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FUNCTIONAL LAW OF THE ITERATED LOGARITHM AND
UNIFORM CENTRAL LIMIT THEOREM FOR PARTIAL-SUM
PROCESSES INDEXED BY SETS.

BY RICHARD F. Bass AND RoNALD PYKE'
University of Washington

Let {X;: j € J% be an array of independent random variables, where J¢
denotes the d-dimensional positive integer lattice. The main purpose of this
paper is to obtain a functional law of the iterated logarithm (LIL) for suitably
normalized and smoothed versions of the partial-sum process S(B) = Y;epX;.
The method of proof involves the definition of a set-indexed Brownian process,
and the embedding of the partial-sum process in this Brownian process. In
addition, the LIL is derived for this Brownian process. The method is extended
to yield a uniform central limit theorem for the partial-sum process.

1. Introduction. This paper focuses upon the asymptotic properties of
partial-sum processes indexed by sets in Euclidean spaces. These processes are
determined by an array of random variables (r.v.’s) {X;: j € J%} where J¢ denotes
the d-dimensional positive integer lattice. We view X as a random mass attached
to the grid point j. For any subset B C R, one may then define the partial-sum

(1.1) S(B) = YienX;

to represent the random measure of the region B. We assume throughout that
EX; = 0 and var(X;) = 1 for every j € J° and that the Xj are independent and
identically distributed.

The main purpose of the paper is to obtain a functional law of the iterated
logarithm (LIL) for suitably normalized and smoothed versions of S. The tech-
nique used involves the construction of an equivalent version of {X;: j € J¢} that
is embedded in a suitable Brownian process. The general approach is then
analogous to that introduced by Strassen (1964) for his proof of the first
functional LIL for sequences of independent and identically distributed (IID)
r.v.’s. The methods are then extended to obtain a uniform central limit theorem.

As motivation and potential application for our results, consider the situation
where a sample is taken over an area (e.g., of insect larvae in a forest, of mineral
deposits, of cells in tissue, etc.). What can one say about the properties of the
sample if the area is large? That is, if {A,} is a (not necessarily nested) sequence
of sets whose areas are increasing and S(A,) are the sample statistics, one would
expect, under appropriate independence assumptions and normalizations, that
the S(A,)’s should satisfy a strong law of large numbers (SLLN), a central limit
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14 R. F. BASS AND R. PYKE

theorem (CLT), and also a law of the iterated logarithm (LIL). If the sequence
of sets {n™'A,} is contained in a family o/ satisfying certain assumptions, then
the results of this paper will provide the desired LIL and CLT. The SLLN, which
requires completely different assumptions and methods, is derived in Bass and
Pyke (1984).

By (1.1), S is defined for any subset of R°. However, it will be necessary to
restrict the domain of S in order to obtain the “uniform” results of this paper. It
will also be necessary, due to the largeness of the index families (cf. Pyke (1983)
and remark number 7 in Section 8 below), to work with a smoothed version of S,
namely X, that is defined by

(1.2) X(B) = Yier| BN Gl X;

where C;denotes the unit cube (j — 1, j], and | - | and A(-) are used interchange-
ably as convenient to denote Lebesgue measure. Thus X is a signed measure
which is absolutely continuous with respect to Lebesgue measure A, and for which
the density dX/d\ equals Xjon C;. We view X(B) as the random measure of B
that is obtained when the random mass Xj is uniformly spread over the cube C;,
rather than being attached to the point j as it is in the definition of S(B).

Before discussing further the scope of the results and the related literature,
the following notation is needed. Let o/ denote a family of subsets of the unit d-
dimensional cube I¢ = [0, 1]% Define

Lyn = log log n, b, = (2Lyn)2

All logarithms are to base e, and we assume n = 3 to insure proper definition.
For any set A and real x, let xA = {xa: a € A}. Define {S,(A): A € </} and
{(X.(A): A€ 7} by

(1.3) S.(A) = n"¥?b;'8(nA), X.(A) = n"?;'X(nA).

Let Z be a Brownian process indexed by a family .2 of Lebesgue measurable
subsets of R% That is, for each B € %, Z(B) is a mean zero normal r.v. with
variance | B | and

(1.4) cov(Z(B), Z(C)) = |BN C|, for B,C€E %

In order for the functional LIL to be formulated, it is necessary that % be a
large family of subsets of [0, ©)¢, determined by <4 on which it is possible for Z
to have continuous sample paths with respect to the Lebesgue symmetric differ-
ence pseudo-metric. This requires o7 to satisfy certain structural properties that
are described in Section 2. For now, assume only that the following normalized
form of Z is well-defined, namely {Z,(A): A € o/} where

(1.5) Z.(A) = n"*b;'Z(nA).

In Section 3 we prove the a.s. relative compactness of {Z,} and identify the
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limit points to be

Y. = {G = J:) g d\: Domain(G) = &
(1.6) '

g: I* — R' such thatL [g]%d\ = 1},

the set of all absolutely continuous signed measures with total variation bounded
by 1. (The elements G € ¥ though restricted here to o/ are definable on the
family of Lebesgue measurable subsets of I°.) It will be convenient to identify G
and its density g whenever speaking of members of &

In Section 4, the embedding of the partial-sum process in the Brownian
process Z is defined. Many embeddings can be suggested, but the one used here
seems to be the simplest to describe and the most tractable. It was proposed by
the second author in 1970 for the purpose of obtaining the functional LIL for
partial-sum processes indexed by the orthants. However, the moment conditions
required to use it were too strong for the orthants. The problem of this-functional
LIL (cf. Pyke, 1973) was solved by Wichura (1973) using the methods of Hartman
and Wintner (1941) and only second moments were required. This embedding of
an array of partial sums into Z was also proposed independently by Kiefer (1972)
where it is central to his embedding of empirical processes in tied-down Brownian
sheets; Kiefer’s overall construction for empirical processes is necessarily much
more difficult than for partial sums.

In order to use the embedding method for our set-indexed processes, it is
necessary to have good tail estimates on the probability of deviations between
the embedded process and the Brownian process in which it is embedded. These
estimates are provided in Section 5. Some of these results may be of general
interest as they make use of exponential bounds for martingales and stochastic
integrals. These estimates are then applied in Section 6 to obtain the main
functional LIL for the smoothed partial-sum processes.

