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10 ABSTRACT: Zebrafish is a popular system for studying vertebrate develop-
11 ment and disease that shows high genetic conservation with humans.
12 Molecular level studies at different stages of development are essential for
13 understanding the processes deployed during ontogeny. Here, we performed
14 comparative analysis of the whole proteome and transcriptome of the early
15 stage (24 h post-fertilization) zebrafish embryo. We identified 8363 proteins
16 with their approximate cellular abundances (the largest number of zebrafish
17 embryo proteins quantified thus far), through a combination of thorough
18 deyolking and extensive fractionation procedures, before resolving the peptides
19 by mass spectrometry. We performed deep sequencing of the transcripts and
20 found that the expressed proteome and transcriptome displayed a moderate
21 correlation for the majority of cellular processes. Integrative functional
22 mapping of the quantified genes demonstrated that embryonic developmental systems differentially exploit transcriptional and
23 post-transcriptional regulatory mechanisms to modulate protein abundance. Using network mapping of the low-abundance
24 proteins, we identified various signal transduction pathways important in embryonic development and also revealed genes that
25 may be regulated at the post-transcriptional level. Our data set represents a deep coverage of the functional proteome and
26 transcriptome of the developing zebrafish, and our findings unveil molecular regulatory mechanisms that underlie embryonic
27 development.
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29 ■ INTRODUCTION

30 The zebrafish (Danio rerio) is an attractive experimental model
31 organism for exploring the molecular mechanisms of vertebrate
32 development.1 Mutant phenotypes commonly emulate the
33 pathology/phenotype of human diseases and disorders, hence
34 making it a premier model for genetic and phenotypic
35 analysis.2−4 Genetic screens have also broadened our under-
36 standing of the various factors that control cell differentiation
37 and fate as well as organogenesis, allowing us to chart the
38 sequential events involved during the transition from embryo to
39 adult.5 There are more than 26 000 coding regions in the
40 zebrafish genome, many of which are orthologous to those in
41 humans.6,7 To understand the complex interplay among the
42 expressed genes, large-scale analysis that extensively captures
43 the expression variation at the mRNA and protein levels is
44 important.8−11 A recent systematic analysis identified a total of
45 over 56 000 transcripts, including alternative splice variants,
46 during zebrafish embryogenesis.12 However, the maximum
47 number of proteins that have been identified to date has been
48 limited to only 5267 and 8475 in embryos and adults,
49 respectively.13,14

50Although transcript abundance can provide valuable
51information on the status of the cell at any point in time,
52proteins are the fundamental biological effectors that
53orchestrate key events within the cells. Gene expression
54patterns derived from large-scale transcriptomics, including
55those involving microarrays and RNA-seq, have been routinely
56used to estimate protein abundance. However, only a modest
57correlation has been observed between mRNA and protein
58levels across different species from yeast through higher
59eukaryotes.15−18 A recent comparative transcriptomic and
60proteomic study in the late-stage zebrafish embryo suggests
61that such differences between transcript and protein levels may
62underlie important translational and post-translational regu-
63latory mechanisms.19 Hence, the need for a thorough
64representation of the proteome is increasingly recognized.
65Currently, mass spectrometry-based shotgun proteomics is
66the only available high-throughput method for identification
67and quantification of the whole proteome. In recent years,
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68 global proteomic profiling of zebrafish adults and embryos has
69 been extensively carried out, primarily to understand
70 developmental processes as well as to recapitulate disease
71 mechanisms.10,20−24 With zebrafish being recognized as a
72 powerful model for chemical toxicity and drug safety
73 assessment, proteomics-based methods along with transcrip-
74 tomics are increasingly applied for large-scale system-wide
75 studies.25−29 Although applications of quantitative proteomic
76 approaches have been limited in zebrafish, recent studies used
77 stable isotope-labeled zebrafish for studying cardiac morpho-
78 genesis and profiling various organs in the adult,30,31 indicating
79 the possibility of performing large-scale quantitative proteomics
80 studies in zebrafish in the future.
81 Despite the gaining popularity of proteomic studies in
82 zebrafish, thorough protein identification is largely dependent
83 on sample complexity and the dynamic range of the proteins
84 within the sample. However, in the case of zebrafish, this
85 endeavor is even more challenging owing to the high
86 proportion of yolk proteins, particularly during the early stages
87 of development.32 Hence, most of the proteomic studies in
88 zebrafish have been performed in late-stage embryos or
89 adults.33 Early embryonic stages are highly dynamic in nature
90 and are marked by events that accompany cell differentiation
91 and morphogenesis.34 A thorough representation of the

92proteome during these stages is essential to map the key
93biological events that occur during embryogenesis.
94Here, we report a comprehensive map of the quantitative
95proteome profile of early stage zebrafish (24 h post-fertilization
96embryo) containing 8363 proteins, the highest number of
97proteins reported so far for early embryonic stages. We
98establish that the protein functions are linked to their
99abundances, wherein high-abundance proteins are predom-
100inantly associated with cellular core functions and low-
101abundance proteins perform regulatory functions that mediate
102development. The high coverage proteome was also compared
103to the corresponding transcriptome derived from the same
104early embryonic stages to provide a comprehensive functional
105map of the quantified proteome and transcriptome. The
106integrative approach identified biological processes that are
107modulated differently by transcript and protein levels in the
108early stage zebrafish embryo.

109■ MATERIALS AND METHODS

110Sample Preparation

111Adult zebrafish were maintained on a 14 h light/10 h dark cycle
112at 28 °C in the AVA (Singapore) certified IMCB zebrafish
113facility. Zebrafish embryos were obtained through crosses of

Figure 1. Zebrafish embryo proteome analysis. (A) Deep proteome analysis workflow consisted of extensive fractionation of deyolked zebrafish
embryo proteins through SDS-PAGE (protein level) and isoelectric focusing (IEF; peptide level). LC−MS/MS data was processed using the Trans-
Proteomic Pipeline (TPP). (B) Summery of identified protein clusters based on number of unique peptides. (C) Correlation of the quantified
protein abundances (emPAI) between the two biological replicates, each of which was characterized by 72 fractions run in two technical replicates.
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114 TL/AB hybrid parents, and zebrafish were raised at 28 °C in
115 zebrafish embryo medium. At 24 h post-fertilization (hpf),
116 approximately 1000 embryos were dechorionated with Pronase
117 and subsequently washed extensively in embryo medium.
118 Deyolking was performed largely as per Link et al.,35 using
119 three washes in calcium-free Ringer’s solution with mechanical
120 disruption through a flame-narrowed glass Pasteur pipet. The
121 resulting cell pellet was lysed by brief sonication in CSH buffer
122 (50 mM Tris-HCl, 250 mM NaCl, 1 mM EDTA, 1% NP40)
123 supplemented with protease inhibitors (Roche). Insoluble
124 material was removed by centrifugation. Protein concentration
125 was determined using the BCA protein assay, reducing agent
126 compatible (Thermo Fisher Scientific).

