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Abstract 

Functional liquid metal nanoparticles (NPs), produced from eutectic alloys of gallium, promise new 

horizons in the fields of sensors, microfluidics, flexible electronics, catalysis, and biomedicine. Here 

we show the development of a vapor cavity generating ultrasonic platform for nebulizing liquid 

metal within aqueous media for the one-step production of stable and functional liquid metal NPs. 

We fully characterize the size distribution of the NPs and demonstrate that various macro and small 

molecules can also be grafted onto these liquid metal NPs during the liquid-based nebulization 

process. We further explore the cytotoxicity of the NPs grafted with different molecules. Moreover, 

we show that it is possible to control the thickness of the oxide layer on the produced NPs using 

electrochemistry that can be embedded within the platform. We envisage that this platform can be 

adapted as a cost-effective and versatile device for the rapid production of functional liquid metal 

NPs for future liquid metal-based optical, electronic, catalytic and biomedical applications. 
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1. Introduction 

Research on the production and application of micro-/nano sized particles of gallium liquid metal 

alloys, such as eutectic gallium indium (EGaIn, m.pt. 15.5 °C) and gallium indium tin (Galinstan, 

m.pt. −19 °C), is increasingly attracting attention. This is due to the unique properties possessed by 

such liquid metals including negligible vapor pressure and low-toxicity compared to mercury, high 

electrical and thermal conductivities, and the ability to form a functional native oxide layer on the 

surface[1]. Numerous applications have been explored for micro/nanoparticles of such liquid metals 

in the fields of microfluidic systems[2], soft electronics[3], catalysts[4], and biomedicines[5]. For 

example, due to their high electrical/thermal conductivities and reconfigurable surface property, 

EGaIn/Galinstan micro/nanoparticles have been embedded in microchannels or elastomers for 

constructing 3D electrodes[2b], electrical interconnects[3a,3d,3e], soft robots[6], and heat dissipating 

systems[3b]. The presence of native gallium oxide layer on the surface of the particles allows for the 

formation of liquid metal/metal oxide structures give them non-Newtonian rheological properties 

that allow the formation of stable nanoparticles (NPs)[4]. Moreover, the research on using such liquid 

metal NPs for applications in biomedicine has shown great promises. For example, liquid metal NPs 

of gallium alloys, which are highly biocompatible, can undergo shape transformation upon the 

application of external stimuli, making them useful in targeted drug delivery systems with enhanced 

and controllable cargo releasing performance[5a,5b]. 

Top-down methods are commonly used for producing liquid metal microdroplets or NPs by 

overcoming the surface tension using disruptive shear induced by acoustic waves[4a,5a,5b,5e,7], rotary 

tools[8], or microfluidic devices[9]. The rapid formation of a thin oxide layer on the particles’ surface 

helps in preventing coalescence back into the bulk materials[1a]. For the production of liquid metal 

NPs, high-power sonication probe systems have been the most commonly used for efficiently and 

promptly disrupting bulk liquid metals[4,7a,7c]. However, commonly employed sonication probe 

systems are of high noise levels, lack controllability, they do not allow the implementation of 
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specific configurations that help in regulating the process and also their intense power density can 

lead to instant dealloying and morphological for the produced liquid metal NPs[4,7a]. Furthermore, it 

is challenging to stabilize gallium based liquid metal NPs within aqueous media as they are inclined 

to hydrolysis and oxidation, inducing aggregation after dealloying and forming gallium oxide 

nanostructures[4,7a]. Thiolated molecules are often used for stabilizing the liquid metal NPs[1b,5a,5b,7c]. 

Unfortunately, thiol groups are prone to oxidation and are often not suitable for direct use in 

biological systems as they foul readily.  

