prosodic contrast, but no stuttering group showed 
differential lateralized responses between the two contrasts. This 
abnormality in functional lateralization during auditory processing 
is in line with previous studies using a dichotic listening paradigm 
(Curry and Gregory, 1969; Brady and Berson, 1975; Sommers et al., 
1975; Blood, 1985) and with one using MEG (Salmelin et al., 1998). 
The current results in children who stutter are compatible with the 
previous studies showing that brain responses to auditory process-
ing differ between children who do and do not stutter (Kaganovich 
et al., 2010; Beal et al., 2011). The present study confirms the abnor-
mal auditory functional lateralization seen in PWS, and extends it 
from adults to down to the preschool age (i.e., shortly after the onset 
of stuttering). This seems to imply that it is relevant to the onset of 
stuttering rather than simply a consequence of long-term stuttering.

Previous studies using the same paradigm as in the current study 
have shown that infants around 1 year old already show a significant 
leftward shift of responses to phonemic contrasts compared with 
those to non-phonemic contrasts (Sato et al., 2003; Minagawa-Kawai 
et al., 2007). The present result of the atypical functional lateraliza-
tion of children who stutter at 3–5 years of age still leaves room for 
further research to investigate how the abnormality is established. 
Two alternatives are possible: children who are at risk for stuttering 
might reset the normal lateralization they once had at around 1 year 
of age, or they never develop the normal pattern of lateralization 
before they start stuttering. Longitudinal studies of younger children 
of 1–3 years old are needed in order to examine the causal relation-
ship between the abnormality and the onset of stuttering.

Adults who stutter show reduced asymmetry in PT (Foundas 
et al., 2001) and increased white matter volumes in the right hemi-
sphere, including superior temporal gyrus (Jäncke et al., 2004). It 

DISCUSSION

To examine whether abnormal functional lateralization is associ-
ated with the onset or the result of stuttering, we used NIRS to 
measure brain responses of PWS during the auditory processing of 
phonemic and prosodic contrasts, and compared these data with 
age-matched control data. The Hb data analyses revealed that all 
control groups showed differential left–right activation patterns 

FIGURE 4 | Individual laterality indices in different groups. The individual 

laterality indices (circles) under the phonemic and prosodic conditions are 

linked with a line.The arrangement of groups and labeling convention are as in 

Figure 3. (A: adults, B: school-age children, C: preschoolers). Open and filled 

circles represent significant and non-significant differences, respectively, 

between the linked LIs. Note that the open circles of controls (Ctrl) show 

significant left-side dominance for the phonemic condition, whereas those of 

people who stutter (PWS) show right-side dominance for the same condition. 

Control (Ctrl) data were adopted from Furuya and Mori (2003), Furuya et al. 

(2001), and Sato et al., (2003).

FIGURE 5 | Correlation between severity of stuttering and LIs for 

phonemic and prosodic conditions. The relationships of the laterality 

indices (ordinate) and the stuttering severity (abscissa) of adults who stutter 

are shown under the phonemic (white squares) and prosodic conditions 

(filled circles).
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prosodic processing would later shift to the left to make more room 
for the increasing demand of phonemic processing in the right. 
The former is possibly less demanding for timing, so that it could 
be handled even with the defective arcuate fasciculus, or through 
the intact ventral pathway to the frontal area. The shift to the left 
of the prosodic processing may be related to poor perception in 
PWS of linguistic stimuli with prosodic information (Blood, 1996). 
Clearly, more longitudinal studies are needed to clarify these points.

The correlation analyses in the current study revealed that in the 
adults who stutter, stuttering severity was negatively correlated with 
the LI for the phonemic contrast, whereas neither school-age nor 
preschool stuttering groups showed significant correlations. This 
indicates that more severe stuttering symptoms are correlated with 
more abnormal lateralization patterns for the phonemic contrasts. 
This finding confirms the close relationship between the auditory 
deficit and stuttering. The results of the children, however, should 
not be directly compared to that of the adults due to the narrower 
distribution of stuttering severity.