In Section 7, the embedding methods and estimates of the preceding sections
are used to obtain a Uniform CLT for the partial-sum processes. The first such
Uniform CLT was derived by Pyke (1983) in which the index families were
metrized by the stronger Hausdorff metric. The result obtained in this paper
provides an improvement in the moment condition, though the order of the finite
moment still increases with the size of the index family at the same rate.

In Section 8, some general remarks, including open problems and directions
for future research suggested by our results, are discussed.

2. The index families o/ and Brownian process Z. As mentioned in
Section 1, the Brownian process Z: = {Z(A): A € %)} is a mean-zero Gaussian
process indexed by %, whose covariances are given by (1.4). The index family %
is a collection of subsets of RZ = [0, «)% It is necessary for the results of this
paper that Z exist as a process whose sample paths are continuous with respect
to the Lebesgue symmetric difference pseudometric d.(A, B): = |A A B].
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Sufficient conditions on an index family are known that will insure continuous
sample paths when the index family comprises subsets of a compact set such as
I¢. (Cf. Dudley, 1973.) In the case of Brownian Sheet, as in the case of standard
Brownian Motion, the extension of a continuous process on I¢ to one on R{ is
straightforward. In the case studied here, the extension is not so obvious and in
fact requires that additional structure be imposed.

The main focus in this paper is upon the normalized partial-sum and Brownian
processes, X,, and Z,, defined respectively by (1.3) and (1.5). These processes are
random set functions defined on o7 a family of subsets of I% It is this family o/
that is central, and it is upon it that properties must be imposed. These properties
will enable Z to be defined continuously on a family of subsets in R% that is
sufficiently large for the existence in Z of suitable embedded partial-sum pro-
cesses; cf. Section 4.

The properties of o7 that will be used below are defined as follows:

(i) Contraction closed: A € o7 implies sA € 7 forall0 <s<1.
(i) Interval closed: (s, t] € o7 for all s, t € I°.
(iii) Totally bounded: For every & > 0, there exists a finite -net o4 C o7 such
that for any A € o there exists A; € o4 such that )

di(4, A)) = |A A A =6

(iv) Boundary smooth: There exists a constant c such that for all £ > 0 and for
all A € o7, |A(e) | < ce where A(e) = A°\A, denotes the e-annulus about
the boundary of A with respect to Euclidean distance.

(v) Entropy integrable: If v(3): = card(94) and H(8): = log »(3), then

(2.1) J; {H(u)/u}'? du < .

For the statements of Theorems 6.1 and 7.1 we will place a slightly stronger
condition than (2.1) upon H, namely,

(2.2) HO)=Ké”", 0<dé=1
for some constants K > 0 and 0 < r < 1. We refer to the resulting stronger
property as

(v’) H satisfies (2.2) for0 <r<1.

Assumptions (i) and (ii) may be assumed without loss of generality in the
sense that if o/ were any family of subsets of I that satisfies (iii) and (v), and
if o/ denotes the union of o7 with the set of all contractions sA for 0 <s<1and
A € o7 and with the set of all intervals, then o7 also satisfies (iii) and (v). For
the latter statement, note that the entropy of &/*, »* say, satisfies

v () = (67 + 1)W(5/2) + (07 + 1™

since 6! + 1 bounds the number of points in a Euclidean é-net of [0, 1] and
di(sA, [s/6]64;5) < dL(sA, sA;) + di(sAs, [s/6]10A;) < s96 + & < 26. Its logarithm,
H* say, therefore satisfies (2.1).

The inclusion of the nonrestrictive assumptions (i) and (ii) ensures that our
embedded processes (cf. Section 4) will always be well defined. However, as
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already mentioned, it is necessary to have the Brownian process Z defined over
the entire positive orthant R%. This involves additional difficulties that are not
present when working with Brownian Sheets which are indexed by points (or
equivalently, lower-left orthants) rather than sets. The context here is as follows.
The functional LIL involves contracting and rescaling random measures of sets
in R? to sets in I Specifically, we require the existence of a Brownian process,
Z, that is defined on nA for each integer n = 1 and each A € o/ For this purpose
we must even impose an additional property on <7 namely,

(vi) Origin sparse: For every j € J¢, the family

S=hmANG+I)AE A n=1)

satisfies (iii) and (v).
This property (vi) will be needed for the functional LIL for Z but not for X. Its
purpose is to ensure that a continuous Brownian process can be defined on the
family of all intersections of the cube j + I¢ = C; with multiples of o/. If Z*
denotes this Brownian process, then the desired process Z that is defined over
UZ-1n<” can be constructed by patching together the Z¥s as follows:

(23) Z(nA) = stnlzj(nA N C,)

To see that (vi) is indeed a restriction, consider, for example, a sequence
{%B,: n = 1} of families of closed subsets of I¢ such that every element of every
%, is contained in I"\27'I¢ and such that the log-entropy of %, is H,(5) =
8-~ Now let

(2.4) 7 =Uj 27 %,.

For this choice of o7, it is not true that (vi) is satisfied. In particular, take j =
0. Then

MO -_-) U:=12n(2_n—@n) = U;.:=1—@n

so that neither (iii) nor (v) need be satisfied. To simplify the illustration, one
may specialize to d = 1 and %, equal to the family of all finite unions of the
intervals 271 + ({ — 1)/n, 1 + i/n], 1 < i < n. It is straightforward to check that
the o7 of (2.4) satisfies (iii) and (v) but that ©7° = U,, 4, does not.

THEOREM 2.1. If oZis a family of subsets of I¢ that possesses Property (vi),
then there exits a continuous Brownian process {Z(B): B € %} with respect to dy,
where = {nA: A€ & nz=1}.

PRrROOF. By property (vi), the existence of a continuous Z’ on o77 follows
from know results; Dudley (1973), Section 1. The required Z follows from
(2.3).0

3. Functional LIL for Z. Recall the definition of & given in (1.6) and the
construction of the Brownian process Z given in Theorem 2.1. For f: o&/— R’,
define the supremum norm | f||., to be supse-/| f(A)|.
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THEOREM 3.1. If o satisfies properties (i)-(iii), (v), and (vi), then with
probability one, {Z,: n = 3} is relatively compact with respect to | - ||., with limit
points exactly equal to &

PrROOF. Let

¥* = {f: &/ — R! for which |f — G|., < ¢ for some G € ¥}

denote the open e-sphere about & with respect to the supremum norm || - ||, .
Note that for any A € &7 and G € ¥ Holder’s inequality implies that

(3.1) |G(A)| < |A|A
For A > 1, set n; = [\], i = 1. Let Y; be defined by
Yi(A) = Z(n;,A)/ni2.