Thus, we sought to design a platform that is of reduced technological complexity, highly efficient, 

integrated, noise-free, small-in-size, and versatile for the production of stable, highly controllable 

and functional liquid metal NPs. We report a mini ultrasonic platform to efficiently nebulize EGaIn 

liquid metal within aqueous media for the production of liquid metal NPs, and we also characterize 

their size distributions. We discovered that this platform forms particles by inducing vapor cavities 

and collapsing them at the liquid metal-medium interface, which is different from conventional 

acoustic systems where strong shear is applied to disrupt the liquid metal. Leveraging the versatility 

of this platform, we investigated grafting of various molecules to the NPs to yield both stability and 

stealth properties, and examined the cytotoxic effects of the NPs on cells. We also studied the 

capability of this miniaturized platform for controlling the thickness of the oxide shell on the 

produced NPs using electrochemical components added onto the system.  
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2. Results and Discussion 

The mini ultrasonic platform is illustrated in Fig. 1A. A low-cost commercially available ultrasonic 

mist maker equipped with a lead zirconate titanate (PZT) transducer (resonant frequency of ~1.71 

MHz) was utilized to produce EGaIn NPs. The top surface of the transducer has a layer of ceramic 

glaze for protection. The mist maker has an oscillator that converts the DC voltage supply into a 1.71 

MHz AC signal to drive the PZT transducer with power consumption less than 12 W. A stainless 

steel tube with the length, inner diameter, and thickness of 30, 10, and 1 mm, respectively, was 

inserted into the oscillator as a medium container to allow for the production of EGaIn NPs upon the 

activation of the transducer (Fig. 1A). The stainless steel tube was passivated using a 20% nitric acid 

solution at 50 °C for 30 minutes before using to avoid any contamination and chemical reaction. We 

chose to use the stainless steel tube as the container due to its simple fabrication process (by lathing) 

and excellent ability to dissipate heat. A 5 mL test tube was used as the cap to avoid spilling/leaking 

during production and to collect the final NP suspension (Fig. 1B); the enclosed platform was 

submerged into tap water to activate the AC signal generator and avoid overheating during the 

production process.  

To understand the production mechanism, we first conducted a numerical simulation to investigate 

the distribution of acoustic surface displacement on the PZT transducer, as shown in Fig. 1C. The top 

and bottom images for the transducer are given in Fig. S1A. Fig. 1C shows the center of the 

transducer has the maximum displacement at the resonant frequency, and this is evidenced by our 

experimental results conducted using the transducer to nebulize a droplet of water, as shown in Fig. 

S1B. Upon the activation of the transducer, we observed the immediate jetting of water at the center, 

and later formation of a cone-shaped droplet (Fig. S1B), indicating that the acoustic energy was 

accumulated at the center of the transducer.  

The cross-sectional schematic of the EGaIn NP production system is given in Fig. 1D, in which NPs 

of EGaIn can be produced after activating the transducer at the resonant frequency. We added 300 
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µL of EGaIn and 2 mL of the aqueous suspending medium into the platform. A conventional 

sonication probe/bath fractures the bulk liquid metal into NPs by the strong oscillating shear forces 

induced by acoustic waves[7a,7c]. In contrast, we did not observe severe turbulence upon the activation 

of the transducer, as shown in Fig. 1E (also see Movie S1); this indicates that the production 

mechanism could be different from conventional methods that use acoustics. We also rule out 

capillary instabilities since such a phenomenon is commonly observed at low ultrasonic frequencies 

(<100 kHz)[10]. In Movie S1 we can see the generation of NPs comes along with the production and 

collapse of bubbles on the surface of the EGaIn droplets. Therefore, we believe the liquid metal is 

nebulized within the medium and the production mechanism can be explained using the cavitation 

hypothesis[10], as shown in Fig. 1D. Vapor cavities of water can be generated within the slip layer 

between the EGaIn droplet and the surface of transducer by acoustic waves; next, the bubbles move 

upwards in the EGaIn droplet and eventually collapse at the EGaIn-solution interface, liberating 

EGaIn NPs into the surrounding suspending medium. This phenomenon is also similar to the case of 

forming nanoemulsions/NPs via bubble-bursting at a liquid-liquid interface[11]. 

Benefiting from the versatility of this platform, we investigated the use of various grafting molecules, 

including brushed polyethylene glycol (bPEG, MW of 20 kDa), poly(methyl vinyl ether-alt-maleic 

anhydride) (PMVEMA, MW of 216 kDa), poly(styrene-co-maleic anhydride) (PSMA, MW of 224 

kDa), and oleic acid (OA), for coating and stabilizing the EGaIn NPs electrostatically or sterically in 

water. Similar to our previous work[9b], the bPEG polymers used here have a brush-like structure 

with carboxyl and trithiocarbonate termini, where the trithiocarbonate groups were used as the 

surface anchoring compartments for EGaIn NPs. PMVEMA and PSMA polymers contain maleic 

anhydride groups, which can be hydrolyzed to carboxylic acid in water. We hypothesize that the 

hydrolyzed PMVEMA and PSMA polymers can bind to the surface of EGaIn NPs through the 

carboxylic groups, and meanwhile stabilizing the NPs due to the electrostatic repulsion from the 
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strong negative charge, therefore, enabling one-step stabilization and functionalization process 

during the production process.  