127 SDS-PAGE and In-Gel Digestion

128 Five-hundred micrograms of lysate, obtained from two
129 biological replicates, was separated on a SDS-PAGE gel from
130 3.5 to 260 kDa using a NuPAGE 4−12% Bis-Tris 1.0 mm, 10
131 well gel (Invitrogen). The gel was cut into 6 bands as shown in

f1 132 Figure 1A, and each band was excised to 1.5 × 1.5 mm2 using a
133 scalpel. In-gel digestion was carried out as previously described
134 with minor modifications.36 Briefly, the gel pieces were washed
135 with 3 mL of 50 mM ammonium bicarbonate. Reduction was
136 carried out by the addition of 10 mM DTT, covering the gel
137 pieces, and incubation for 30 min at 56 °C; alkylation was
138 performed with the addition of 55 mM iodoacetamide and
139 incubation for 20 min in the dark at room temperature. The gel
140 pieces were destained with 6 mL of 50% acetonitrile/25 mM
141 ammonium bicarbonate for 10 min. Six milliliters of 100%
142 acetonitrile was used to shrink the gel pieces, which was done
143 twice for 10 min each. One to two milliliters of 13 ng/μL
144 sequencing-grade trypsin (Promega) was added to each well,
145 and the gel pieces were allowed to swell for 60 min at 4 °C
146 before enough 25 mM ammonium bicarbonate was added to
147 cover the gel pieces. The samples were incubated for 3 h at 37
148 °C. All supernatants were collected by centrifugation. One and
149 a half milliliters of 5% formic acid was added to each well
150 followed by 1.5 mL of 100% acetonitrile for peptide extraction.
151 Both steps were repeated.

152 Off-Gel Isoelectric Focusing

153 Off-gel isoelectric focusing (IEF) was carried out using a 3100
154 OFFGEL fractionator (Agilent) as described in the manufac-
155 turer’s manual with slight modifications. In short, 13 cm IPG
156 strips for the pH range of 3−10 (GE Healthcare) were used,
157 resulting in 12 peptide fractions. The concentration of glycerol
158 and IPG buffer pH 3−10 (GE Healthcare) was halved in the
159 peptide OFFGEL stock solution as described previously.37 The
160 voltage gradient during the run was 250 V for the first hour
161 followed by a gradient of up to 1000 V over the next 2 h and
162 1000 V for an additional hour. Then, the voltage was increased
163 up to 3000 V over the next 7 h and held at 3000 V until a total
164 voltage of 20 000 V hours was reached. After the run, 30 μL of
165 1% TFA was added to each well for acidification.

166 NanoHPLC−ESI−MS/MS

167 Peptides resulting from the different fractionation methods
168 were desalted using self-packed C18 StageTips.38 The C18
169 StageTip was conditioned with 100 μL of methanol followed by
170 100 μL of 0.1% formic acid at 6000g for 2 min. The extracted
171 peptides were loaded onto the C18 StageTips and washed with
172 100 μL of 0.1% formic acid. The peptides were eluted with 60
173 μL of 0.1% formic acid/80% acetonitrile. All eluents were dried
174 using a SpeedVac and reconstituted in 12 μL of 0.1% formic

175acid. A total of 144 IEF fractions (72 fractions per biological
176replicate) were analyzed in duplicate using an EASY-nLC
177(Proxeon) coupled to a LTQ Velos (Thermo Fisher Scientific).
178Samples were directly loaded at 400 nL/min onto a PicoFrit
179column (HALO, C18, 90 Å, 2.7 μm, 75 um (i.d.) × 100 mm
180length) (New Objectives). The HPLC gradient was created
181using buffer A consisting of 2% acetonitrile/0.1% formic acid
182and buffer B consisting of 80% acetonitrile/0.1% formic acid:
183buffer B was increased from 0 to 8% over the first 4 min,
184followed by an increase to 25% over the next 58 min, an
185increase to 45% over the subsequent 32 min, an increase to
18670% over the following 10 min, and an increase to 100% over
187the next 3 min. This condition was maintained for 5 min. Buffer
188B was then decreased to 5% over the subsequent 3 min and
189retained at 5% for another 5 min. This results in a HPLC
190gradient run of a total of 120 min. The flow rate was 250 nL/
191min for the first 104 min and 400 nL/min for the last 16 min.
192MS analysis was online-coupled to the LC using a LTQ Velos
193with the following settings: MS scans ranging from 300 to 1600
194m/z, AGC target of 3 × 104, and maximum injection time of 10
195ms. The 10 most intense ions with an ion intensity above 1000
196and a charge state excluding one were sequentially isolated to a
197maximum AGC target value of 4 × 104 for a maximum of 100
198ms and fragmented by collision induced dissociation (CID)
199using a normalized collision energy of 35%. A dynamic
200exclusion list was applied using an exclusion list size of 500,
201one repeat count, a repeat duration of 45 s, an exclusion
202duration of 90 s, and mass widths of 1.0 (low) and 1.5 (high).
203Expiration count was set to 3, and its S/N threshold, to 3.0.

204Data processing and emPAI Calculation

205All Velos raw data were first converted to peak lists in the
206centroid mzXML file format and then to the mgf file format.
207The conversion was performed with ReAdW.exe (version
2084.0.2), which is part of the Trans-Proteomic Pipeline (TPP)
209(version 4.4.0).39

210A target-decoy database was compiled using Sequence
211Reverser (part of MaxQuant v1.0.13.13) with the ipi.dan-
212re.v3.85.fasta downloaded from ftp://ftp.ebi.ac.uk/pub/
213databases/IPI/last_release/current/ and 262 contaminant
214sequences in Sequence Reverser. The final database containing
21581 476 sequence entries was searched on the mgf peak list files
216using Mascot (version 2.3).
217Mascot search parameters were set as follows: full tryptic
218specificity was required (cleavage after lysine or arginine
219residues at two peptide termini), two missed cleavages were
220allowed, carbamidomethylation (C) was set as fixed mod-
221ification, and acetyl (protein N-term) and oxidation (M) were
222set as variable modifications. Peptide charge was set to 2+, 3+,
223and 4+. Mass tolerance of the precursor ion and the fragment
224ions was set at 2 and 0.5 Da, respectively.
225All of the mascot search outputs were combined in TPP
226(version 4.4.0). First, mascot outputs (dat file) were converted
227to pepxml file format. Then, PeptideProphet with a minimum
228length of 7aa, a probability of 0.9, and an accurate mass model
229was applied. iProphet was used to integrate all of the
230PeptideProphet results.40 Finally, proteins were assembled
231with PeptideProphet on the iProphet results with a minimum
232probability of 0.9.
233The PeptideProphet output with peptide count was used to
234calculate the relative protein abundances. Relative protein
235abundances were calculated using the emPAI algorithm as
236described by Ishihama et al.41
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237 Analysis of Detected Protein Bias