The Y; are £ (%/)-valued random variables that are Gaussian, mean 0, and
equal in law to Z. If 4., is the Borel o-field with respect to the pseudo-metric
dr, and if u is a signed measure on (7 %,,) with total variation M, then

Ein(A)ﬂ(dA)fYk(B)#(dB)

E f f | (1:4) N (B) | w(dA)u(dB)/n*nf* < M| niI*| [ ng®

sM*n#?/ny? >0 as i—>oo and k—i— .

By Theorem 4.1 of Carmona and Koéno (1976), this condition implies that
{Y;/v2 log i, i = 3} is relatively compact in %(.27) with limit points exactly %,
the closed unit ball in & the reproducing kernel Hilbert space for Z. Here

&= {f: f maps &/— R' and for some finite signed measures u

on (4 %), f(A) = f |A N B| u(dB)}

is a Hilbert space when given the inner product

<f|-ﬂBlu(dB),fl-ﬂCI‘P(dC)>

(3.2)
= ff | BN C| u(dB)P(dC).

& has the reproducing property
(f,R(-,A)) =f(A) for fELAE A

where R(B, A) = E(Z(B)Z(A)) = |B N A| is the covariance function of the
process Z.
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If 4 is a finite signed measure on (4 4.,) and f(A) = [ | A N B| u(dB), set

(3.3) gt) = f 1p(t)u(dB), tE€ I

Then,

(3.4) ng d\ = fj; 15(t) d\ n(dB) = f [A N B| u(dB)=f(A).

Using (3.2),

||f||§/=ffIAﬂBIn(dA)u(dB)=ff(A)n(dA)

= ff 1a(t)g(t) d\ u(dA) = fgz(t) dA.

From (3.4) and (3.5) we conclude ¥ C &

To show ¥ C % it suffices to show, in view of (3.5), that f(A) =-[4g d\ is in
& if [ g%d\ < . By standard approximation techniques and linearity, it suffices
to consider g of the form g = 1¢, where C is an interval (s, t] € o7. If u is the
measure assigning unit mass to {C}, then by (3.4), fagdA\= [ | AN B| u(dB) €
r4

Since log i ~ log log n;, the above discussion shows that every point of ¢ is a
limit point of {Z,}, and hence of {Z,}. Moreover, for any ¢ > 0, P[Z,, € ¥*i.0.]
= 0. Since by construction Z, = n=%2b,'Z(n-),one obtains that for n,_,<n <n;

(3.6) Za(A) = 0, Zn((0/1)A), @ni = 1D, /0D,

Thus, to show that Z, does not vary significantly from the terms of the subse-
quence, consider,

IZn(A) - Zn,(A)l = Ian,i[Zni((n/ni)A) - Zn,(A)] + (an,i - l)Zn,(A)I
< ni| Zn((n/n)A) — Z,,(A) | + |an; — 11| Z,(A) |-

For given ¢ > 0, one can choose X sufficiently close to 1, to make |a,;— 1| <&
and | (n/n)A A A| < ¢ for n,_, < n < n;. Hence, whenever Z,, € ¥ for ¢ > 0,
we have by (3.7) and (3.1) that

(3.8) 1Z, = Zollr <= (1 + &)(2 + 26¥%) + e1(e + 1).
This shows that for any ¢ > 0
PlZ, & G io0] =0.

The above argument therefore completes the proof since it establishes that
with probability 1, & contains all of the limit points of {Z,; n = 3}. 0

(3.5)

(3.7)

4. The embedding: Definition and properties. The embedding of pro-
cesses into Brownian Motion has often been used to prove weak convergence and
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iterated logarithm results. The idea of using embeddings based on stopping times
originated with Skorokhod (1965) when he introduced a particular stopping time
based on the two barrier problem. If W = {W,: t = 0} denotes a standard Brownian
Motion and Y is any real-valued mean zero r.v., a stopping time embedding of Y
in Wis the existence of a stopping time, 7 say, for which Y =, W,. Many methods
for generating such 7’s have been suggested since Skorokhod (1965), including
among others those of Root (1969), based on hitting times, Dubins (1968), based
on a sequence of two-barrier problems determined by conditional means, Monroe
(1971), based on local times, and Bass (1983), based on martingale representa-
tions. The hitting time method of Root is known to minimize the variance of the
stopping time 7 among all others. (Cf. Rost, 1976.)

The embedding of processes, such as martingales, partial-sum and empirical
processes, is possible by repeated usage of the above single r.v. embedding. In
these applications, including the one to be described below, it does not matter
very much which stopping time is used to generate the individual r.v.’s. The only
restriction is that finite moments of 7 of appropriate order should be implied by
finite moments of Y; see Lemma 4.1 below.

The object of the embedding in this section is to use the Browman process Z
of Section 2 to generate each member of the given array {X;: j € J so that they
will be independent with the proper distributions and so that the stopping times
will be measurable relative to an appropriate “past” of Z. We proceed as follows.

Let 2 be the partition of R$': = (0, ©)**into disjoint unit cubes of the form
(q — 1, q] for q € J* . For each Q € 2, define Z°? by

4.1) ZUt) = Z(Q x (0, t]), t=0.

Observe that each Z¢ is a standard Brownian Motion and that Z® and Z< are
independent for disjoint @, and Q.. Let q = (qi, gs, . . ., ga—1) denote the upper
integer vertex of @, so that @ = (q — 1, q]. Now, use Z9 to generate, by any of
the available embedding methods, independent r.v.’s X, ;, Xy, - - - with common
distribution equal to that of X;. We will not hereafter distinguish between these
constructed X’s and the given array. Let 0 < Ty, < T, 2 =< ... be the successive
stopping times of the embedding, so that in particular

ZUT,,;)) = Xgq1 + - -+ Xy,
For any j = (q, j) € J? define the random set
(4.2) Pj = Q X (Tq,j_l, Tq,j]

so that then Z(I;}) = X;. In view of the definitions of the smoothed and
unsmoothed partial-sum processes given in (1.3), we may then write

Sn(A) = n™?b Z(T,(A))
and
4.3)  Xu(A) = n"?b;HZ(TH(A)) + Ticnmear=o | G N nA | Z(T;)}
where C;= (j — 1, j],
I.(A) =U (T3 j € nA} and T,(4) = U (T} C; C nA}.



