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FUNCTIONAL LIMIT THEOREMS FOR DEPENDENT VARIABLES

By RicHARD DURRETT! AND SIDNEY 1. RESNICK?
University of California, Los Angeles and Stanford University

Conditions are given for a sequence of stochastic processes derived
from row sums of an array of dependent random variables to converge to
a process with stationary, independent increments or to a process with
continuous paths. We also discuss when row maxima converge to an ex-
tremal process.

The first result is a generalization of the classical results for inde-
pendent random variables. The second result gives general conditions for
convergence to processes which can be obtained from Brownian motion
by a random change of time. This result is used to give a unified develop-
ment of most of the martingale central limit theorems in the literature.
An important aspect of our methods is that after the initial result is
shown, we can avoid any further consideration of tightness.

1. Introduction. Let {X,;, n = 1,i > 1} be an array of random variables
defined on a probability space (2, .5, P) and let {{&, ,,n = 1,i = 0} be an
array of sub o-fields of & such that for each n and i = 1, X, ; is &7, ; measur-
able and &7, , C 5, ;. Suppose k,(¢) is a nondecreasing right continuous
function with range {0, 1, 2, ---}. The functions k,(¢) are given time scales.
Set

Sn,o = 0 3 Sn,k = Z?=1 Xn,i ’ k g 1

Yn(t) = Sn,kn(t) 4

Z,(t) = Sn,knlt) — ZinY E(X, l(tXn,iKr) | 577»,1’—1)
M,,= —o0, M,,=VLX,,, k=1

7,0

Mn(t) = Mn,kn(t)
where y > 0. In this paper we give conditions for {Y,(¢), 0 < t £ 1} and {Z (1),

0 < ¢ < 1} to converge weakly (written =) as a sequence of random elements
of D[0, 1] and for {M,(#), t > 0} to converge weakly in D(0, c0). (For weak
convergence terminology and notation see Billingsley (1968). For information
about D(0, oo) see, for example, Lindvall (1973)).

For sums of random variables, investigations of this type have received con-
siderable attention since the time of Lévy. Many authors (see [1]—[3], [5]—[9],

[11]—[13], [15], [25], [33]—[37]) have given results for a variety of time scales
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and under a bewildering assortment of conditions. In this paper we develop a
framework which allows us to consolidate and in many cases extend these
results. Our approach will be to give general conditions for convergence on
an arbitrary given time scale k() and then obtain the results for specific time
scales as special cases. Concerning the time scales k,(f), if these are random
then in Section 2 we need only the restriction that k,(1) is a stopping time for
{# 4 k = 1}. In Sections 3 and 4 it is convenient to suppose that k,(f) is a
stopping time for each ¢t > 0.

In Section 2 we treat the problem of convergence to a process with continu-
ous paths. To do this we will start with a result of Freedman (1971, 1975)
about the convergence of arrays with uniformly bounded variables and then
extend this using truncation and the idea of a random change of time to obtain
more general results. In the course of doing this we will obtain most of the
results in the literature as special cases. We should point out that the results
given here do not exhaust the possibilities. We have concentrated on con-
vergence to Brownian motion or mixtures of Brownian motions. The methods
we have used can be extended to give conditions for convergence to diffusions.
To illustrate what kind of results are possible we have given two results of this
type in Section 2. A systematic development of weak convergence to diffusions
using the idea of a random change of time will be given in Helland [17]. For
another martingale approach to these results see Stroock and Varadhan [38]
(especially Theorem 10.3).

Sections 3 and 4 study convergence to processes which have jumps. The first
step is taken in Section 3 where conditions are given for the convergence of a
sequence of point processes associated with the array to a limit two dimensional
Poisson process. Once this development is completed, it is relatively easy to
“sum up the points” to show Z, converges to a limiting Lévy process or to apply
the continuous mapping theorem to get convergence of M, to a limit extremal
process.

2. Convergence to processes with continuous paths. In what follows we de-
rive conditions for Y, and Z, (defined in the introduction) to converge weakly
(as a sequence of random elements of D[0, 1]) to processes with continuous
paths. In this section all the processes we define have their paths in D[0, 1]
and all the weak convergence results involve this space unless the contrary is
indicated.

Our starting point is Theorem 2.1 which is due to Freedman [11], pages 89~
93; see also [13]. To introduce this result we need the following:

DEFINITION. A collection of random variables X,, ;,, n = 1, i =z 1 and o-fields

S it = 1,1 = 0is said to be a martingale difference array if

(i) foralln =1, 57, ,, i = 0 is an increasing sequence of g-fields;
(ii) foralln,i > 1, X,,is 27 ,,, measurable; and
(iii) foralln,i =1, E(X, |~ .., = 0.
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THeoreM 2.1. (Freedman). Let {X, ;, .5, } be a martingale difference array
and suppose there are numbers ¢, | 0 so that |X, ;| < ¢, forallnandi. LetV,, =
0, Vo, = DI, E(X} ;] 5 i) and j(1) = sup {j|V,; < 1}, If Pllim,_,V, ;

oo} = 1 then asn — o0, S, ; ., converges weakly as a sequence of random elements
of D[0, o) to a Brownian motion W.