238 The IPI identifiers of all of the detected proteins were mapped
239 to the corresponding UniProt IDs and subjected to protein
240 parameter analysis in ExPASy (http://www.expasy.ch). The
241 ProtParam tool was used to calculate the protein length and pI
242 values. For mapping the chromosomal bias of the detected
243 proteins, the Entrez database (ftp://ftp.ncbi.nlm.nih.gov/gene/
244 DATA) and the annotations from the Zv9, as implemented in
245 the UCSC Genome Browser (http://genome.ucsc.edu/cgi-bin/
246 hgTables), were used.

247 RNA-Seq Analysis

248 Zebrafish embryos (wild-type AB line) were collected and
249 incubated at 27 °C. Synchronously developing embryos were
250 collected at 24 hpf and frozen in liquid nitrogen. The frozen
251 embryos were used for RNA extraction. Total RNA was
252 extracted using TRIzol reagent (Invitrogen, USA). RNA
253 concentration was determined using a NanoDrop 2000
254 (Thermo Scientific), and 60 μg of total RNA was used as
255 starting material. The integrity of the RNA samples was
256 determined using an Agilent RNA 6000 Nano chip on an
257 Agilent 2100 Bioanalyzer. The RNA sample with RIN > 9.0 was
258 selected for mRNA purification using the MicroPoly(A) purist
259 kit (Ambion, USA). Five-hundred nanograms of mRNA was
260 applied for RNA library construction with the solid total RNA-
261 seq kit (ABI, USA) according to the manufacturer’s
262 instructions. RNA was sequenced in a SOLiD3 (ABI) platform,
263 generating 50 bp single-ended reads. We generated about 40
264 million tags for this library and mapped them to the genome
265 (ZV9). The RNA-seq reads were mapped in a strand-specific
266 manner to the reference seq genes (RefSeq), and the expression
267 is presented as reads per kilobase of exon per million reads
268 mapped (RPKM).

269 Comparison with RNA-Seq Data

270 The complete RNA-seq data comprised 10 101 transcripts with
271 RPKM abundance greater than 2. The IPI identifiers of the
272 quantified proteome were mapped to Entrez nucleotide
273 identifiers and subsequently to the corresponding genes. Five-
274 thousand two-hundred and fifty four IPI identifiers from the
275 total 8363 quantified proteins could be successfully mapped to
276 a corresponding transcript from RNA-seq. Some of the IPI
277 identifiers could be mapped to more than one gene identifier.
278 Excluding the events of alternative splice variants, a total of
279 5084 different protein-coding genes could be mapped. The
280 anatomical enrichment of the quantified proteome and
281 transcriptome was carried out using DAVID.42

282 GO Pathway Analysis-Based Clustering for Protein and
283 Transcript Groups

284 The high and low protein abundance groups were identified on
285 the basis of the quantile density distribution of the emPAI and
286 RPKM values across the quantified proteome and tran-
287 scriptome, respectively. Genes in the top 20% quantile
288 (upper) with respect to the abundance values were categorized
289 into high-abundance groups (very high + high cluster), and
290 those in the bottom 20% (lower) comprised the low-abundance
291 groups (very low + low cluster). The remaining genes were
292 considered to be expressed at moderate levels. For analyzing
293 the enrichment across the high- and low-abundance proteins in
294 accordance with the GO terms, biological process, molecular
295 function, and cellular component (BINGO), as implemented in
296 Cytoscape, was used.43 The enrichment was done using
297 hypergeometric testing followed by Benjamini−Hochberg

298false discovery rate correction. The frequency of over-
299representation in the high- or low-abundance groups was
300calculated by comparing against the enrichment across the
301whole quantified proteome. For integrative proteomic and
302transcriptomic analysis based on GO categorization (biological
303process), the genes were first categorized according to their
304abundance values into different groups. The GO enrichment
305along with their p values was obtained for each of the groups
306and then filtered to retain only those groups that were
307significantly enriched (p value <0.05) in at least one of the
308analyzed groups. The filtered p values were log-transformed and
309z-score normalized before being subjected to hierarchical
310clustering based on Euclidean distance and average linkage.

311MicroRNA Prediction

312Genes that displayed low protein levels and high mRNA levels
313were analyzed for potential microRNA (miRNA) regulation
314using TargetScanFish version 6.2.44,45 Only those predicted
315miRNA families with a target score (total context score) ≤

316−0.3 were considered to be reliable. For genes with multiple 3′
317UTRs (untranslated region), the predictions were specifically
318carried out on those that are curated to be expressed at 24 hpf
319developmental stage.

320Network Analysis

321The proteins in the high- or low-abundance groups that could
322be distinctly mapped to corresponding transcripts were used for
323network reconstructions. Protein−protein interactions, as
324implemented in reactome functional interaction (reactome
325FI) in Cytoscape visualization software and in GeneGO
326MetaCore, were used to unravel the connectivity between the
327protein groups.46,47 Zebrafish shares many orthologous genes
328and pathways with other vertebrate species and hence the
329human orthologous proteins corresponding to the zebrafish
330genes were identified from ZFIN (http://zfin.org/) and
331InParanoid (http://inparanoid.sbc.su.se/) databases and used
332for network analysis.48 Only interactions between the
333quantified proteins were retained, and other linker candidates
334(not in our data set) were excluded. The direct interactions
335from MetaCore were downloaded and parsed into Cytoscape as
336a SIF (simple interaction file) network. This was combined
337with the functional interaction network derived from reactome
338FI, and subsequent pathway enrichment was performed for the
339combined network. The densely connected regions in the
340network were identified using molecular complex detection
341(MCODE) algorithm.49 The highest-ranking modules were
342extracted and visualized. MCODE could not be successfully
343applied to the low-abundance protein groups owing to the less-
344dense nature of the network. Hence, the clusters were
345visualized purely on the basis of their significant pathway
346enrichment.