SET-INDEXED PARTIAL-SUM PROCESSES 21

Thus the Brownian measures of the random sets I';,(A) and T',,(A) are essentially
equivalent to the partial-sum measures of A. Our task will be to show that for
the smoothed case, the Z-measure of the random set I',(A) is sufficiently close
to Z(A), uniformly over o to relate the asymptotics of X,, to those of Z. Some
additional notation will be needed. For A € o7 define

CHA)=U{C: GGN (nA) # @}, C.(A) =U {C;: C; C nA}
and
I't(A) = U {Ty: C; N (nA) # Q).

The sets C;(A), C.(A) and T'}(A), T',(A) are respectively the outer and inner
rectilinear fits of nA by the nonrandom cubes C; and the random rectangles T}.
In the next section, bounds on the Lebesgue measure of symmetric differences
between these fits will be derived.

As a necessary preliminary to these bounds we need the following result
relating the moments of | | to those of Xj. (Recall that in our embedding, Z (T;)
= X;.) Under any of the usual embedding schemes including those referenced at
the start of this section, it is easy to show that the stopping time 7 satisfies, for
B>0and a>1,

(4.4) SUPo=i<w B | Wonc|2(log* | Winc| ) < E| Y |*(log*| Y |)'**
and
(4.5) SUPosica BB | Wope|* = E| Y|

LEMMA 4.1. a) If the embedding stopping times satisfy (4.4) for 8 > 0, then
E| X;|%(log" | X;|)"** < @ implies E| Ty| (log*| Tj])™** < o.
b) If the embedding stopping times satisfy (4.5) for a > 1, then
E| X;|* < o implies E|T;|*? < oo,

PROOF. a) Let ® be convex, increasing, continuous, nonnegative, and, for x
= ¢, equal to x(log*x)*?/2. By applying Doob’s inequality, with exponent p = 2,
to the submartingale ®(| W.|), we get E sup.<.(| W;|%(log* | W;|'**) < . To
complete the proof, apply the inequalities of Burkholder, Davis and Gundy
{(Meyer, 1976, page 351).

b) The proof is similar, using ®(x) = | x|***/2 and Doob’s inequality with
exponent p = 2a/(1 + «). O

5. Tail estimates on the closeness of the embedding. The purpose of
this section is to derive bounds on | Z,(A) — X,,(A) | and | X,.(A)} | for a fixed set
A. Throughout this section, the letter ¢ without subscripts will denote a generic
constant whose value may change from line to line. Summations over q € {1,
...,n}*"land over j € {1, ..., n}? will be abbreviated by ¥, and ¥;, respectively.

We begin with the following proposition which is an extension of some results
of Heyde and Rohatgi (1967). Let M, = max,<;<,| Ty;—1|.
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PROPOSITION 5.1. a) Given n > 0 and 3 > 0, there exist ¢, and n, depending
only on 8, 1, and E | T;| (log*| T;|)**# such that if n = n,,
P(TM,y = ny) < c1/n(log*nn)**?.
b) For K>0,8>0,s =1, and ¥ > 0, there exist ¢, and n, depending only on
K, B,s,®, E|T;|°, and E | T;|*** such that if n = n, and E | T5|° < K,

P(3;I T51° = n?K) < cy/(log*n)'*A.

Proor. a) We suppose d = 2, the d = 1 case being somewhat simpler. In
preparation for the central limit theorem in Section 7, we take n = 3 large enough
so that n = (log n) 3.

Define Vjto be || — 1if | |Tj| — 1| < nn and 0 otherwise and let M§ =
maxj<i<n Zk— q,k:

First of all, by Chebyshev’s inequality and the monotoneity of x(log*x)

P(|IT;| = 1] >x) < E[|T;] — 1| (log™| | ] — 1[)***/x(log*x)"**.
Then, since E|Tj| —1=EX]—-1=0,

1+8
’

(5.1) |EV;| = fd P(||Ty] — 1| > x) dx < c¢/log(nn?)?
'
Secondly,
an?
(5.2) EVi=2 f xP(||T5] = 1] > x) dx < enn?/(log qn) '+~
0
Suppose for the moment that we have shown that for n sufficiently large,
n'EM¥ < 5/2. Then
(5.3) P(ZqMy > ny)
< P(|Ty] — 1 # V;, for some j) + P(3(M% — EM}) = n%/2).
The first term on the right hand side of (5.3) is
< n?P(||T] = 1| > nn%) =< ¢/n(log nn%)'*?,
as desired. The second term on the right hand side of (5.3) is
< 4nd 1Var M*/nzd 2 < CEM*Z/nd+1 2 < 2c"—2n—d—1
’(E[maxlsisnl 2k=1 (Vq,k - EVq,k) I ]2 + maxlsisnl E Zie=1 Vq,klz)
< 8c¢n~*Var Yio, qk/nd-'-1 + 2(:77_2|EVqllz/nd_1

the last line following by Doob’s inequality. Using Var ¥3-; Vor=n Var Vg1 =<
n EV2,, (5.1), and (5.2) gives the desired estimate.

It remains to show that n"'EM} < 5/2. This is not an immediate consequence
of a law of large numbers since V; depends on n.

So suppose n = 3, A = (log n) ™2, fix g, and let Vi= Vqiif | Vqi| >nrand 0
otherwise, and let M* = max;<;<,| Zk L Vil
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As In (5.12 and (5.2), IEVL-I < ¢/(log n)*, which is < \/2 for n sufficiently
large, and EV? < cn)\/(log n\)'**. Then

P(MZ > n\) < P(] Vqi| > n\ for some i) + P(M* > n))
< n/(nA(log*n)\)™*#) + P(maxizi=n| Die1 (Vi — EV))| > n\/2).
By Kolmogorov’s inequality, the last term on the right is
< 4 Var(3i; Vi)/n®\? < 4 EV/na%
We thus get P(M¥/n > \) < ¢/(A(log nA)'*?), and so

=3

EM%/n) < (log n) ™% + f P(M¥/n>\) dx

(logn)~#/?