With this result in mind the next step is to write Y, and Z, as a sum with
three terms (a) the sum of variables in an array which satisfies the hypotheses
of Theorem 2.1, (b) the sum of the “large” X, ,; and (c) a centering term. To
describe these decompositions we have to introduce some notation. Let ¢, be
a sequence of positive numbers which decrease to zero and define

Ko = Xos lnxk,imn)
Xn,i == Xn,i l(an,i\gen)
Xn,i == Xn,i - E(Xn,ilyn,i—l) .

Then I)?,Hl < 2¢, so if we let .S:‘,,,,, = ZLIX;M- and
0y =sup{j: V= DL E(X3:| 5 ) < 1)
we have from Theorem 2.1 asn — oo, W, 1= S
Next set
Py =0 X, .,
V()= ZhX,;,
An(t) - Zl;g(lt) E(A_,n,j I fn,j—-l)

and let ¢,(r) be any strictly increasing continuous function which satisfies

S kyr = Sn i - From the last five definitions it is immediate that
(2.1) Y (1) = Wa(eu(0) + 2a(0) + A4u(0)

and if we let B,7(t) = X % E(X, ; ltsn<!Xn,,~1<r) | & j-1)» then

(2.2) Z,(1) = Wi(eun) + Pu(t) — BJ(1) -

THEOREM 2.2. If for somee, | 0

(i) P{max,,., |?,(s) > 0} — 0 and
(ii) (W, ¢,) = (W, ¢) with P{p is continuous} = 1

then Z, = W o ¢. If in addition
(iii) A, —p 0 or what is equivalent for some 2 > 0 we have
CA1) 1= Xk E(X,  Lyx, jcny| 7 i) =20 forall 1>0.
Then Y, = W o ¢.

Proor. From (ii) and formulas (17.7)—(17.9) in Billingsley (1968), it follows
that W, o ¢, — W o ¢. From (i). ¥, —, 0 so to prove the first result it remains
to show that B, —, 0.
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To do this it suffices to show that
7 leg(ll) P(IX'n,iI > Enl ‘gdn,i—l) —p 0.
Let 7, be the time of the first jump of size > ¢,, that is

t,=sup{t< 1: 3 haP IHXn,j|>5n) = 0}.

Then
E(R 50 P X, 5l > el F05-0)
= E(27. l(knu)gj,wn,ilge,, tor 1si<s) P((Xn il > €] F 052)) -
Since {k, (1) = j, | X, S e, forl i< jle 5, ;_, the last expression equals

P{max, g <, ) [ Xu ;| > €.} = P{max,,, 1P.(5)] >0} —0
by (i). Soif > 0

P{X 5 P(X, ;1 > en| 50, 5-0) > 0}
S Pl < 1} + 07'P{maX,g; 5 ) | Xu sl > e} -

Since the right-hand side of the last inequality converges to 0 as n — oo this
proves the first result.

To prove the second result observe that Y, = Z, + B,” + A,and 4, = C,* —
B,*. From the first part of the proof B,” —, 0. Therefore the two assumptions
in (iii) are equivalent and under either one Y, — Z, —,0so that Y, — W o .

From Theorem 2.2 it is easy to obtain the following result which is the
martingale analogue of the Lindeberg-Feller theorem.

THEOREM 2.3. Suppose {X, ;, .7, ;} is a martingale difference array. If

(a) forallte(0, 1], Xiny E(X; ;| 5 o)) —pct and
(b) foralle >0

2t E(XG lnx,,,i»e) | F nie1) —p 0
then Y, = S, ., = W(c-).

n

REMARK. If we suppose X, ; = ¢,”(S; — S;_,) where ¢, is a constant and S,
is a martingale with 52 = ES;? < oo forall / and let k,(f) = k when 5,2 < 15, <
s2,,, Theorem 2.3 gives one of the results of Scott ([37], page 120). If we let
k,(f) be the time scale j,(¢) defined in Theorem 2.2 we get Theorem 5 of Rootzén
([35], page 206, see his Remark 6). It is trivial to generalize our result to obtain
Theorem 3.8 of McLeish ([25], page 626).

Proor. From (b) it follows that if we let ¢, decrease to zero slowly enough
then

(2.3) &t i E(X: 1(]X,n,i|>e,,,) | ngvn,i—l) —50.