347■ RESULTS

348Extensive Analysis of Zebrafish Embryo Proteome

349To generate an extensive map of the zebrafish proteome, lysates
350were obtained from deyolked embryos representing the 24 h
351post-fertilization (hpf) developmental stage and resolved on a
3521D SDS-PAGE gel. Deyolking ensures that high-abundance
353yolk proteins that would otherwise interfere with the deep
354mining of zebrafish embryos are depleted.33 After deyolking,
355the sample still consists of a complex mixture of proteins. In
356order to reduce this complexity, we carried out extensive
357fractionation of the deyolked protein mixture using 1D SDS-

Journal of Proteome Research Article

dx.doi.org/10.1021/pr5005136 | J. Proteome Res. XXXX, XXX, XXX−XXXD

http://www.expasy.ch
ftp://ftp.ncbi.nlm.nih.gov/gene/DATA
ftp://ftp.ncbi.nlm.nih.gov/gene/DATA
http://genome.ucsc.edu/cgi-bin/hgTables
http://genome.ucsc.edu/cgi-bin/hgTables
http://zfin.org/
http://inparanoid.sbc.su.se/


358 PAGE protein level fractionation followed by off-gel isoelectric
359 focusing (IEF) of the tryptic peptides from each gel band, as
360 these methods were observed to be the best among the other
361 evaluated approaches in our previous study13 (Figure 1A). A
362 total of 72 IEF fractions obtained from two biological replicates
363 each were finally subjected to LC−MS/MS analysis, summing
364 to a total of 288 runs including those of the technical replicates.
365 MS/MS data analysis was performed using the Trans
366 Proteomics Pipeline, and a minimum probability of 0.9 was
367 set for confident peptide assignment. The mass error in parts
368 per million (ppm) for precursor ions of all identified peptides is
369 shown in Figure S1 in the Supporting Information. After
370 assembling the proteins using ProteinProphet, we identified a
371 total of 8363 different proteins including splice variants (at a
372 false discovery rate < 1.2%), which, to our knowledge, is by far
373 the most comprehensive proteome map of the zebrafish
374 embryo (Tables S1 and S2 in the Supporting Information).
375 This translates to an improvement of more than 2-fold in
376 proteome coverage in comparison to that in our previous
377 report.13 Of these proteins, 6475 proteins (78%) were detected
378 by at least two peptides. About 10% of the proteins (857) were
379 detected via the same single peptide multiple times, whereas
380 about 12% (1031) were detected once by a single peptide
381 (Figure 1B). The median number of peptides identified per
382 protein was 4, and the corresponding tandem spectra detected
383 per protein was 17. The median sequence coverage per protein
384 was found to be 13.504%.
385 The coverage of each protein attained by the corresponding
386 peptide matches can be used to estimate the abundance of the
387 identified proteins. To calculate the approximate abundance of
388 the proteins in the zebrafish embryo, we used the exponentially
389 modified protein abundance index (emPAI) algorithm, which
390 normalizes the number of sequenced peptides per protein by
391 the number of theoretically observable peptides of the
392 protein.41 In order to conduct a comprehensive study of the
393 zebrafish proteome, we explored the possibility of studying all
394 detected proteins, including those that were detected in only
395 one biological replicate. The emPAI-based semiquantitative
396 protein abundance values showed a high correlation between
397 the two biological replicates (Spearman’s correlation, 0.862)
398 (Figure 1C). We, therefore, merged the data from both
399 biological replicates for subsequent analysis (Table S3 in the
400 Supporting Information).
401 The ranked distribution of all identified proteins allowed for
402 evaluation of individual protein contribution to the total mass.
403 It is revealed that 97.2% of the total protein abundance is
404 contributed by the most abundant 25% of identified proteins

f2 405 (Figure 2A). Ninety percent of the total quantified proteome is
406 within a range of log2 emPAI between 2.82 and −3.64 around
407 the median abundance value. For further analysis, the quantified
408 proteins were categorized into five quantiles based on their
409 protein abundance values. Accordingly, the upper quantile
410 constituted the very high and high categories, representing
411 greater than the 90th percentile and 80−90% quantile,
412 respectively, and the lower quantile comprised the very low
413 and low categories, representing less than the 10th percentile
414 and 10−20% quantile, respectively, of the estimated protein
415 abundance values (Figure S2 in the Supporting Information).
416 The quantile corresponding to 20−80% was considered to be
417 moderate.
418 Assessing the physiochemical features across all of the
419 identified proteins revealed that proteins of shorter length
420 (<100 amino acids (aa)) are more abundant than proteins that

421are over 1500 aa in length (Figure S3A and Table S4 in the
422Supporting Information). On dissecting the length distribution
423within the individual clusters, we noticed that a majority of the
424highly abundant proteins (very high + high) are shorter than
425450 aa (Figure S4A,B in the Supporting Information). The bias
426toward shorter length is also reported for highly abundant
427transcripts.50 This serves as an efficient means of minimizing
428energy cost, and the short proteins, generally in high
429abundance, play key roles in various cellular process including
430signaling, cell−cell communication, and other basic metabolic
431processes.51 The pI distribution, on the other hand, showed a

Figure 2. Quantitative analysis of expressed proteins. (A) Ranked
protein abundances from highest to lowest across the global quantified
proteome. The contribution of each of the ranked quantiles to the
total quantified embryonic protein abundance is indicated. (B)
Enrichment based on GO categorization in each of the high- and
low-abundance protein groups. Frequency corresponds to the
preferential enrichment against the enrichment of total detected
proteins. The GO categories are represented as MF (molecular
function), BP (biological process), and CC (cellular component).
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432 drop in abundance for proteins with midrange pI values (Figure
433 S3B and Table S4 in the Supporting Information). However,
434 comparison of the pI value distribution between the upper and
435 lower quantile displayed similar trends across the pI range, with
436 an under-representation of proteins with basic pI values (Figure
437 S4C,D in the Supporting Information).
438 To map the chromosomal distribution of the quantified
439 proteome, the identified proteins were traced back to their
440 genomic loci by mapping against the annotated protein-coding
441 genes (Table S3 in the Supporting Information). However,
442 only about 78.3% of the detected proteins could be successfully
443 mapped to each of the 25 chromosomes (Table S5 in the
444 Supporting Information). Most of the identified proteins
445 mapped to genomic regions in chromosome 5, and the least
446 number of identified proteins were represented by chromo-
447 somes 4 and 24 (Figure S5 in the Supporting Information).
448 This is in agreement with the genome data that demonstrated
449 relatively fewer protein-coding genes in chromosome 4.6 On
450 comparing the coverage of the identified proteins to the total
451 protein-coding genes annotated for each of the chromosomes,
452 we observed a maximum coverage of ∼31.5% for chromosome
453 19, closely followed by ∼30.4% for chromosome 5 (Figure S6A
454 in the Supporting Information). The least coverage (∼14.7%)
455 was observed for chromosome 4, suggesting that the genes
456 present here are not protein coding or do not express at 24 hpf.
457 Intriguingly, chromosome 4 is unique in the large number of
458 noncoding RNAs and repeats that it harbors as well as the
459 presence of a large family of genes that are specific to D. rerio.6