< (log n)™? + ¢ f

n(log n)'ﬂ/

o

, (x(log x) 1+6)~1dx

< /2 for n sufficiently large.

b) is proved in a very similar fashion, except that one works with | Tj|* —
E|T;|® instead of | T;| — 1.0

We now use Proposition 5.1 to get bounds on how much a given set is
transformed by the embedding.

PROPOSITION 5.2 a) supac| CHANC,(A) | < ed?n?,
b) P(supacs| Tn(4) A Co(A) | = n\) = es/(log™n) ™7,
¢) P(supacs| T3 (A) A CH(A)| = n\) < ¢y/(log™n)'**,
where ¢3 and ¢, depend on <, \, and the constants ¢; and ¢, of Proposition 5.1.

Proor. Fix A € 7. First observe that any point in C; (A)\C,(A) must be
within a distance dY? from d(nA). Then, by Property (iv) of Section 2,
| CHANC(A) | = | (RA)(dY?) | = n?| A(d*?/n)| < cn®'d*2, which proves (a).
Note in particular that the number of j’s for which C; N d(nA) # & can be at
most cd?n?.

Given )\, choose an integer m = 1 so that 2cd/?)/m < N\/2. For each
q € {1,...,n}%", let Nybe the number of i’s for which Cg; N d(nA) + O. Let

L = {@: Ng= m}, @ = {q: Ny< m}. By the previous remark, ¥qN, < cd"*n?™",
and so the cardinality of @, is at most cd/?n*"!/m.

Let Dy= (q — 1, q] X (0, n], the rectangular channel with base (q — 1, q]. If
q € Ql,

(5.4) [To(A) N Dy + | CofA) N Dy| < Ty + n < My + 2n.

Now consider q € Q.. We want to count the number of components of Dq N
C,.(A). If for some i, either a) Cq; C Co(A) but Cqi41 £ C,(A) orb) Cy; £ Co(A)
but Cq:+1 € C,(A), then either Cy,; or Cg ;i must intersect d(nA). So the number
of i’s for which either a) or b) holds is at most 2Ny + 2 < 2m. Thus there are 2m
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pairs of indices iy < i, ..., igm) < i*™ such that C,(A) N Dg= U {Cq,tip < i
< i for some k < 2m)}.
Since

(Th(A4) N Dy) A (Co(A) N Dy) C URZy (Ui =i<iTq,i) A (Ui =i<iwCq,i)},
then
[(Ta(A) N Dg) A (Ca(A) N Dg) | = TE (| Taiy — iwy| + | Tqw — i®])
=< 4mM,.
We thus get by combining (5.4) and (5.5),
ITn(A4) A Ca(A) | = Zql(TW(A) N Dy) A (Ca(4) N Dy) |

< Yaeq, (Mq + 2n) + Yqeq, 4mM,
< 2ned*n'/m + 4m Y M,,

a bound independent of A. Then

P(supace, | To(A) A Ca(A) | = n\) = P(SM, = n\/4m)

and b) now follows from an application of Proposition 5.1 a). The proof of ¢) is
virtually identical to that of b). 00

Next we prove a proposition of the stochastic calculus which will enable us to
get estimates on | Z(I',(A)) — Z(C,(A)) | from estimates on |T,(A) A C,(4)].

In the following, [ H, dW, denotes the stochastic integral of H with respect to
W. See Meyer (1976, Chapter 2) for further information about stochastic inte-
grals.

PROPOSITION 5.3. Let W,: t = 0 be a one-parameter Brownian motion, H,:
t = 0 a nonanticipating functional and t,, N\, and L arbitrary positive constants.

Then
ty
P( ’ f H, dW,
0

PROOF. Set U =inf{t > 0: [ H2ds > L} and M, = [§"V H, dW;. It can be
shown that M, is a continuous martingale with quadratic variation [ INH? ds <

L. Then
ty ty to
P( l f H, dW, >>\,f szssL)=P< ’ f H, dW,
] 0 0
< P(| M| > )\) < 2¢™/2L.

to
>\, f Hlds < L) < 2¢™M/2L,
0

>>\,U>t0>

The last inequality is well-known; a proof may be found, for example, in
Dellacherie, Doléans-Dade, and Meyer (1970), page 247. 0
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Suppose E | T;|5*¥ < « for some s > 1, ¥ > 0. Let p satisfy p™' + s '=1. Let ¢
>0, k> (E| Ty|*)"/*. We define the event A by
A: = (supaea| Tn(4) A Co(A) ] = en?, supaes | T7(A) A C(A)| < enf,
%I T51° < kon).

We then obtain the following estimates:

(5.6)

ProposSITION 5.4. If, A, B € o7 then
(a) P(| X.(B) — Xn(A)| >\ A) < 2 exp(—N2Lyn/2k | A A B|'?), and
(b) for n = ny, independent of A,

P(|Z,(A) — X, (A)| > A\, A) < 4 exp(—\’Lyn/12¢).

ProOF. First of all, note that C,(I9) = nI¢ and | T',(I%) < | T.(I9) A C,(I9) |
+ |C.(I%)]| = (1 + ¢)n? on the event A. Secondly, on A, T; < |T,(I%)] =
(1 + &)n? < n%* for all j.

Next we define the Brownian Motion W, to which we will apply Proposition
5.3. The idea is to place end to end the Brownian Motions Z9(t), 0 < t < n?*' of
Section 4. Let ¥ be any one-to-one mapping of the integers {1, 2, ..., n% "} to
{1,2,...,n}* " Nowlet Wy=0,and form=1,2,...,n%" let

Wt+(m—1)n‘“’1 = VV(m—l)n‘“'1 + Z((\b(m) - 19 \b(m)] X (0, t]), 0 < t = nd+1.

If j = (q, i), we want to define K;(t) so that fﬁzd K;i(t) dW, = Z(C;)/n*?b,. We
do this by setting K;(t) equal to 1/n%?b, if W (q) — Dn®"' + (i — 1) <t =<
W Hq) — D)n' + i and 0 otherwise.