Using the PMVEMA polymer grafted NPs as an example, upon adding 2 mL of the polymer solution 

(concentration of 2.5 mg/mL) and activating the transducer for 20 min, this platform is capable of 

producing stable PMVEMA grafted EGaIn NPs with sizes ranging from tens to a few hundreds of 

nanometers, where the size distribution and concentration of the NPs can be controlled by changing 

the input DC voltage. We placed the NP suspensions in the steady state for 20 min after the 

production and take 1 mL of the supernatant for measurement and characterization. We find that the 

concentration of the NPs can be increased from ~0.5 to ~5 mg/mL by increasing the input voltage 

from 18 (~5 W power consumption) to 27 V (~11 W power consumption). This is visually seen by 

the decreased transparency of the NP suspensions obtained using higher input voltages as presented 

in the inset of Fig. 1F. In addition, the dynamic light scattering (DLS) measurements show that the 

peak of the hydrodynamic size distribution for the NPs shifts to smaller sizes when activating the 

transducer using larger voltages, reducing from ~200 to ~160  nm when the voltage increases from 

18 to 27 V, as shown in Fig. 1F. Interestingly, despite the increased concentration of the NPs 

obtained by activating the transducer for a longer time using the same input voltage (Fig. 1G inset), 

we did not observe any noticeable difference for the size distributions of the NPs, as shown in Fig. 

1G. This further suggests that the formation of NPs is not due to the continuous shear forces induced 

by acoustic waves, which can lead to a smaller size of NPs by extending the sonication time[4a].  

Breaking of the bulk liquid metal into microdroplets or NPs occurs is a result of the competition 

between destructive (shear forces) and cohesive (surface tension) forces on the liquid-liquid interface. 

The capillary number is a ratio of viscous forces to interfacial forces and is calculated as Ca = μV/γ, 

where μ and V are the dynamic viscosity and characteristic velocity of the polymer solution, 

respectively, and γ is the interfacial tension between liquid metal and the solution. The size of liquid 

metal droplets produced varies inversely with the Ca[9a]. Despite the claim that submicron to 
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nanosized particles of low-melting-point metal such as bismuth can be produced with a narrow size 

distribution simply by stirring at a speed of few hundreds of rpm[12], it is very unlikely to happen in 

our case as the Ca is too small (~0.02) even we applied a high stirring speed of 1600 rpm, as shown 

in Fig. S2A. Our previous study shows that even with a large Ca of ~2 within a flow-focusing 

microfluidic device, only large liquid metal microdroplets with a diameter of ~100 µm can be 

produced[9a]. As a result, we only observed the production of large non-spherical liquid metal 

droplets (major axis of ~200 µm) after vigorously stirring the bulk liquid metal within the polymer 

solution at a high speed of 1600 rpm (see Fig. S2A). We also tried to increase the Ca using a much 

more viscous liquid such as polydimethylsiloxane (PDMS); however, we could only break the liquid 

metal into polydispersed droplets with the diameter of tens of micrometers, as shown in Fig. S2B. 

The polydispersity of the produced liquid metal droplets using such a stirring method is due to the 

large Reynolds number (~2×104) at the high stirring speed (1600 rpm). Consequently, the flow is 

rather turbulent and no constant shear can be induced to evenly break the bulk liquid metal into 

monodispersed microdroplets or NPs.  

We further compared the production of liquid metal NPs using this ultrasonic device with other 

methods, including sonication using bath or probes, as well as microfluidics-assisted sonication [9b]. 