To prove that S, .., = W(c+) we will show that if ¢, | O are chosen so that
(2.3) holds then the hypotheses of Theorem 2.2 are satisfied.
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To check that (i) holds we observe that from Lemma 3.5 of Dvoretzky (1972)
if 6 > 0 we have for every N = 1
Plmax, oy | X, | > e} <6 + P(ZL, (I il > €l F i) > 0}
Applying this formula to the martingale difference array X, , = X, ;1 424 and
letting N — oo gives
(2.4) Pimax,gig o [Xail > €} < 0 + P{Li0 P X, > €0 F 0im) > 0}

Since

Sk e P(X, d > 6 F i) S Tha® B Ly, o |5 0im)

it follows from (2.3) that lim sup of the right-hand side of (2.4) is less than 4.
Since ¢ is an arbitrary positive number, this shows that (i) of Theorem 2.2 holds.

To check (ii) we observe that it suffices to show ¢, —, ¢ where ¢(t) = ¢t
(Billingsley, 1968, Theorem 4.4). Now ¢, is a monotone function and ¢ is
continuous so it suffices to show that ¢,(f) —, ¢t for each ¢ > 0. To do this we
observe that Sn bty = =S, intwn and from the definition of j,

t— 4, < 3aP E(X N F i) St
So to show that ¢,(f) —, ct it suffices to show that
b E(X2 | 5, ;1) —pct

The left side of the above equals 334y E(X2 .| 5, . )~ S a0 (E(X, ;| F 0 ;-))
The first sum converges in probability to ¢t by (2.3) and (a). Because {X,,} is
a martingale difference array, the second sum equals

Zk”m (E(X, N luxn ji>en) | a-))
From Jensen’s inequality, we have that this expression
= Zl;"é&“ E( luxn ]l>en)| n,§—- 1) —p 0
by (2.3).
To complete the proof it remains to verify that 4, —.0. To do this we
observe that

SUPogigr [4a()] = 202t [E(Xa i Lix, ysen |7 i)l
= N |E( nilux,, 11>s,,>|~/n 1)

= Dol [E(1X ol Lix, s ep | im1)
é n—l Zi;(ll) E(Xn,i {1X gy, 51> ) | F n,i—l) _}P 0 *

A consequence of Theorem 2.3 that we will need is the following.
CoroLLARY 2.1. If {X, ;,, & ;} is a martingale difference array and

i E(X | i) —p 0
then Y, —, 0.

ExampLE 2.1. Chain dependent variables: let {/,,n = 0} be an m state
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periodic, irreducible Markov chain with transition matrix {p, ;, 1 < i,j < m}
and stationary distribution # = (=, - - -, x,,). The random variables {X,, n = 1}
are chain dependent if for &, = 2&(J,, .-+, J,, X}, --+, X,) and n = 1 we have

P, =j X, X]/n~1} =P, =jX, x|/} = PJ,,,_l,jHJ”_l(x)
where H, ..., H, are given distribution functions. It then follows that

PIX, < x| Fail = P(X, = x|/} = H,,_ (%)
and .
PN X = x] e -0 Jusy) = TIE- Hy,_ (%0)

Suppose that § xH(dx) =0, { X*H(dx) =62 < oo, i=1,...,m and set
= Xy/nt. Then {X, ;, i = 1} is a martingale difference array since

E{X,:| Fia} = { xH,_(dx)=0.

We will now show that the conditions of Theorem 2.3 hold if k,(r) = [n1].
To do this we let 7,(n) = Y22} 1‘(,7.:1,, and observe that z,(n)/n converges to =,
almost surely so

nt YV E(X? | ) =0t Y w([n])et - Y w0t as.

and condition (a) of Theorem 2.3 is satisfied.
To check condition (b) observe that

P E(XG Lk, el Fin1) £ DFaan Sasent X*Hy(dx) — 0.

Since conditions (a) and (b) are satisfied we conclude

X,

n

2 X,
2521] ;1‘5 = W(Z‘l”i—-l 7"1“71'2) .

Asymptotic normality of sums of chain dependent variables has been considered
by Keilson and Wishart (1964) and O’Brien (1974 a).

The decomposition of S, , .., given by (2.1) can also be used to compute
convergence to limits other than Brownian motion. The most elementary situ-
ation occurs when (W,, ¢,) convergesto (W, ¢) where W and ¢ are independent.
This is, of course, automatic when ¢, converges to a constant. Our next lemma
shows that W and ¢ are independent whenever ¢, converges in probability.
To prove this we have to introduce a notion of mixing.

Suppose {V,, n = 0} are random elements of a metric space S and defined on
(Q, .7, P). The sequence {V,} is mixing in the sense of Renyi (or briefly R-
mixing) if there is a random element ¥ such that for each Be .5 with P(B) > 0
we have (V| B) = V.