Analogously, set &(t) = 1/n%?b, if (¥7H(q) — Dn® + (Tqir A n¥H) <t =<
W Hq) — Dn®! + (T A n?") and O otherwise. &(t) chosen in this fashion
satisfies

n2d
f &(t) dW, = Z(Ty N I)/n%b,, where I = (0, n)%" x (0, n®].
0

On A, Z(IyN ) = Z(T;) since we argued that Ty =< n¢*'on A.
We are now ready to prove (a). Let t, = n%%. On the event A,

X.(A) = J;o Yil nA N G| &(t) dW,,

and similarly for X, (B). If we let H, = ¥;{| nA N C;| — | nB N C;| }%(t), (a) will
follow from Proposition 5.3 provided we show [ H? dt < k| A A B|'?/b2 on A.
If we let dj= | nA N C;| — | nB N G,

|dil = | (nA AnB) NGl =1,
and ,
¥ild;l = |nA AnB| =n%A AB|.
Note that [{ £(t) dt = | T;| on A and that the £’s have disjoint support. Then
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on A,

to ty
f H; dt = f Y5 digf(t) dt = X5 df| Ty|/nbi
0 0
= (3 diP)P(351 T51°) Y /n bl
< (35 &) P(k*n?)*/nb}
< |A A B|YP(n%)YPR(n9)Y*/nb% = kK| A A B|P/b2

as required.
We now proceed to prove (b). Since A and C,(A) are deterministic sets, the
usual tail bounds for the normal distribution give

P(|Z(nA) — Z(C.(A)) | > (\/2)n%"?b,) < 2 exp(—A*nb2/8 | nA A C.(A)]).

By Proposition 5.2, |nA A C,(4)]| < <dV?n? ' It therefore suffices to get a
bound on P(| Z(C,(A))/n?b, — X,.(A)| > N\/2).
To do this, let

H, = 5{1nA 0 Gl &) — | Ca(A) N G| Ks(£)}/n2b,.

Again, we will get (b) from Proposition 5.3 provided we show that [§ H? dt <
3¢/b2 on A.
Note that

| H:| < max{| ¥, an¢-08(t) — XecnaKi() |, | ZC,Q;zAKj(t) — Yocna i) |}
So on A,

to
ndb%f H} dt = |T7(A) AC,(A) | + |Tu(4) A Co(4) |
0

IA

[TA(A) A Ci(A)| + | Ta(A A Cu(A)| + | CR(ANC,(A) |
< n%2¢ + <d?/n)

3en? for n = n, sufficiently large. 0

IA

6. The functional LIL for partial-sum processes. We are now ready to
prove the functional LIL for the smoothed partial-sum processes.

THEOREM 6.1. Suppose that o/ satisfies Properties (i), (ii), (iii), (iv) and (v’)
of Section 4 (but not necessarily assumption (vi)). Suppose also that E | X;|* < o
where s > (1 — r) ™. We then have that with probability 1, {X,; n = 3} is relatively
compact in € () with limit points exactly <&

PROOF. Observe first of all that we do not require property (vi), that o7 be
origin sparse. In fact, this assumption is used only to give content to the statement
of Theorem 3.1. Note, however, that Z,,(-) may be defined for </ satisfying only
(1)~(v), as long as n is fixed. Looking at the proof of Theorem 3.1 we note that
what it tells us is that, for all ¢ > 0, lim,_olim, ,.P[Z, &€ ¥, n<k=<m]=0.
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We show below that
| X — Zil|l.r -0 as.as k— o,
with no use of assumption (vi). It will then follow that
lim,_olim,.P[X, & ¥, n<k=m]=0,

or P[X, & ¥*i.0.] =0. Thus, the X,’s will be relatively compact with probability
1 with limit points in ¥

Since the set of limit points of Z, is exactly ¥ analogous reasoning will show
that the set of limit points of X, is exactly ¥ as desired, without the use of
assumption (vi). It thus suffices to show that || A,(-) | ., is 0(1) almost surely,
where A,: =X, — Z,.

By definition

An(A) = Xo(A) — Za(A) = (n¥%,) ' Lot G N nA| Z(Ty) — Z(C; N nA)}

From Proposition 5.4 (ii), for each A > 0, ¢ > 0, there exist n, such that for
n > nyp, .

(6.1) P([| An(A) | > A1 N A) < 2 exp{—A°Lyn/12¢}
while by Propositions 5.1 and 5.2

(6.2) P(A°) < c(logtn)1#

where A is defined in (5.6). Since

(6.3) P(ll Auller > N) = P([ Auller > X, A) + P(AY)

it suffices to bound P(|| A.|l., > A, A) =< c(log*n)~1%. For a fixed 6, > 0, (6.1)
implies

P(]l Aullog, < A, A) =< 2 exp{H(8) — NL,n/12}
(6.4) =9 epr[—)\Z(IZe)'len<1 - %)}
=< (log*n)~*

for some p > 1 and all sufficiently large n, provided only that ¢ is chosen
sufficiently small.
To obtain the desired bound for || A, | .- rather than || A, | o4, Write

An(A) = An(As) + Y21 {A(4s) — An(A4s, )}
for A;, € o4, and | A5, AA| < é;, i = 0. Then use
[An(A) — An(As) | = TE1 {1 Xa(4s) — Xa(A5, ) | + | Za(As) — Za(4s, ) |-
We continue to work on the event A. By Proposition 5.4 (i)
65) P(maxseo| Xn(As) — Xn(As_) > N, A)
< 2 exp{2H(8;) — A?L2n/2k(26,,) P}
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since | As, A A;,_,| < 8 + 8i-1 < 28;;. Recall that 1/p + 1/s = 1. Choose §; = Sy’
and \; = Aoy% for b > 0. Since H(8) < Ké™", 0 < r < 1, the bound on the right
hand side of (6.5) is bounded above by

4Kk(25,~_1)1/"5i">}

2 exp{—)\?(2k(26i_1)1/P)'1L2n(1 - NLn

(6.6)
< 2 exp{—Cyy@-pLan(l — Coy ®7I=r=2i/1,n)}

where
Cy = N3(v/280)P/2k, C, = AKK(2/v)"/P8§/P /5.

For 1 < p < 1/r, choose b < (p~! — r)/2 to insure that the bound of (6.6) is
summable over i. Choose Ao so that Y, A\; < A, and then choose &, sufficiently
small to make the sum of the bounds of (6.6) less than (log*n) ™ for some p > 1
and all n sufficiently large.