For the production using a sonication bath, an 8 mL glass vial contains 2 mL polymer solution and 

300 µL EGaIn was sonicated using a 60 W sonication bath for 20 min. For the production using a 

sonication probe, an 8 mL glass vial contains 2 mL polymer solution and 300 µL EGaIn was 

sonicated using a sonication probe with a 90 W output power for 20 min. We placed the NP 

suspensions in a steady state for 20 min after production and take 1 mL of the supernatant for the 

DLS measurements. We discovered that the device presented in this paper can produce NPs with a 

size distribution that is narrower and at least two times smaller in comparison with other methods 

using less power, and also the distribution of the size is always smaller than 500 nm while other 

methods may produce a large portion of particles in micro-sized dimensions, as detailed in Fig. 1H.  
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Figure 1. Production of EGaIn nanoparticles using the mini ultrasonic platform. (A) Exploded 

schematic of the platform. (B) Actual image of the assembled device. (C) Numerical simulation of 

the displacement on the top of the PZT transducer upon the application of a 1.71 MHz signal. (D) 

Schematic illustrating the mechanism for producing EGaIn nanoparticles. (E) Snap shots showing 

the EGaIn droplet within the device before and after activating the transducer. (F) Hydrodynamic 

size distributions for the PMVEMA grafted NPs obtained using different input voltages; the inset 

shows the image of the EGaIn NP suspensions. (G) Hydrodynamic size distributions of the NPs 

produced using different production time, the input voltage was kept at 24 V; the inset shows the 

image of the EGaIn NP suspensions. (H) Hydrodynamic size distributions of the EGaIn NPs 

produced using the ultrasonic device presented in this paper in comparison with other methods.  
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We operated the ultrasonic device with an input voltage of 24 V for 20 min, and our method was able 

to produce stable and stealthy EGaIn NPs grafted by bPEG, PMVEMA, or PSMA polymer directly 

within an aqueous solution. As an example, Fig. 2A shows the scanning electron microscopy (SEM) 

image for the PMVEMA grafted EGaIn NPs. We measured the zeta potentials for the NPs with or 

without the polymer grafting, as shown in Fig. 2B. The zeta potential of EGaIn NPs without grafting 

is low and therefore, induces aggregation rapidly after production[9b]. A neutral surface charge was 

observed for NPs grafted with bPEG, indicating that bPEG polymer is able to sterically stabilize the 

NPs in water. We obtained large negative zeta potentials for the cases of PMVEMA (−55.3 ± 5.6 mV) 

and PSMA (−53.9 ± 5.2 mV) grafted NPs, indicating that part of the hydrolyzed polymer long chain 

was able to bind to the surface of EGaIn NPs via the ionized carboxyl groups, and meanwhile 

stabilizing them electrostatically and sterically within water (Fig. 2B inset). Such a 

conjugation/stabilization method is similar to the case of using poly(vinyl alcohol) to prevent the 

merging of EGaIn microdroplets produced using a microfluidic platform[13]. Surprisingly, we found 

that the platform also allowed us to use OA as the grafting molecule despite the fact that OA is 

immiscible to water. This was achieved by adding 50 µL of OA into the 2 mL DI water within the 

platform, and micelles of OA were produced together with EGaIn NPs by acoustic waves created 

upon the activation of the transducer. We believe that the produced EGaIn NPs were attached to the 

hydrophilic carboxyl head of OA molecules, and their hydrophobic tail might be interacting with the 

free OA by hydrophobic interactions. After 20 min of production, the NPs suspension was 

centrifuged to remove excess OA, and the NPs were washed and re-suspended in DI water. For 

dispersion of OA coated NPs in water, the carboxyl group of free OA needs to be ionized, and this 

was evidenced by the strong negative zeta potential (−36.5 ± 5.9 mV) measured for the OA grafted 

EGaIn NPs (Fig. 2B). 

We further obtained transmission electron microscopy (TEM) images and EDS mapping for the 