The reason for our interest in this concept stems from the following well-
known characterization (cf. Billingsley, 1968, Theorem 4.5): if ¥, = V, then
{V.} is R-mixing iff for any sequence of random elements U, of a metric space S’
such that U, —, U we have (V,, U,) = (V, U) where V and U are independent.

A sufficient condition for W, to be R-mixing is
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THEOREM 2.4. Suppose the array {X, ;, ., .} has the property that for each i >
0, &, increases as n increases. For any ¢, | O the sequence W, is R-mixing as
a sequence of random elements of D{0, oo).

ReMARk. This result can be proved in the same way as Theorem 2.4 in
Rootzén [33] and so the proof will be omitted. The reader should observe that
the hypothesis is satisfied if, for example, {S;, 5} is a martingale .5, , = 5,
and X, ; = (S; — S;_,)/c, where c, is a sequence of positive constants. This
result was first stated by McLeish ([25], page 628) under the assumption that
F ,.; decreases as n increases. To see that his claim is false let W be a Brownian
motion, let X, ; = W(i2=*) — W((i — 1)27), let &, ; be the o-field generated
by {W(s),0 < s < i2 "}, and let U, = V, = W(1).

An immediate consequence of the preceding result is the following result
about convergence to mixtures of Brownian motion:

THEOREM 2.5. Suppose {X, ., >, .} is a martingale difference array and the
fields =7 increase as n increases. If

(a) forallt >0

D E(XL |5 ) —p o) with  P{e is continuous} = 1
and

(b) foralle >0
Tkt E(X3 1 | i) —p 0.

%, (JXnyil>E) n,i—1

Then Y, =S, ., = W o ¢ where W and ¢ are independent.

ProoF. From the proof of Theorem 2.3 we have that P{max,,, |¥.(s)| >
0} -0, 4,—,0, and ¢, —, ¢. Now W, = W and from Theorem 2.4, W _is
R-mixing so from the characterization of R-mixing given before Theorem 2.4
it follows that (W,, ¢,) = (W, ¢) where W and ¢ are independent.

Theorem 2.2 can also be used to prove results when W and ¢ are not in-
dependent. 1In this case it is usually more difficult to verify that (W,, ¢,) —
(W, ¢) but in one situation it is easy. If we can write ¢, = H,(W,) and show
that H, — H locally uniformly (i.e., H,(f,) — H(f) whenever f, — f) then we
can apply the continuous mapping theorem to conclude (W, ¢,) = (W, H(W)).
The next result is an example of a theorem which can be obtained from Theo-
rem 2.2 using this technique.

THEOREM 2.6. Let {X, ,, .7, ;} be a martingale difference array and let S, , =
¥, X, . Suppose that for all e > 0 and n = 1 there are functions a, and f;, so
that
E(an,k ‘ J-n,k—l) = an(sn,k—l)
and
E(Xo i iz s 17 apm1) S BlSaea) -

If there is a bounded continuous positive function & so that na, — « and ng;, — 0
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uniformly on compact sets then
S,

where p=Y(s) = {3 [a(W(2))]* dt.
The limit process is a diffusion with no drift and infinitesimal variance a(y).

ma=Woop

Proor. This result is a special case of Theorem 10.3 in [38] (for this version
of the result see [39]) so we will only sketch the proof to show how our methods
can be applied.

Let M>0. Let [, =min{j =0:|S, ;| = M} and let k(1) = [nt] A [,. To
prove the result it suffices to show thatif V = W g then(a) S, , ., = V(- A T))
where T, = inf{s = 0: |V(s)] = M} and (b) in the limit process J we have
lim, ., T, = oo almost surely.

The second conclusion is a consequence of the assumption that « is bounded.
To show that (a) holds we will use Theorem 2.2. To check that (i) is satisfied
we observe that

E Rkt X2, = E 32, E(X2, Vpwza |5 wim1)
=E Xt Vi, eaE(X5 0| F 0 in)) S nsup_yq.cn Bi(x)

E 3 I“Afn,il < & SUP_ygosn B(X)) -
Since we have assumed that for all § > 0 n3,’ — 0 uniformly on compact sets
it follows from the last inequality that if we pick ¢, — O slowly enough then
the right-hand side of the last inequality approaches 0. This shows that (i)
holds.
The next step is to show that condition (iii) is satisfied. To do this we let
A2 > 0 and observe that since {X, ,, .5, ;} is a martingale difference array it

SO

n

follows from Jensen’s inequality that
ICAN £ 20 VyzaE(1 X il Lz, o0 | a)
S AT N E(X Nyx, g Fai) = ATNSUP_y gy Ba(x) — 0.