It remains to note that

P(maxy o Zo(As) = Za(As ) | > Ny A) < 2 expl2H(8) — N Lon/26:1}

since Z,, is Normal with zero mean and variance | A;; A A;_ | < 26;-;. With the
same choices of constants 8; and \;, this last term equals

_ 46;_1H(5;)
—%2(95. 1 _ 20im14110:)
2exp{ A (26;1) L2n<1 NLin )}

(6.7) . )
<92 exp{—Cg'y'(l'Zb)’LG(l _ C4,Y(1—r—2b)z/L2n)}

where
C3 = )\37/250 and C4 = 450K/’Y)\(2)

Again the bound in (6.7) is summable over i, and by possibly making 4, even
smaller than heretofore required, the sum can be made less than (log™n)™ for
some p > 1 and all n sufficiently large.

In view of (6.3), the preceding proves that for all A > 0, there exists p > 1 and
no such that

(6.8) Pl X, — Z,|.r > 3\] = (log'n)™ for n > no.
This in turn shows that for the subsequence n,, = [v*}, v > 1,
(6.9) | X, = Znll.o — 0 as.

By (3.8), for any ¢ > 0, there exists v sufficiently close to 1 and ky = ko(w)
such that

maxnk_1<n5nk ” Zn - an "r//(w) <eg fOI' k > ko(w).



SET-INDEXED PARTIAL-SUM PROCESSES 29

Also, as in (3.7)

maxnk_1<nsnk ” Xn - Xnk ” o/
=< max,,_ <nsn @il Xn,((0/ne)-) — Xo, () |+ [ @npe — 1] | X0, (4) 112}

which also can be made less than ¢ for 2 > k;(w) in view of (6.9). O

7. CLT for partial-sum processes. Just as a Skorokhod-type embedding
may be used to give a simple proof of Donsker’s invariance theorem in the case
of one-parameter Brownian motion (see, for example, Breiman, 1968), our
methods can be used to prove a uniform (functional) central limit theorem (CL'T)
for partial-sum processes indexed by sets. The CLT for these partial sum
processes was originally proved by Pyke (1983), using different techniques, and
requiring slightly stronger moment conditions than we need here, 2(1 + r)-
(1 — r) linstead of 2(1 — r) 7}, where H(5) ~ 87"

Write

Xa(A) = n"? 551 G N nA | Z(Ty) = baXa(A)

and Z,(A) = n™2Z(nA). We will show that | X, — Z,||.» — 0 in probability.
Note that we no longer have the (L;n)"?to help us in the computations.

PROPOSITION 7.1 There exists a sequence 7, — 0 such that

P(YoM, = n%,) — 0.

ProoF. This follows from the proof of Proposition 5.1 provided we take the
n.’s going to 0, yet slowly enough so that », = (log n)™* and 3, (log*n%,)** —
oo, {1

PROPOSITION 7.2. There exists a sequence \, — 0 such that
P(supac.| Tn(A) A C.(A)| = n\,) = 0
and
P(supac/|T7(A) A C(A) | 2 n\) - 0 as n—

PROOF. It is only necessary to modify slightly the proof of Proposition 5.2.
The proof of Proposition 5.2 shows that, for n fixed,

(7.1) P(supaco| Tn(A) A Co(A) ] = n\) < P(T M, = n\/2m),

provided 2cd?/m < A/2. In (7.1), replace X\ by \,, m by m,, where m, =
[4cd?/\,] + 1 ([] means “integer part”). Now choose ), tending to 0 sufficiently
slowly; then A,/m, will tend to O slowly enough that Proposition 7.1 may be
used. 0 ’
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Define

Kn: = (SupAEf/l Pn(A) A Cn(A)I = ennd9
(7.2)
supaco/| Tr(A) A Co(A) | = e,n?, 35| T5]° < k*nf).

If ¢, — 0 slowly enough, P(A°) — 0. With no changes in the proof of Proposition
5.4, other than eliminating the b,’s and L,,’s and replacing ¢ by ¢,, we get

PROPOSITION 7.3. IfA,BE &
() P(| X.(B) — X.(A)| >\, &) = 2™ V/214851% gpg
(ii) for n = ny(independent of A),

P(1Z.(A) = X,(A)| >\, A) < 4e™/12n,

THEOREM 7.1. With o and X; satisfying the same conditions as in Theorem
6.1, we then have X, — Z, where the convergence is in C(Y).

I~’RO0F. The proof is similar to that of Theorem 6.1. Letting AA)=Z.(A)
— X, (A), it will suffice to prove | A, ( ) | = 0 in probability.

Let &, — 0 slowly enough so that P(A¢) — 0. Then, with X fixed, by Proposition
7.3,

P(|AA)| > N\ Ay) < 4e™2 50 as n— .
Choose 8,(n) — 0 slowly enough so that e#¢™e=>*/12 gil] converges to 0. Then
P(" &n"y/%(,,) > >‘9 Kn) — 0.

Let 0 < y <1 be fixed, 0 < b < Ya(1/p — r), 8;(n) = do(n)y’, and \; = Nv¥,
where ), is chosen so that Y20 \; < \. . .

ertlng An(A) = An(Aéo(n)) + Ztii—l {An(Aﬂ.‘(n)) - An(A5i—l(n))} with Arii(n) € %{n),
| Asy A A | < 6, it sufficies to show

(7.8) Y% P(maxseq| X, (Asm) — XnlAs )| >N, A) >0 as n— o,
and
(74) Z?=1 P(maxAE.G//I Zn(Aéi(n)) - Zn(Aéi_l(n)) | > >\i, Kn) e 0 as n — w,

We will prove (7.3), (7.4) being similar but simpler.
As in the proof of Theorem 6.1, the summands in (7.3) are bounded by (here
we use Proposition 7.3)