EGaIn NPs to examine the uniformity of gallium and indium distribution. Fig. 2C shows the example 
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of PMVEMA grafted NPs, from which we can see a thin layer of oxide formed on the NP surface, 

and the grafting polymer is not obvious due to its small thickness and similar contrast to the 

background (zoomed in image of Fig. 2C). Despite that the surface composition of gallium-indium 

alloys is dominated by indium in high vacuum, the shell of the alloy primarily consists of gallium 

oxide because indium is less prone to be oxidized and thermodynamically gallium oxide is 

preferential over indium oxide[14]. The growth of the gallium oxide could be controlled through 

thiolation[15], thermal oxidation[16] or electrochemistry[17]. Thiolation can mitigate (but not eliminate) 

the growth of gallium oxide[15]. For thermal oxidation, the thickness, texture and roughness of the 

oxide layer is temperature-dependent that it grows thicker and rougher with increasing 

temperature[16]. While in electrochemistry, the oxide skin becomes thicker with increasing oxidative 

potential[17]. To further examine the thickness of the oxide layer and the grafted PMVEMA, we 

conducted EDS mapping for a single NP using a TEM grid coated with a lacey carbon film, as 

shown in Fig. S3, from which we discovered that the thickness of the oxide layer and the grafted 

polymer are ~3 and ~2.5 nm, respectively. No diffraction pattern was observed from the convergent-

beam electron diffraction (CBED) measurement (see Fig. S4), indicating that the core of NPs is 

liquid. The EDS mapping indicates a uniform distribution of gallium and indium within the NPs (Fig. 

2C). The temperature measured for the suspension was below 40 ºC when activating the transducer 

less than 30 min (see Fig. S5); this minimized the chance of inducing dealloying and morphological 

transformation observed for liquid metal NPs caused by oxidation after exposing to a high 

temperature (~70 ˚C)[7a]. The use of polymers and OA for stabilizing the produced EGaIn 

nanoparticles represents a significant advance in comparison to previous reports that use thiol-

functionalized molecules for stabilization[1b,5a,5b]. In comparison, our approach for nanoparticle 

anchoring avoids the use of thiol groups that induce unpleasant odors and are prone to oxidation 

reactions and as a consequence, inducing fouling within biological systems. 
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Figure 2. Characterization of the produced EGaIn NPs. (A) SEM image of the PMVEMA grafted 

EGaIn NPs. (B) Zeta potentials for the EGaIn NPs with/without grafting. (C) TEM images and EDS 

mapping of the PMVEMA grafted EGaIn NPs.  

 

After obtaining the stable NPs suspensions, we further studied their stability within water over a 

longer period of time (120 h). We have previously showed that bPEG grafted EGaIn NPs are prone 

to oxidization and formation of gallium oxide nanodisks within 48 h without the presence of an 

antioxidant such as trisodium citrate[9b]. Interestingly, for the case of PMVEMA grafted NPs, we 

found that the NPs suspension is relatively stable (can be re-suspended) but became more transparent 

after 12 h, as shown in Fig. 3A. We obtained the TEM image for the EGaIn NPs 120 h after 

production (see Fig. 3A) and observed the formation of core-shell structured NPs. Most of the NPs 

have a thick layer of gallium oxide shell (10-20 nm) and an indium-rich core, as evidenced by the 

EDS spectrum. The CBED results indicate that the core of the NPs became solid (see Fig. S6), and 

this can be attributed to the dealloying process induced by the gradual oxidation of metallic gallium 
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on the surface, increasing the content of indium and solidifying the core. In addition, we also 

observed the formation of gallium oxide nanodisks (see the TEM image in Fig. 3A), as evidenced by 

the EDS spectrum given in Fig. S7. The X-ray diffraction (XRD) and X-ray photoelectron 

spectroscopy (XPS) spectra given in Fig. S8 show that the oxide layer on the NPs was mainly 

composed of α-Ga2O3 at 0 h, and it gradually became thicker and transformed into GaOOH 120 h 

after production. Similar results were obtained for PSMA grafted NPs. We believe that the loss of 

liquidity and formation of gallium oxide nanodisks may contribute to the enhanced transparency of 

the suspension, as evidenced by the experiments conducted using pure gallium instead of EGaIn, 

where the gallium NPs were oxidized and the suspension became transparent 120 h after the 

production, as shown in Fig. S9. 

On the contrary, the OA grafted NPs are very stable with no change of the particle concentration and 

morphology observed over the period of 120 h, as shown in Fig. 3B. The CBED measurements prove 

that the NPs were still liquid and the EDS spectrum indicates no hydrolysis and oxidation occurred 

for the NPs (Fig. 3B). Such an unprecedented stability is due to the formation of an insulation layer 

from the hydrophobic tails of OA (see the inset of the EDS spectrum). Our DLS measurements show 

that the peak of the distribution for PMVEMA grafted NPs shifted towards the larger size by ~40 nm 

due to the formation of nanodisks after 120 h (see Fig. 3C), while no shift of the peak was observed 

for OA grafted NPs. We further compared the UV-vis spectra for the suspensions of PMVEMA and 

OA grafted NPs 120 h after production, as shown in Fig. S10, for which no peak was detected for 

OA coated NPs while a broad peak at ~330 nm was observed for the case of PMVEMA. This further 

confirms the formation of solid indium NPs[18].  