Finally we need to show that (ii) holds. Our first step is to observe that from
(i), (iii), and the proof of Theorem 2.2 we have that

SUPys,<1 ISn,j”(t) — W) —0.
From this it follows that if we let

o.(s) = § (nan(sn,j”(t)))_l dt

7.(8) = & (na, (W, (1)) dt

then supy,., |0,(s) — 7,.(s)] — 0. Since a is continuous and na, — a uniformly
it follows from the definition of ¢, that

(W, t,) = (W, 7) where 7(s) = (s a(W(t)) dr
and hence that (W, 0,) = (W, 7).

and
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To complete the proof we have to show that (W,, ¢,) = (W, ¢). To do this
we start by observing that [no,(s)] A I, = j(s) A I, (to check this note that if
t = a,(S,,0) then ¢,(¢f) = 1/n and then use induction). Now r is strictly in-
creasing so it follows from the last observation that if the ¢, are defined so that

[78] = Ju(a(s)) then
(War 0) = (W, 9)  where o7(s) = §5a(W()) dr

and this completes the proof.

The hypotheses of Theorem 2.6 may be weakened to allow the function « to
be unbounded or equal to 0. This is accomplished by considering a collection
of processes {S, . ¢z, 0= 1,m=z=1} with T, , =inf{s = 0:8S,, . &[a.
b,1} and letting n — o then m— oco. One of the theorems we can obtain in
this way is the following result about critical branching processes which is due
to Lamperti [21] and Lindvaal [23]. Since the proof we obtain in this way is
harder than the original one, it is omitted.

THEOREM 2.7. For each n = 1 let {Z, ,; k = 0} be a Galton-Watson process
with offspring distribution {p,, m = 0} and suppose that 3 7_,mp, =1 and
e o(m—17p, =d'€(0,c0). IfZ, Jn—c > O0thenZ, . /nconverges weakly
to a diffusion on [0, co) which has no drift and has infinitesimal variance a(y) = o?y.

3. Weak convergence to a Poisson process. Suppose {X, ;, &, } is an array
of variables satisfying the conditions given in the introduction and let the given
time scales be k,(t) as before where we now suppose for each 7 > 0 that k(1)
is a stopping time. For each n, form the point process on (R?, .2%(R?) which
has counting function

Nn((o’ t] X [a’ b]) = Zi‘c—ﬁ(lt) I(A’n,,;e[a,b]n(xo,m))

where x, is specified below and the right side is zero if k() = 0. In this section,
we give conditions for N, to converge weakly to a limit two dimensional Poisson
process. At the end of this section, our result is applied to obtain weak con-
vergence of maxima of dependent variables to limit extremal processes. In
Section 4 the Poisson convergence result is applied- to derive criteria for weak
convergence of sums of dependent variables to Lévy processes. Necessary
background on the weak convergence of point processes may be found in
Jagers (1974).

THEOREM 3.1. Let v be a o-finite measure on (R, ZZ(R)) with the property that
if x, = inf {x|v(x, 00) < o0} then —oco < x, < co. Suppose for all t > 0 and for
X > x, such that v({x}) = 0 we have as n — co

(3.1 Tk PIX, o > x| 5, i) —p (X, 00)
and

(3.2) max; g, , P{X, ; > x| F i} —r 0.
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Then N, — N where N is a Poisson process on [0, c0) X (x,, c0) with mean measure
dt X dv.

REMARK. We can replace (3.2) by the equivalent condition
(3.2") D (P[X,,; > x| & ;) =5 0.

Proor. Let & be the class of rectangles in R* of the form (a, b] X (¢, d] or
(a, 8] X (¢, 00) where 0 < a < b, y({c}) = v({d}) = 0 and x, < ¢ < d. Suppose
A is a disjoint union of rectangles in & say, A = 3 R, where R, = (a;, b;] X
(¢, d;]. We first show that

(3:3) N(4) = N(4)

where N(A) is Poisson distributed with mean Y7 (b, — a,)v(c,, d;].

If {(a;, b}, i £ m} are not pairwise disjoint then A4 can be rewritten A4 =
22i (@i, B:] X I, where now the time intervals («;, ;] are pairwise disjoint and
I; is a finite union of disjoint intervals. Then

N,(4) = %, Zl;g(lf:iai)+l 1(ijeli} .
Note that by (3.1) and (3.2)

2 Z?’éf};zai)ﬂ P{Xn,j el ﬁj‘,;’—x} —p 0 (B — a(ly),
and
2 .l;l(liizaiHl PHX, el y’n,j—l} —5p0,

s0 (3.3) now follows from Freedman (1974), Theorem 5.

Based on (3.3), the random measures {N,} are tight (cf. Jagers (1974), page
209). Let N, be a weakly convergent subsequence and suppose for some
random measure N that N,, — N. From (3.3) we must have N(4) =, N(A4) for
any A which is a finite disjoint union of rectangles in . By a result of Renyi
(1967) (see Jagers, 1974, Proposition 4.2), it follows that N =, N. This shows
that every convergent subsequence has the same limit. Since N, is tight we
have N, — N as desired.