To conclude, the NIRS method is practical not only for elucidat-
ing neural correlates of stuttering in children and adults alike, but 
also for evaluating stuttering individually. Due to the paucity of 
childhood functional studies, there has been long-standing contro-
versy whether the ambiguous lateralization for cerebral linguistic 
processing is a cause or a result of stuttering. The current study 
using NIRS shows the progress of abnormal lateralization of recep-
tive speech processing in the posterior language area, and tracks 
the anomaly down to the preschool age, soon after the onset of 
stuttering, thus narrowing down the search period for causality 
to between 1 year and the onset of stuttering (3–5 years). Since 
the NIRS method is well-suited for studying children and infants, 
future longitudinal studies using NIRS should greatly contribute 
to elucidating the pathophysiology of developmental stuttering. 
Subject-by-subject analysis in this study revealed that not a single 
subject who stutters showed a left-hemisphere advantage in the 
phonemic contrast processing over the prosodic contrast process-
ing. Together with the significant correlation between abnormal 
lateralization in the phonemic condition and the severity of stut-
tering, these results may provide useful information for the clinical 
prognosis and treatment of stuttering.
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has been also reported that PWS with atypical PT asymmetry (i. e., 
rightward PT asymmetry) show more disfluency than PWS with 
typical PT asymmetry (L > R), and PWS with atypical PT asym-
metry improved disfluency more with delayed auditory feedback 
(DAF) than those who stutter with typical PT asymmetry (Foundas 
et al., 2004). As alteration in the auditory signal by DAF might 
correct an auditory perceptual defect, it is possible that anomalous 
auditory processing is related to structural abnormalities in PWS. 
If this is true, not only anatomical PT asymmetry but anomalous 
functional lateralization found in this study might be clinically 
applicable to a prediction of improvement of disfluency by DAF. We 
also have to consider that brain anatomy can be changed by behav-
ior or function. Since alterations in behavior such as music training, 
handedness, and language proficiency can produce changes in brain 
anatomy (Gaser and Schlaug, 2003; Buchel et al., 2004; Mechelli 
et al., 2004), most of the anatomic anomalies in PWS could be the 
result of either the long-term dysfunctions in auditory processing 
or the insufficient connection between the anterior and posterior 
language areas and the left motor cortex (Sommer et al., 2002; 
Watkins et al., 2008). In fact, no increases in volume were found 
in the right-hemisphere speech regions in children who stutter, 
and no reduction in asymmetry in the PT were observed (Chang 
et al., 2008). Our findings of abnormal functional lateralization as 
early as 3–5 years thus suggest that the anatomical abnormalities in 
the posterior language cortices develop as the result of more than 
15 years of anomalous functional lateralization in the auditory area.

In the present study, all three age groups of PWS demonstrated 
similar results in terms of the lack of the stimulus dependence 
of LI: non-significant differences of LI were found between the 
phonemic and prosodic contrast conditions. Nevertheless, the Hb 
data revealed a difference in the preschool children who stutter, in 
contrast with the other two stuttering groups: only the preschoolers 
showed larger right-side responses to both phonemic and prosodic 
contrasts. It is possible that the affected arcuate fasciculus (Sommer 
et al., 2002; Chang et al., 2008) with smaller Broca’s area (Chang 
et al., 2008) exerts a disruptive influence on the left auditory cortex 
and on the interaction between the left anterior and posterior lan-
guage areas in the rapidly developing immature brain, thus shifting 
the responses to both stimuli to the right. Later, compensatory con-
nections (yet to be specified) may restore the activation in the left 
auditory area to some extent especially by prosody. Alternatively, 
if the prosodic processing is intact in early childhood, it should be 
handled in the right side starting at 1 year of age (Sato et al., 2003). 
If the phonemic processing has to be handled by the right side due 
to inefficient connections between the left auditory and the anterior 
language areas, both phonemic and prosodic functions would be 
predominantly handled in the right auditory area, of which the 
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