460 Of note, chromosomes 3, 6, 11, and 19 are particularly enriched

461in abundantly expressed (very high + high cluster) protein-
462coding genes (Figure S6B in the Supporting Information).
463To obtain functional insights into the biological processes
464and cellular organization that are active at this developmental
465stage, we performed GO-slim analysis for the high- and low-
466abundance protein groups. Enrichment was performed by
467hypergeometric testing, and significant GO categories were
468identified in each group. The cluster frequencies of each of the
469significant GO categories were used to calculate the frequency
470of over-representation with respect to the overall quantified
471proteome, as shown in Figure 2B. We observed that proteins
472related to basic metabolic functions, primarily translation-
473related processes, are the most significantly enriched in the
474highly abundant protein cluster. Also, processes related to
475protein transport and organelles involved in trafficking,
476including the endoplasmic reticulum and nuclear envelope,
477are abundantly enriched. As observed in other systems,
478regulatory proteins associated with kinase activity, enzyme
479regulation, and protein binding have lower expression levels in
480the zebrafish embryo. At 24 hpf, the embryo is still in a very
481early stage of development, and important morphogenetic
482features including pigmentation, the cardiac tube, and fin fold
483begin to appear.34 Accordingly, we observed that the lower
484quantile proteins are enriched in functions relating to cell
485differentiation, structure morphogenesis, and embryonic
486development. While metabolic processes related to protein
487and carbohydrates are functionally enriched, lipid metabolic
488processes are low in abundance.

Figure 3. Comparison of quantified proteins and transcripts. (A) Distribution of enrichment of the quantified proteins and transcripts to distinct
anatomical structures in zebrafish. A large proportion of the genes remained unmapped. (B) Distribution based on protein and transcript abundances
as measured by empAI and RPKM, respectively, for those proteins with corresponding quantified transcripts. (C) Venn diagram of the number of
genes quantified at the protein and mRNA levels and mapped to different protein-coding regions. (D) Density scatter plot of transcript versus
protein abundances. The emPAI and RPKM are represented in log scale, and the Spearman correlation score is indicated.
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489 Concordance with Transcript Abundance

490 It is widely appreciated that the regulation of a protein’s level
491 occurs at multiple levels beyond RNA transcription. To
492 determine the extent of such regulatory systems, we sought
493 to correlate our proteome data with the transcriptome of
494 embryos at the same stage; hence, we performed RNA-seq on
495 the 24 hpf embryos to determine transcript abundance (Table
496 S6 in the Supporting Information). The RPKM measure
497 obtained from the RNA-seq is a representation of transcript
498 abundance. By including only those transcripts with an
499 abundance greater than 2 and subsequently mapping the
500 reads to the zebrafish reference genome (ZV9), a total of 10
501 101 unique transcripts were obtained. Some of the transcripts
502 included alternative splice variants of the same genes. Thus, a
503 total of 9601 different protein-coding genes were successfully
504 identified. The different protein-coding genes showed a similar
505 distribution among the 25 chromosomes as that from the
506 quantified proteome. The maximum number of identified
507 transcripts mapped to chromosome 5, similar to that observed
508 for the proteome, and the least number of genes mapped to
509 chromosome 24 (Figure S5 and Table S5 in the Supporting
510 Information).
511 The quantified proteome and transcriptome data showed
512 similar percentages across the different anatomical enrichment

f3 513 categories (Figure 3A). A majority of the transcripts and
514 proteins (∼65% for transcripts and ∼75% for proteins),
515 however, were not annotated to any specific anatomical feature
516 and hence the distinct roles of these genes in the development
517 of zebrafish remain to be explored. In fact, many of the known
518 morphological developments that occur at 24 hpf, including the
519 development of the retina, fin, and myotome, are represented
520 with higher percentages of proteins, suggesting that the
521 deyolking and extensive fractionation have enabled a thorough
522 representation of the proteome.34

523 On comparing the transcriptome and proteome data on the
524 basis of gene annotations, we observed that some of the IPI
525 (International Protein Index) identifiers mapped to more than
526 one transcript (Table S7 in the Supporting Information). In all,
527 we identified a corresponding transcript for a total of 5254
528 proteins in our quantified proteome. On comparing the
529 distribution of abundances for the overall quantified tran-
530 scriptome, we observed that no proteins were identified for a
531 considerable number of transcripts in the lower abundance
532 range (Figure S7A,B in the Supporting Information). We also
533 noticed that the distribution of protein abundance is broader
534 than that of the corresponding transcript abundance values,
535 although both of the abundance distributions share the same
536 general shape (Figure 3B). Altogether, there was a 64% overlap
537 between our proteome and transcriptome data on the basis of
538 common protein-coding genes, excluding references of
539 alternative slice variants (Figure 3C).
540 The RPKM and emPAI values are a proxy for the cellular
541 abundance of transcripts and proteins, respectively, at a given
542 point in time; hence, we analyzed the correlation between these
543 two measurements. We observed a moderate correlation
544 between the RPKM-based transcript abundance and emPAI-
545 based protein abundance (Spearman correlation, 0.498)
546 (Figure 3D). The level of correlation obtained is comparable
547 to that observed previously in other organisms including human
548 (Spearman correlation, 0.6), Drosophila (Spearman correlation,
549 0.66), Caenorhabditis elegans (the Spearman correlation, 0.59),
550 and yeast (Spearman correlation, 0.58).15−17 Although proteins
551 modulate key events within the cells, up- or downregulation of

552mRNA from large-scale transcriptomic studies is directly
553associated with protein expression levels based on the
554assumption that there is high correlation between transcript
555and protein abundances. Comparative studies performed in
556various organisms, however, suggest that the correlation
557coefficients generally range between 0.3 and 0.6, highlighting
558that protein levels are regulated beyond transcription.52,53

559We next analyzed the concordance between the transcript
560and protein abundance across functional categories that were
561arbitrarily grouped to represent core cellular and regulatory and
562 f4developmental functions (Figure 4A,B). Translational process-