COROLLARY 3.1. Suppose v satisfies the condition of (3.1) and also v(x,, o) =
+oo. If M(t) = Vgi,0 Xn; and M, is an extremal process generated by the
distribution F(x) = e™*= (cf. Resnick and Rubinovitch, 1973), then under (3.1)
and (3.2)

M, =M, in D0, co).

Proor. The result follows from the continuous mapping theorem (Billingsley,
1968, page 30) upon applying the D(0, co) valued functional g(N,)(?):=
sup{X, ;[ X,; > X0 J < k,(1)}. That g(N) =, M, is well known (cf. Resnick
and Rubinovitch (1973), Resnick (1975), Weissman (1976)) and it remains to
show M, — g(N,) —, 0. However

P[supyg,s: | M,(1) — g(N,)(t)] > 0]
< PIN,((0, 1] X (xp 0)) = 0] — e~*=0=) = 0.
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Of course, applying the appropriate functional, one would get joint con-'
vergence of the maxima, second maxima, etc.

ExampLE 3.1. Chain dependent variables (continued). Recall the setup of
Example 2.1 but now we make no assumptions about moments of the H’s.
Define

X"hJ' = (X.'I - b%)/an ’ k'n(t) = [nt]

where a, > 0, b, are normalizing constants. We seek conditions for N, = N.
Since 77, ; = _JZ, the left side of (3.1) becomes

P > ax + 6,0, = X (1 — H,,_(a,x + b,))
= Nriwdm] — (1 — Hya,x + b,))

and since 7 (n) ~ m,nas n— oo fori = 1, ..., m we have that (3.1) holds iff

(3.4) nyr w(l — Ha,x + b,)) — »x, o) .

It is well known that (3.4) requires exp{—v(x, o)} to be an extreme value dis-
tribution and the distribution ;7 x, H,(x) to be in the domain of attraction of
exp{—uv(x, o0)}. From (3.4) it is easy to check (3.2).

To summarize: if (3.4) holds then N, = N where N is Poisson with mean
measure dt X dv where v(x, oo) = —log F(x) and F is one of the three classes of
extreme value distributions. Also M, := (Vx! X; — b,)/a, = M, in D(0, co)
where M_, is an extremal F process.

One dimensional convergence of maxima of chain dependent variables has
been considered by Resnick and Neuts (1970) and O’Brien (1974b), and Denzel
and O’Brien (1975).

ExAMPLE 3.2. Let {E,, —o0 < k < oo} be i.i.d. exponentially distributed
variables with P[E, > x] = ¢~*, x > 0 and set ¢, = E, — | and define X, =
Yo pte,_, where 0 < p < 1 (sothat X, = pX, | +¢,). Set X, , = X; — logn,
n=1,j= 1and k,(r) = [nt]. Evaluating the left side of (3.1) we obtain

[nt] p—(z+1) a1 Xp_1 — p—(2+1) [nt Xp—
D emtrrreiosneeXioy = e=(x+1 Fint] er¥imafn

Since {es¥+} is stationary, we obtain by the ergodic theorem that the above
converges a.s. to
te— =+ EerX,

provided Ee*o < co. The finiteness is not hard to check and in fact
Eer®y = exp{—p(1 — o)) TI7 (1 — 09
To check (3.2) we compute for any § > 0

P{maxkém P{Xn,j > xl‘g_'n,j—l} > 5}
= P{U] [e~te~"e*Xk-1/n > 0]} < [nt]P[e*¥o > nc], where ¢ > 0.
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Now pick p < { < 1 and the above has the Chebychev bound

[nt]Eet*o 0
(nc)ere

This verifies (3.2) and hence we conclude

, nN-—o0.

Vi X, — logn = M,

where M, is the extremal process generated by the distribution

exp{ _(Eero)e—(aH-l)}.

4. Convergence to processes with stationary independent increments. In this
section we will give conditions for Z, to converge to a process with stationary
independent increments. Our method of proof will be to obtain the con-
vergence by applying the continuous mapping theorem to the convergence of
the point processes obtained in Section 3. To do this we need the following
facts about processes with stationary independent increments and their relation-
ships to an associated Poisson random measure.

Let {Z(t), t = 0} be a process with stationary independent increments. The
characteristic function of Z(¢) is given by

(@.1) E(e'2®) = exp {t [iaﬂ + 07‘92 F $ainy (€95 — 1)u(dx)

F Socime, (€7 — 1 = iﬂx)v(dx)]}

where a is a contsant, ¢ is a nonnegative number and v (called the Lévy measure)
is a o-finite measure on R®= (—o00,0) U (0, c0) with the property that
§ (x A 1I)(dx) < oo (cf. Gnedenko and Kolmogorov, 1968, page 84).