Such an excellent stability and the presence of carboxyl functioning groups for OA grafted NPs can 

allow us to conduct further functionalization. We conducted a proof-of-concept experiment to 

conjugate Rhodamine 123 (R123) fluorescent dye to the OA grafted EGaIn NPs, where a 1-ethyl-3-

(3- dimethylaminopropyl)carbodiimide (EDC)-mediated crosslinking method was used. Briefly, 
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EDC (final concentration of 1 mM) was firstly added into 3 mL of the NPs suspension to react with 

carboxylic acid groups, and then the unreacted EDC was removed using dialysis tubing (2000 Da 

MWCO). Next, we added 5 µL of R123 solution (concentration of 10 mg/mL) into the NP 

suspension to allow for the formation of amide bonds between the R123 and the NPs. The 

conjugated NPs were later washed with dialysis tubing (2000 Da MWCO) and we examined the 

functionalization using a fluorescence spectrophotometer. The obtained emission spectra for the 

R123 solution, bare EGaIn NP suspension, and R123-conjugated EGaIn (R123-EGaIn) NP 

suspension, are given in Fig. 3D. The R123 solution has an emission peak at ~530 nm and the 

presence of such a peak for the spectrum obtained with the R123-conjugated EGaIn NP suspension 

clearly proved the success of functionalization. The bright field and fluorescent images for the dry 

R123-conjugated EGaIn NP cluster are given in Fig. S11, in which we can clearly see the bright 

green-colored fluorescent light emitted from the NPs. Such a functionalization process for EGaIn 

NPs is only possible for a very stable suspension where no oxidation and aggregation of NPs should 

occur due to the time consuming particle washing process using dialysis tubing (a few days), thus, 

the use of OA for grafting EGaIn NPs within our innovative platform certainly represent a significant 

advance in comparison to previously reported methods.  

We envisioned that such a stable EGaIn NP system may enable various bioapplications and therefore, 

we further examined the cytotoxicity of EGaIn NPs grafted with different molecules on MCF-7 cell 

line using the Alamar Blue assay (see Experimental part for details). Fig. 3E shows the viability of 

the cells upon the 24 h exposure to the NPs with different concentrations; we observed that the 

viability of MCF-7 cells slightly decreased as the concentration of the NPs was increased to 0.1 

mg/mL for the cases of PMVEMA, PSMA, and bPEG grafted NPs, while no significant cytotoxicity 

was observed for OA grafted NPs. 
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Figure 3. Stability of the NP suspensions. EGaIn NP suspension, TEM image, and EDS spectrum for 

NPs grafted using (A) PMVEMA, and (B) OA over the duration of 120 h. (C) DLS size distribution 

for PMVEMA grafted NPs 0 and 120 h after production. (D) Normalized emission intensity for the 

R123 solution, bare EGaIn NP, and R123-conjugated EGaIn NP suspensions. (E) The effect of 

concentration for NPs grafted with different molecules on the survival rates of MCF-7 cells.  

 

Based on our understanding of the NPs production mechanism elaborated in Fig. 1, where the NPs 

were produced due to the collapse of the cavities at the EGaIn-solution interface, we hypothesized 

that the thickness of the oxide shell on the NPs can be controlled electrochemically in this platform 

upon the application of a reductive or oxidative potential to the bulk EGaIn droplet during the 

production [19]. We conducted a proof-of-concept experiment to verify our hypothesis, and the 

schematic and actual image depicting the experimental setup is given in Figs. 4A and B, respectively. 
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We electrochemically reduced/oxidized the surface of EGaIn via a pair of copper electrodes in 

contact with the EGaIn droplet and the surrounding suspending medium, respectively. In this study, 

we used a PMVEMA solution as the suspending medium due to its relatively high electrical 

conductivity (~2 mS/cm). We firstly examined the size distributions of the NPs at different 

reductive/oxidative voltages, as shown in Fig. 4C. Upon the activation of the transducer and applying 

a –5 V reductive potential to the liquid metal, we observed a slight peak shift of the size distribution 

towards larger sizes. This could probably due to the increased surface tension of EGaIn after 

removing the oxide layer electrochemically[7b]. We also observed a shift of the size distribution 

towards larger values when an oxidative potential was applied during the production process, and the 

size distribution was broadened after applying larger oxidative potentials (Fig. 4C). This can be 

attributed to the formation of thicker and solid oxide layer that may hinders the formation of EGaIn 

NPs from the surface. 