563related genes were found at the extreme end of the distribution
564with highest the correlation (Spearman correlation, 0.683),
565suggesting that these genes have elevated expression at both the
566transcript and protein levels (Figure S8 in the Supporting
567Information). The transcriptional machinery proteins, on the
568other hand, showed moderate abundance at the protein level
569but were more elevated on the transcript scale. Those
570belonging to carbohydrate metabolism, although generally
571considered to be abundant, spanned over almost the entire
572distribution with a moderate correlation. The lipid metabolic
573process-associated genes were frequently of low abundance, and
574this category was the least correlated. Focusing on the proteins
575important in development and signal transduction, we found
576that with the exception of a few proteins at the top end of the
577distribution that are associated with embryonic development
578the rest had moderate-to-low protein expression levels (Figure
5794B and Figure S9 in the Supporting Information). This suggests
580that processes relating to cell organization and development are
581modulated more at the mRNA level than at the protein level at
582this early stage of development.
583Further investigating the cellular compartmentalization
584across the distribution, we noticed that the ribosomal proteins
585form one tight cluster at the top end of the distribution and a
586second additional cluster at moderate expression levels (Figure
587S10A,B in the Supporting Information). The nucleus,
588represented with the maximum number of proteins, extended
589over a large range traversing the entire range of abundance
590distribution. Although we noticed a slight bias for organelles
591like mitochondria and endoplasmic reticulum when based on

Figure 4. Functional correlation of protein and mRNA levels. (A)
Scatter plot of the mRNA and protein abundances across cellular core
functions and (B) regulatory and developmental functions based on
GO terms. Significantly enriched groups based on GO categorization
are shown.
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592 the quantified proteome, no such distributional bias was
593 observed for the quantified transcriptome.

594 Distinct Functional Regulation of Proteins and Transcripts

595 Embryonic development is associated with highly regulated
596 processes that need to be precisely controlled at both the
597 mRNA and protein levels. The analysis above provided a
598 functional overview of the transcriptome and proteome across
599 the entire distribution of cellular abundance. To delineate
600 biological processes that are modulated at different levels of
601 mRNA and protein abundances, we performed a combined

602hierarchical clustering of the observed transcriptome and

603proteome. We categorized genes based on their mRNA or

604protein level into various abundance groups (detailed below)

605and performed GO enrichment (biological process) by

606hypergeometric testing on all of the individual groups. Those

607GO categories that were significantly enriched in at least one of

608the groups were retained, and one-way hierarchical clustering

609was performed after normalizing the obtained p values across all

610of the groups for each category. Such a heat map allowed us to
611distinctly identify processes that are regulated by different levels

Figure 5. Functional modulation of protein and transcripts in the developing embryo. Proteins and mRNAs were grouped into seven groups based
on abundance values as follows: high protein and mRNA, low protein and mRNA, moderate protein and mRNA, high protein and moderate-to-low
mRNA, low protein and moderate-to-high mRNA, low mRNA and moderate-to-high, and high mRNA and moderate-to-low protein. The clustered
GO biological process terms enriched in at least one of the seven groups are depicted on the heat map. The red arrow corresponds to high
abundance of quantified proteins or transcripts, the green arrow, low, and the black symbol, moderate. The shaded red triangle corresponds to
moderate-to-high protein or transcript abundances, and the shaded green triangle represents moderate-to-low protein or transcript abundances. High
(yellow) and low (blue) in the heat map represent statistical over- or under-representation, respectively.
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f5 612 of mRNA or protein abundance (Figure 5 and Figure S11 in
613 the Supporting Information).
614 We first categorized the quantified 5254 genes (including
615 splice variants) into four groups that represented only the
616 upper and lower quantile as follows: high protein and high
617 mRNA, high protein and low mRNA, low protein and high
618 mRNA, and low protein and low mRNA. After performing
619 hierarchical clustering on the four groups, we observed that
620 genes associated with core cellular functions such as energy
621 metabolism, protein transport, and cellular biosynthetic
622 processes are fine-tuned by high levels of both mRNAs and
623 their corresponding proteins (Figure S11 in the Supporting
624 Information). The regulatory (post-translational modification)
625 and developmental process (embryo morphogenesis, nervous
626 system development) are modulated by genes with high mRNA
627 expression and low protein levels. For the remaining two
628 groups, very few GO categories passed the p value threshold,
629 and these often coincided with enriched categories in the high
630 protein and high mRNA and low protein and high mRNA
631 groups.
632 To gain further functional insights on the entire range of the
633 quantified proteome and transcriptome, we additionally
634 categorized the quantified 5254 genes to include genes from
635 the high-, low-, and moderate-abundance groups. For this
636 purpose, we identified seven groups based on their abundances
637 as follows: high protein and mRNA, low protein and mRNA,
638 moderate protein and mRNA, high protein and moderate-to-
639 low mRNA, low protein and moderate-to-high mRNA, low
640 mRNA and moderate-to-high protein, and high mRNA and
641 moderate-to-low protein (Figure 5). We observed that
642 processes associated with core cellular functions such as
643 metabolism, protein transport, and cellular biosynthetic
644 processes are generally modulated by high protein levels,
645 whereas the mRNA levels show considerable variation. The
646 genes associated with nucleoside metabolic and biosynthetic
647 processes display both high and low levels of mRNA and
648 protein. Interestingly, genes associated with eye development
649 have high mRNA and protein levels, with the optic system
650 being in the mid-to-late phase of its development. Other
651 cellular process including folding and DNA replication are also
652 modulated by high expression at both levels. Functions
653 associated with DNA damage and repair, cell death, protein
654 localization, and sensory organ development exhibit moderate
655 abundance of expressed genes.
656 Genes that displayed a low protein level but moderate-to-
657 high transcript abundance encoded for those functionally
658 important proteins that are involved in regulatory (post-
659 translational modifications), signal transduction, migratory, and
660 developmental processes. We observed that genes associated
661 with the development of the fin, cartilage, and embryonic
662 skeletal system are highly represented within this group. We
663 note that all of these tissues have not yet initiated their
664 developmental programs and thus these may represent poised
665 conditions. Other processes, such as those associated with the
666 development of the central nervous system, and important
667 morphogenetic events, such as pattern specification process,
668 cell projection organization, and appendage development, are
669 also characterized by differential levels of mRNA and protein.
670 Genes that displayed a high mRNA level but moderate-to-
671 low protein level were associated with tissue and organ
672 development and regulation of cellular processes. Specifically,
673 processes associated with the regulation of primary metabolic
674 and biosynthetic processes, gene expression, mRNA processing,