Let N be a Poisson random measure on [0, co) X R° with mean measure
dr x dv and points {(,, §,)}. Let W be a normalized Brownian motion inde-
pendent of N. The Itd representation of Z (cf. It6, 1969, page 1.7.7) is

(4.2) Z(1) = at + W(et) + Xi,se € lugpan
+ lim, o[22, < €& ll\fk\e(b,r)) — 1§ e SHds)]

where, for almost all w, the convergence is uniform on compact ¢ sets.

Having introduced the necessary preliminaries on processes with stationary
independent increments, we are ready to state and prove theorems for con-
vergence to these processes. In both of the results given the limits will have
a = 0. In the first we will also suppose ¢ = 0 (i.e., there is no Wiener com-
ponent). The notation used in the statements below is that of Section 2 except
that we have added a superscript d to indicate the value at which the sequence
is truncated (in Section 2 this value was ¢,). Throughout this section, we sup-
pose k() is a stopping time for each .

THEOREM 4.1. Let v and Z be as specified in (4.1) and (4.2) witha = ¢ = 0.
Suppose that v({—7y,r}) = 0. If
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(a) forallt >0

ikl PIX, s > x| F, ] —p tu(x, 00)
and

TS P[Xn1<y! 11]—->Pty(—~oo .y)

whenever x > 0, y < 0 and »({x, y}) = 0,
(b) foralle >0

maXIStsk (1) P{I zl > el n,i— l] _')P 0
and

(¢) foralle >0
limuo lim SUP o P{Sup053§l |7n6(s) - A”"(S)I > 6} =0
then Z, = Z in D[0, 1).
A sufficient condition for (<) is
(d) foralle >0
hmuo]lm SUp, . P{Zk Y E((Xﬁ i)2| nicy) > € =0.

REMARK. Other sufficient conditions for (c) can be obtained by using Doob’s
maximal inequality for martingales.

Proor. We begin by disposing of a technical matter. We show that (a)
implies
(4.3) 200 E(X i Locix, g |7 nicn) =2 t Qe SUdS)
for all +t = 0 whenever y({—d, d}) = 0. One can proceed as in Brown and
Eagleson (1971) by approximating above and below by step functions but we
will use the following approach which will be useful later as well: observe that
the set of Borel-Radon measures on [0, co) X R is a complete separable metric

space. From (a) and Theorem 3, page 206 of Jagers (1974) it follows that the
random measures

[0, 1] X A) 1= X PX, e 4|57, 0}
defined on [0, o) X R° converge weakly to the measure dr X dv. The map

®— Slale(a,r) sp([0, £] x ds)

is continuous at each g with ([0, 1] X {—d, d, —7, y}) = 0 so by the continu-
ous mapping theorem (Billingsley, 1968, page 30)

P E(X, K (a<|xn Jd<r | &, wio1) = Sme(a » sea([0, 1] X ds)
= {1 (3,1 sv(ds)
and convergence in probability is automatic since the limit is constant.

From (a), (b) and Theorem 3.1 we get convergence of the point processes
N, = N where N is the Poisson process on [0, co) X R° described before Theo-
rem 4.1 and N, ([0, 1] X [a, b]) = Z¥2l” 5, crany- If Y{—0, 6}) = O then we
can apply the continuous functional which sums ordinates of points in
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{(s, x): s < 1, {x| > 6} and conclude from the continuous mapping theorem that

iz X luxn,ilm = Ztl,s- & 1((5k1>“ .
Combining this result with (4.3) gives
Zyw = 200 Xoi Lizyyon — 280 E(XG i Laqr, gan |5 nim)
=2, = Zt,,s- € 1(|ek|>a) — (+) Socimiey S¥(ds) -

Since Z, — Z almost surely and uniformly on compact ¢ sets we have Z, = Z
and applying Theorem 4.2 in Billingsley, 1968, we will have Z, = Z provided

(4.4) lim, ,limsup, ., Plo(Z, ., Z,) > ¢} =0

where p is the Skorohod metric for D[0, 1]. However Z, — Z, , = Y% (X2 ; —
EX: )= Y," — A, so (c) implies (4.4) and the proof of the first statement is
complete.

To prove that (d) is sufficient for (c) observe that by the Doob decomposition
of square integrable submartingales and a formula on page 150 of Neveu (1975)
the probability in (c) is dominated by

Dt E(X30 | Znis) > €} + B{1 A e Do B(X2,)| Zs,0c0)}
=)+ ).

However forany 1 > £ > 0, (2)is

< E{LA e Bie® B(XL1| Z,,00)i €7 The < 8} + Ple Th > €)

=&+ Pl X > €]
So because of (d)

limuo lim SUPy e P{supogagl ]Y”"(S) - A”"(s)l > e} < §

and since ¢ is arbitrarily small, (c) is verified.