When we investigate the produced NPs using TEM, we found that for the case of the NPs produced 

with the application of a –5 V reductive potential, no obvious difference was observed for the NPs in 

comparison to the case without applying a voltage, as shown in Fig. 4D. The inset of Fig. 4D shows 

the schematic of the NPs production, where the produced NPs can be oxidized by the oxygen 

dissolved into the PMVEMA solution. The EDS spectrum given in Fig. 4E indicates the proper 

composition of gallium and indium within the NPs with minimum oxidation occurred.  

Interestingly, a thick oxide shell (~15 nm) was formed on the obtained NPs when we applied a +5 V 

oxidative potential to the EGaIn droplet during the production, as shown in Fig. 4F. The oxide shell 

is mainly composed of α-Ga2O3, as evidenced by the XRD and XPS spectra given in Fig. S12. We 

believe this is due to the fact that such a thick oxide layer was already formed on the surface of liquid 

metal before liberating NPs, and upon the collapse of cavities that NPs with a thick oxide layer were 

produced, as depicted in the Fig. 4F inset. The EDS spectrum given in Fig. 4G confirms the 

oxidation with the appearance of the oxygen peak. When we further increase the oxidative potential 
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to +10 V, we found that the produced NPs were heavily oxidized and became non-spherical, as 

shown in Fig. 4H. Such heavily oxidized NPs lost their liquidity, as indicated by the diffraction 

pattern given in the magnified image in Fig. 4H. The increase in the intensity of the oxygen peak, 

and the decrease in the intensity of the indium peaks (see Fig. 4I) clearly show the formation of 

gallium oxide and only a small trace amount of indium exists within the NPs. This is probably due to 

the fact that gallium is much more prone to oxidation compared to indium and therefore, only a small 

amount of gallium-indium alloy can be incorporated into the produced NPs (see the inset of Fig. 4H). 

The observed formation of a thick oxide layer on the surface of NPs explains the shift of the size 

distribution towards the larger sizes when oxidative potentials were applied (see Fig. 4C).  

Following our initial studies on the EGaIn NPs produced using this platform, we also found that due 

to the smaller and narrower size distribution of the produced NPs in comparison to previous 

reports[9b], the optical properties of the EGaIn NP suspension can be modified after forming 

nanosized liquid metal marbles[20] coated with silver (Ag) NPs,  as shown in Figs. S13 and S14. We 

discovered that the AgNP coating on the surface can introduce a strong surface plasma resonance 

due to the strong interaction of the AgNPs with light. This interaction results in strong scattering and 

absorption properties, leading to a significant absorption peak at ~418 nm for the nanosized liquid 

metal marbles (see Figs. S13 and S14). 
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Figure 4. Electrochemically control over the thickness of the oxide layer on the NPs. (A) Schematic 

and (B) actual image of the experimental setup with electrochemical control over the thickness of the 

oxide shell on the produced NPs. (C) Hydrodynamic size distributions of the NPs produced when 

applying different reductive/oxidative potentials. TEM images and EDS spectrum for the NPs 
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produced with the application of a (D-E) –5 V, (F-G) + 5 V, and (H-I) +10 V with respect to the 

surrounding medium. The insets show the schematics of the NPs production process. 

 

3. Conclusion 

In summary, we developed a novel ultrasonic platform to nebulize liquid metal within aqueous 

media for the versatile and efficient production of functional EGaIn liquid metal NPs. We fully 

characterized the size distribution of NPs and discovered that the median diameter of NPs can be 

tuned by the magnitude of the applied voltage and not by increasing the process duration. We 

discovered that various polymers and oleic acid can be directly used in this platform for grafting the 

surface of EGaIn liquid metal to stabilize the produced NPs in aqueous media. Based on the 

excellent stability of the produced EGaIn NPs, we showed that the produced NPs can be further 

functionalized without inducing oxidation and aggregation of the NPs. We also demonstrated that the 

grafted NPs have little or no effect on the viability of MCF-7 cells at the concentration of 0.1 mg/mL. 