675and cell cycle display significantly high mRNA expression levels
676and low protein levels. Functions pertaining to microtubule-
677based movement, lipid metabolic processes, and stress response
678show enrichment in the low transcript and moderate-to-high
679protein level group, possibly indicative of long-lived proteins
680with sentinel roles.
681Although proteins are the ultimate biological effectors, we
682observed that most of the embryonic morphogenetic events
683and signal transduction processes are modulated by low protein
684and high mRNA levels, in contrast to the core cellular functions
685that are modulated by high protein and transcript levels. To
686assess if any of these low-abundance proteins could be
687regulated by putative miRNAs, we carried out miRNA target
688prediction using TargetScanFish 6.2, which predicts gene
689targets based on conserved sites (7-mer or 8-mer) that match
690the seed region within a miRNA. It is predicted that many such
691low-abundance proteins are specifically regulated by miRNA
692families in the zebrafish embryo (Table S8 in the Supporting
693Information). This underscores that finer control of protein
694levels through miRNA regulation or high turnover is constantly
695in action to ensure proper and coordinated development.

696Network Mapping of Quantified Proteome and
697Transcriptome

698Potential interactions among proteins expressed at high and
699low abundance may modulate important functional processes
700within the cell. To unveil the functional connectivity among the
701high- and low-abundance proteins, we constructed protein−
702protein interaction networks based on curated information
703from the reactome pathways and GeneGO MetaCore. The
704reactome functional interaction (reactome FI) combines
705protein−protein interactions from various organisms alongside
706curated pathway maps to provide with a high-quality pathway-
707informed interaction resource, and MetaCore is an expert-
708curated reliable data resource for protein interactions, primarily
709focusing on human, rat, and mouse pathways.46,47 The zebrafish
710shares many orthologous proteins with those from the
711mammalian groups and hence these resources may be useful
712in deriving possible interactions among the quantified zebrafish
713proteins.
714High-Abundance Protein Interactome. A large number
715of the proteins present in the high-abundance protein groups
716shared direct interactions with each other and resulted in a
717closely connected network (653 nodes and 6881 edges)
718(Figure S12A in the Supporting Information). While a majority
719of the corresponding transcripts also displayed high to very
720high abundance, we noticed that a few genes were modulated
721differently at the protein and mRNA levels and that the rest
722remained at moderate-abundance levels. Using MCODE, the
723tightly connected clusters were identified (Figure S12B in the
724Supporting Information). Of the 10 significant clusters
725identified with a minimum number of five nodes, the highest-
726ranking cluster (80 proteins) belonged to Translation. The
727other clusters were primarily associated with core cellular
728functions including transcription and RNA transport, oxidative
729phosphorylation, protein folding, DNA repair, and carbohy-
730drate metabolism. The very low transcript abundance of one of
731the splicing factor proteins that forms the U2 small nuclear
732ribonucleoprotein complex (U2snRNP), SF3B3, leads us to
733speculate that this protein may be highly stable or efficiently
734translated. RPS6KA1 is the other important protein whose
735abundance is different at the protein and mRNA levels. The
736gene encodes for a serine/threonine kinase that is involved in
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737 various signal transduction processes, including MAPK and the

738 nutrient sensing mammalian target of rapamycin (mTOR).54

739 Poor correlations between the mRNA and protein abundances

740 may point to more control at the translational or post-

741 translational level. Assessing the degree of variation of the

742 mRNA expression at different time points during development

743 may provide us with clues on the influence of transcriptional or

744 translational control for the poorly correlated genes.

745Low-Abundance Protein Interactome. In contrast to the
746high number of proteins that could interact directly within the
747higher abundance groups, only 163 low-abundance proteins
748could be potentially mapped onto a direct interaction network
749 f6(Figure 6). The clustering coefficient was low (0.156), and the
750average number of neighbors for each node was only around 3.
751Hence, dense clusters, as observed in the high-abundance
752protein network, could not be visualized. The number of
753noncorrelated genes in terms of protein and mRNA abundance

Figure 6. Protein−protein interaction network among low-abundance proteins in the embryo. Direct protein−protein interactions between the low-
abundance protein groups identified using reactome FI and MetaCore are represented. The corresponding transcript abundances are indicated by
nodes of different colors, with red representing high RPKM values, green representing low RPKM values, and gray representing mRNA expressed at
moderate abundances. The significantly enriched signaling pathways are visualized individually.
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754 is high in the mapped network. While only about 20% of the
755 genes were expressed at low levels that were on par with the
756 protein abundance, 13% of the genes had high transcript
757 abundance, and the rest had moderate mRNA levels. Protein
758 interactions significantly enriched within the low-abundance
759 protein groups primarily correspond to cell signaling pathways.
760 WNT and Notch signaling, which are important modulators of
761 growth and cell fate decisions in the developing embryo, are
762 highly represented. The Slit-Robo pathway, which is involved in
763 axon guidance and heart tube formation, and the Rap1 signaling
764 pathway, which is associated with cell adhesion and junction
765 formation and is also crucial for heart development in zebrafish,
766 are also significantly enriched.55,56 The mapped signaling
767 pathways also include genes that are differentially regulated at
768 the transcriptional and translational levels. The observed
769 discordance in expression of several of these genes may
770 possibly point to important regulatory processes at the level of
771 signal transduction and embryonic development

772 ■ DISCUSSION

773 In this study, we present a deep proteome map of a selected
774 stage of early embryonic development in zebrafish. We
775 identified >8000 proteins, which is by far the most extensively
776 measured zebrafish embryo proteome. In addition, we also
777 performed transcriptome mining by RNA-seq to provide an
778 informative comparative map of the quantified proteome and
779 transcriptome during embryonic development. Such an
780 integrative approach links the transcript abundance to protein
781 levels and ultimately highlights specific developmental
782 processes that are modulated by changes in the mRNA or
783 protein species. Although similar studies have been performed
784 previously in other organisms,16,17,57,58 we unveil, for the first
785 time, large-scale combinatorial functional mapping in zebrafish.
786 Previous transcriptomics and proteomic studies are limited
787 by overall coverage.52,58 It may be possible that some of the
788 proteins are masked by high-abundance proteins, restricting
789 their detection limits, or that the peptides are not amenable to
790 detection by mass spectrometry. Also, regardless of the
791 transcript levels, some of the mRNAs may not be efficiently
792 translated, resulting in low or undetectable protein levels. We
793 noticed that for a majority of the genes expressed at low levels
794 the corresponding proteins could not be identified. Never-
795 theless, we could successfully map ∼64% of our quantified
796 proteome to a corresponding mRNA level. Our proteome data
797 identified a paucity of coding sequences on chromosome 4,
798 confirming the analysis of the genome.6 Moreover, our analysis
799 revealed that there was only a moderate correlation between
800 the protein and transcript levels for most of the cellular
801 processes, consistent with observations in other biological
802 systems.15,17,58 Although such low correlations may be
803 attributed to technical discrepancies, it is also suggestive of an
804 intricate functional regulatory mechanism that operates to
805 maintain proper levels of transcripts and proteins. There is
806 continuing debate on the concordance of transcript and protein
807 abundances, and the precise mechanisms that act at the post-
808 transcriptional level remain to be elucidated.57,59,60 In fact,
809 cross-species comparisons suggest that orthologous protein
810 levels correlate better than the corresponding transcript
811 abundances, hinting that the mechanisms to achieve a particular
812 protein abundance evolve rapidly16 and may include utilization
813 of altered protein stability, translational efficiency, and
814 ribosomal occupancy to achieve the final protein abun-
815 dance.61−63 Interestingly, a genome-scale study established