2 exp{2H (5;(n)) — A\?/2k(26;—1(n))'/P}
(7.5) = 2 exp{—\}/2k(28;_1(n))P[1 — 2k(28;—1(n))?H (5:(n))/\}}}
< 2 exp{—\?%/4k(28;—1(n))"/?},
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for n sufficiently large, since
2k (26;-1(n))"PH (5:(n)) A} < kK21 V/Py P(84(n)) P (y /P~2-T) /23

converges to 0 as n — o, uniformly in i.
Using the fact that

A /4R (26i1 ()P = (NG/4R(280(n)) /Py ~VPY(y 27 1P)Y,
that y*~7> 1 (since v < 1 and 2b — 1/p < 0), and that
,Y(Zb—l/p)i = (72b—1/p -1+ 1)i > i(,YZb—l/p — 1),
we may sum (7.5) over i to get
21 P(maxae. | X, (Asm) — Xn(AtS;_l(n)) | >N\, An)
= Xit1 2 exp{—iAG(y* P — 1)/4k(26,(n)) Py TP},

a geometric series whose sum tends to 0 as n —  since §;(n) — 0 as n — . [0

8. Remarks. 1. Although the independence of the Xj’s is crucial for the
methods of this paper, the only place where we use the fact that the X;’s are
identically distributed is in deriving some of the probability estimates of Section
5. For these results one really only requires that the tails of the X;’s be uniformly
bounded by appropriate quantities, in which case the necessary modifications are
quite straightforward. A much more challenging and useful modification would
be to replace the independence assumption by a suitable mixing condition that
would provide approximate independence to X and X; when j and k are suffi-
ciently far apart. The methods of Phillip and Stout (1975) should be applicable
here.

2. One might ask what functions of n could replace b, = (2 log log n)*? so
that Theorems 3.1 and 6.1 remain true. One would expect that there is an integral
test that distinguishes between upper and lower class functions for the LIL in
our context. The abstract by Bulinskil (1978) might be relevant in this connec-
tion, as might the paper by Carmona and Kéno (1976).

3. The embedding described in Section 4 allowed us to prove invariance
principles that were strong enough to yield both the functional LIL and the
uniform CLT. Moreover, as by-products of the proof of Theorem 6.1 we obtain
probability estimates on the tail of the distribution of || Z,(-) — X,(-) |... One
might ask whether one could get faster rates of convergence if one used a method
of embedding that did not use stopping times. For example, some of the methods
of Komlos, Major and Tusnday (see Csorgd and Revesz, 1981) might be applicable
to this situation, at least for the LIL. Such application has been made by Dudley
and Philipp (1983) for the case of linearly ordered sums of Banach space valued
random elements.

A further question concerning embeddings is whether or not any other stop-
ping-time embedding might require weaker moment conditions than those of this
paper. For example, our embedding associates with each unit cube C;, a random
rectangular interval T';, only one dimension of which differs from that of C;. One
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can easily visualize configurations of random sets, some of which may possibly
yield closer fits.

4. Our theorems were for the real-valued case; that is, where the ranges of Z
and X are R'. Theorem 3.1 could be extended to the case Z: o — R™ with no
essential change. This is not true for Theorem 6.1 by the nature of the embedding.
To prove Theorem 6.1 for vector-valued random variables, one could attempt to
use more classical techniques such as those of Hartman and Wintner (1941), as
was done in Wichura (1973).

5. According to property (v’) in Section 2, we have focused attention on large
index families &7 that satisfy (2.2) with 0 < r < 1. This leaves two cases of
interest which we will loosely refer to as r = 0 and r = 1. The key entropy
condition is the integrability condition (2.1). The r = 1 case involves those
functions H for which {H (u)/u}/?is integrable but (2.2) does not hold for r < 1.
Since our moment condition involves s = 2(1 — r) 7}, it is clear that in the r =1
case, our results imply that all moments of X; must be finite in order for the LIL
and CLT to hold. It would be interesting to determine whether this is sufficient,
or whether stronger assumptions on the moment generating function are needed.

The r = 0 case includes the usual smaller families (e.g. orthants, spheres,
polytopes with a bounded number of vertices). Although our results apply to this
case to yield LIL and CLT, the interesting question is whether or not the moment
condition can be weakened. Our methods require a 2 + § moment but the results
probably require a condition much closer to the second moment only. In this
regard, compare the LIL for orthants by Wichura (1973).

6. It should be observed that for the Central Limit theorem obtained in Pyke
(1983), the Hausdorff metric was used, rather than the symmetric difference
metric of this paper, to determine the entropy of o£ Also, recall that in Pyke
(1983), a stronger moment condition based on 2(1 + r){(1 — r)™' rather than
2(1 — r)* was imposed. It remains to find the optimal moment conditions that
are possible for a fixed metric and entropy.

7. As stated at the outset, it is necessary to work with the smoothed partial-
sum process X rather than the unsmoothed S. The reason for this can be seen
by considering a family of smooth sets in I* which includes sets whose upper
boundaries are slight perturbations of the line y = %. In this way, every subsum
of the masses {X;: j, = n/2} can arise as S(A A B) for A and B very close together.
This prevents one from having the desired continuity for most asymptotic results.
This is discussed further in Pyke (1983) and Erickson (1981). By adding further
structure to the index families, possibly making C¥(4) = U {n7'Cj: j € nA},
rather than C,(A) and C; (A), the key fit to A, one might be able to obtain results
for S. Alternatively, the use of a metric different from d; may suffice to relate
adequately the smoothness of sets to the lattice locations of the X;.

8. We have focused in this paper upon set-indexed processes. It is of interest
also to consider the case where the processes are indexed by functions. If F is
a family of real-valued functions defined on R one could define processes
{T(f):f€ F}and {Y(f):f€ Flby

T(f)=fdeand Y(f)=fde
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where both integrals are over [0, ©)?. One may also define the analogous integral
processes on I¢ by appropriately scaling back the S and X processes. The
processes of this paper would be special cases of these in which % is a class of
indicator functions. The general methods of this paper may be used to obtain
corresponding results for the function-indexed case. For related results concern-
ing empirical processes, see Strassen and Dudley (1969), Pollard (1981) and
LeCam (1983).

Acknowledgement. We wish to thank the referees for their suggestions,
and in particular, for the reference to the result of Carmona and Koéno (1976)
which enabled us to shorten our original proof of Theorem 3.1. The latter proof
involved an extension of the techniques of Strassen (1964) to this context,
analogous to the extension to Brownian sheets by Pyke (1973); cf. Bass and Pyke
(1982). A further benefit of the present approach is that assumption (iv) on
boundary smoothness is no longer required for Theorem 3.1.
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