ExaMpLE 4.1. Chain dependent variables. Continuing the developments of
Examples 2.1 and 3.1 let H = Y 7z, H; and suppose

1 — H(x) + H(—x) ~ x™*L(x), O<a<c?2
1 — H(x) >, H(—x) Ly
1 — H(x) + H(—x) 1 — H(x) 4+ H(—x)

as x — co where L is slowly varying and p 4+ ¢ = 1. As in Example 3.1 it is
readily verified that (a) and (b) of Theorem 4.1 hold with

y(x, c0) = px~* for x>0
y(—o0, —y) = gy for y >0,

where
X, ;= X;/la, and a, ischosen so that

n, 3

n(l — H(a,x) + H(—a,x)) ->x™*, x>0.
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We check condition (d) as follows:

L1 E((X2 ) im)
= ZrE{XZb,i1{[X,,,,;[§5)]“7n,i—1}

2
= 27 Sjoiss X'min) dH(a,x) ~ n § 50 5 —t% (3T m Hyx))

n
> Vieise,0 ¥ dH(X)
a'ﬂ

which by the lemma on page 578 of Feller (1971) is asymptotic to

n < a >(5an)2(1 — H(a,d) + H(—a,0d))

a\2 —a

% u(1 — H(a,0) + H(—a,8)) — 20"

—a 2—«a

as n-— o

and since 2 — a > 0 we have as § | 0 that the above — 0.
Thus from Theorem 4.1 we have

Sl X _ S E X; 1
1 1 X j/ag1<r)
a a,

n

yn,j—l) = Za
where Z, is a stable process with characteristic function given by (4.1) with
a = 0 = c and v specified as in the first part of the example.
When @ < 1 we observe by formula (5.22) on page 579 of Feller (1971) that
zpE (L

it}
an

(p— =

1(|X,-/a,,[<r)

C//"fn’jﬂ) — 1
a.s. and locally uniformly in ¢.

When « > 1, we use formula (5.21) on page 579 and (5.16) on page 577 of
Feller to obtain:

"1‘ Stzl>ran xdH — < a 1 ) (p - ‘I)?'l_a
a o —

n

so that

s g (X
I o jleal<r)

n

7) —nm Yyt { xdH, —»( - 1)(17 — gyt
a —_—

a.s. and locally uniformly in ¢.
To sum up:

ta

ZP Kfa, = T (p— g = 2., 0<a< ]

— &

(44

T Xfa, — mt Tp S xdH + (S ) (p— = Z,, 1<a<2

a—1

T X fa, — P (e XdH—Z,, a=1.
a, "
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Wolfson (1974) has shown that partial sums of chain dependent variables can
converge only to stable laws.

THEOREM 4.2. Let v and Z be as specified in (4.1) and (4.2) with a = 0.

Suppose that w({—7, r}) = 0. If conditions (a) and (b) of Theorem 4.1 are satisfied
and (c) for all ¢ and t > 0

lim, |, lim sup, ., P{| 54" E((X2 )| 5 i) —ct] > ¢} = 0
thEn Z," = Z
If (d) foralle > 0

lim, ,limsup, ., P{3 % E(X2 ;| F ) >e=0

then (a) and (c) are equivalent to

(¢) there is a nondecreasing function G such that if x and y are continuity points
of G then

pMI E(Xi,i 1{z<|Xmi1<y) | "g—n,i—l) —p 1[G(y) — G(x)] -

REMARK. Conditions (a)—(c) are the analogues of those given by Gnedenko
and Kolmogorov (1968) in the case of independence (see page 124). Condition
(e) is from Brown and Eagleson (1971) who studied the case in which the limit
law has finite variance. They assumed some other conditions which include
(b) and imply (d).

ProOOF. From assumption (c) if we let ¢, | O slowly enough then
(4.5) Tkt E(X% | F iny) —p

for all # > 0. (Here we have returned to the practice of deleting the superscript
¢,.) Checking Theorem 4.1 we find that ¥, — B,” converges weakly to Z :=
Z — W(c+) (replace X, ; in Theorem 4.1 by X, , L., «x, ) From formula (2.2)

Zn: ?n_BnT'i" Wn090n~
By (4.5) we have ¢,(f) —p cf so that W, o ¢, = W{(c.).

n

To complete the proof we have to show that
(Wn’ Yn - B‘nr) =’(W’ 2)
where W and Z are independent. To do this it suffices to show that if ¢, is the
sequence we have used above then for all M < oo which are continuity points
of v we have that the finite dimensional distributions of

kn(t)
Ziil Xn,il(X cel—M,M))

"yt

converge to those of a process which is the sum of a Brownian motion
with variance ¢ and an independent pure jump process with Lévy measure
v« N [—M, M]). The desired result is then a consequence of Theorem 1 of
Brown and Eagleson (1971) so the proof is complete.
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