816that genes that showed minimum variation at the mRNA level
817through the cell cycle had poor correlation with final protein
818levels, whereas those that displayed large variation had a high
819degree of concordance.64 Analyzing the concerted variation in
820transcript and protein abundances through the different
821developmental stages may expose more insights on the
822orchestration of the transcriptional and translational machi-
823neries in zebrafish.
824As observed previously in other biological systems, we find
825that the most abundant proteins are of considerably shorter
826length and are often associated with central pathways and core
827processes, including energy and carbohydrate metabolism,
828translation, and transport.51,65 For such core metabolic
829processes, the correlation between the protein and mRNA
830levels was considerably higher. The genes associated with these
831processes indeed exhibit a highly conserved coexpression
832pattern and are also highly correlated at the protein level
833across species.16,66 The low-abundance protein groups are
834primarily regulatory in function and are involved in signal
835transduction, phosphorylation, and other protein modifications.
836In spite of the low abundance, higher eukaryotes have a large
837fraction of the protein mass dedicated to regulatory functions.67

838Furthermore, low-abundance species generally show high
839sequence variability across species.16 These proteins, although
840present in low abundance, are associated with various important
841processes of development, including cell differentiation and
842anatomical structure morphogenesis, in our quantified
843proteome. Of note, it has been shown that regulatory proteins
844display varied expression levels between different human cell
845lines.68 This supports the notion that these regulatory proteins
846are potent regulators of cell identity and behavior.
847While we observed that most of the core metabolic and
848biosynthetic processes are modulated by proteins that are
849highly abundant, specific developmental processes are marked
850by genes showcasing high transcript but low protein levels. It is
851known that some transcripts are not efficiently translated, are
852differentially degraded, and/or are stalled during the process of
853translation. Those cohorts of transcripts, which showed
854abundant transcripts and low protein levels, might be subjected
855to the process of stalling during translation. Ribosome profiling
856experiments identified the existence of differential translational
857efficiencies of these transcripts.69,70

858Anatomical developments associated with morphogenesis of
859embryonic skeletal systems, pattern formation, and neuronal
860differentiation, for example, are fine-tuned by low protein and
861high transcript levels. Such systems are yet to initiate full
862developmental programs at 24 hpf, and we speculate that they
863may be held in a poised state. As the embryo develops, some of
864these processes may be primarily modulated by the levels of
865proteins, transcripts, or both. Network mapping highlighted
866instances of several genes involved in signaling pathways that
867had low protein and high mRNA expressions. The low protein
868abundance may be attributed to reduced stability of the
869regulatory proteins or may point to post-transcriptional
870regulation of protein abundance. miRNAs have emerged as
871important modulators of post-transcriptional regulation, and it
872is estimated that approximately 30% of the mammalian coding
873genes are regulated by them.71 Indeed, most miRNAs in
874zebrafish are primarily expressed from segmentation stage
875onward, and some miRNAs have been shown to regulate
876different processes during development.72−75 This leads us to
877speculate that many of the low-abundance (or even
878undetected) proteins may have been subjected to miRNA
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879 regulation to allow for the tightly regulated initiation of
880 differentiation. Of note, we observed that many of the critical
881 proteins involved in development, including LFNG,76

882 FGFRs,77 and CTNNB2,78 are predicted to be regulated by
883 miRNAs (Table S8 in the Supporting Information). Such
884 restriction of mRNA translation underscores the potency of the
885 derived protein products.
886 From our network mapping, we identified a particular
887 modulator of the Notch pathway, Lunatic Fringe (LFNG),
888 which has low protein and high mRNA levels. The Notch
889 signaling cascade plays a major role in the establishment of the
890 neural crest and binary fate decisions in the neural tube and
891 elsewhere, and it also regulates somitogenesis in developing
892 embryos.79−81 Formation of the somites (embryonic segments
893 of the vertebrate body) is regulated by oscillatory expression of
894 genes in the segmentation clock that define the spatial pattern,
895 and Notch functions to synchronize the segmentation clock.82

896 Such synchronization depends on tight control at the level of
897 mRNA half-life and translational efficiency. Interestingly,
898 LFNG is one such oscillatory gene whose expression is post-
899 transcriptionally regulated by miR-125a-5p (miR-125 was also
900 predicted by TargetScanFish 6.2) for proper somite formation
901 in chick embryo.83,84 In zebrafish, LFNG is expressed within
902 the presomitic mesoderm and is important for the formation of
903 segment boundaries in the somites and hindbrain.76,85 Our
904 proteome quantification was performed using embryos at 24
905 hpf, around which time the boundary between the midbrain
906 and hindbrain forms (22−24 hpf).86−88 It is tempting to
907 speculate that such regulatory processes may have resulted in
908 the observed differences in the gene and protein expression
909 levels of LFNG. Similar dissection of the network for other
910 protein modules, like FGFR, CLASP2, and DUSP6, may
911 provide functional insights into the differential regulation of the
912 transcriptional and translational machineries during zebrafish
913 embryogenesis.

914 ■ CONCLUSIONS

915 The in-depth comparative and functional mapping presented
916 here highlights the usefulness of integrative proteomics and
917 transcriptomics to unveil molecular mechanisms regulating
918 early embryogenesis in zebrafish. We particularly highlight
919 differential modulation of various morphogenetic events during
920 embryogenesis. We believe that such an exhaustive approach
921 over the entire time course of development is likely to uncover
922 many novel mechanisms and various levels of gene expression
923 control during embryogenesis and provide a valuable resource
924 for systems biology-based modeling in the future.
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