Most importantly, this platform allows us to electrochemically control the thickness of the oxide 

shell on the produced NPs. As such, the simplicity and versatility of the ultrasonic platform, together 

with the multifaceted functionality of the produced EGaIn NPs, possess the vast potential to enable a 

new horizon for developing future liquid metal-based optical, electronic, catalytic and biomedical 

applications.  
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Experimental Section 

Chemical preparation: Poly(methyl vinyl ether-alt-maleic anhydride) (PMVEMA, MW of 216 kDa), 

poly(styrene-co-maleic anhydride) (PSMA, MW of 224 kDa), oleic acid, dialysis tubing (2000 Da 

MWCO), Rhodamine 123, EDC, and silver nitrate (AgNO3) were purchase from Sigma Aldrich, 

USA. Ultrasonic mist makers were purchased from AGPTEK, USA. PMVEMA and PSMA polymer 

solutions were prepared by dissolving 50 mg PMVEMA and PSMA into 20 mL of deionized (DI) 

water, respectively (final concentration of 2.5 mg/mL), and mixed for 24 hours to allow for the full 

hydrolysis; the pH of the solutions was ~3.0. 

Polymer synthesis: Brushed polyethylene glycol (bPEG, MW of 20 kDa) was synthesized using the 

reversible addition-fragmentation chain transfer (RAFT) polymerization techniques[21]. Briefly, a 

solution of RAFT agent, 2, 2’-azobis(isobutyronitrile) (AIBN), and monomers in dioxane was added 

to a polymerization ampoule. The solution was degassed by sparging with nitrogen for 20 min and 

the ampoule was sealed under nitrogen, while the reaction was stirred at 65 °C. Samples were then 

taken for 1HNMR spectroscopy and GPC analysis. The bPEG solution was prepared by adding 50 

mg of the bPEG into 10 mL DI water. 

Alamar Blue assay: MCF-7 (human breast cancer cell line, ATCC) were grown in Dulbecco’s 

Modified Eagle Media (DMEM) culture media with 10% Fetal Bovine Serum (FBS). MCF7 cells 

(1×104 cells/well) were exposed to materials (0.002, 0.01, 0.025, and 0.1 mg/mL) for 24 h in 96-well 

plates, with the final volume of 100 µL. Cell culture medium was used as a control. After exposure, 

the suspensions were removed and the cells were incubated with 10% Alamar Blue (Invitrogen) for 4 

h at 37 °C. A microplate reader (CLARIOstar, BMG LABTECH) was used to read the fluorescence 

at 500 nm excitation and 530 nm emission. Background values (10% Alamar Blue in cell culture 

medium) were subtracted from each well and the average fluorescent intensity of the triplicates was 

calculated. 
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Characterization: Scanning electron microscopy (SEM) images were obtained using a JEOL JSM-

7500FA scanning electron microscope. Transmission electron microscopy (TEM) images were 

obtained using a JEOL JEM-2011 transmission electron microscope. Energy-dispersive X-ray 

spectroscopy (EDS) maps were measured using JEOL JEM-ARM200f scanning transmission 

electron microscope (STEM). A zeta-sizer (Zetasizer Nano ZS, Marvern Instrument, USA) was used 

to measure the size distribution of the obtained EGaIn nanoparticles. The concentration of the EGaIn 

nanoparticles was measured by weighing the dried suspensions. UV-vis spectra were obtained using 

a UV/vis spectrophotometer (Uv-5200Pc, Metash instrument Co., Ltd, China). The fluorescent 

emission spectra were obtained using a fluorescence spectrophotometer (Cary Eclipse 500, Agilent 

Technologies, USA). XRD (MMA, GBC Scientific Equipment LLC, Hampshire, IL, USA) was used 

to evaluate the composition of the oxide layer. XPS spectra were obtained using a PHOIBOS 100 

Analyser from SPECS, Berlin, Germany; Al K αX-rays. 
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