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SUMMARY

Functional data analysis provides an inherently nonparametric approach for the analysis of data

which consist of samples of time courses or random trajectories. It is a relatively young field aiming

at modeling and data exploration under very flexible model assumptions with no or few parametric

components. Basic tools of functional data analysis are smoothing, functional principal components,

functional linear models and time-warping. Warping or curve registration aims at adjusting for random

time distortions. While in the usual functional data analysis paradigm the sample functions were

considered as continuously observed, in longitudinal data analysis one mostly deals with sparsely and

irregularly observed data that also are corrupted with noise. Adjustments of functional data analysis

techniques which take these particular features into account are needed to use them to advantage for

longitudinal data. We review some techniques that have been recently proposed to connect functional

data analysis methodology with longitudinal data. The extension of functional data analysis towards

longitudinal data is a fairly recent undertaking that presents a promising avenue for future research.

This article provides a review of some of the recent developments.

Key words: Conditioning, Covariance function, Eigenfunction, Functional Principal Component, Func-

tional Regression, Karhunen-Loève expansion, Kernel method, Local linear fitting, Prediction, Reg-

istration, Regression parameter function, Smoothing, Trajectories, Sparse Data, Stochastic Process,

Warping.

1 Introduction

Longitudinal studies are characterized by data records containing repeated measurements per subject,

measured at various points on a suitable time axis. The aim is often to study change over time or

time-dynamics of biological phenomena such as growth, physiology, pathophysiology and pathogenesis.

One is also interested in relating these time-dynamics to certain predictors or responses. The classical

analysis of longitudinal studies is based on parametric models which often contain random effects such

as the Generalized Linear Mixed Model (GLMM) or are marginal methods such as Generalized Esti-

mating Equations (GEE). The relationships between the subject-specific random effects models and the

marginal population-average models such as GEE are quite complex (see, e.g., Zeger, Liang and Albert

(1988), Heagerty (1999), Heagerty and Zeger (2000)). To a large extent, this non-compatibility of vari-

ous approaches is due to the parametric assumptions that are made in these models. These include the
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assumption of a parametric trend (linear or quadratic in the simplest cases) over time and of parametric

link functions. Specific common additional assumptions are normality of the random effects in a GLMM

and a specific covariance structure (“working correlation”) in a GEE. Introducing nonparametric com-

ponents (nonparametric link and nonparametric covariance structure) can ameliorate the difficulties of

relating various longitudinal models to each other, as it increases the inherent flexibility of the resulting

longitudinal models substantially (compare the Estimated Estimating Equations approach in Chiou and

Müller, 2005).

Taking the idea of modeling with nonparametric components one step further, the Functional Data

Analysis (FDA) approach to longitudinal data provides an alternative nonparametric method for the

modeling of individual trajectories. The underlying idea is to view observed longitudinal trajectories as a

sample of random functions, which are not parametrically specified. The observed measurements for an

individual then correspond to the values of the random trajectory, corrupted by some measurement error.

A primary objective is to reduce the high dimension of the trajectories – considered to be elements of an

infinite-dimensional function space – to finite dimension. One goal is to predict individual trajectories

from the measurements made for a subject, borrowing strength from the entire sample of subjects.

The necessary dimension reduction or regularization step can be implemented in various ways. For

the analysis of longitudinal data, with its typically sparse and irregular measurements per subject, the

method of Functional Principal Component Analysis (FPCA) has been recently proposed (Yao, Müller

and Wang, 2005ab), extending previous work by James (2002). Other regularization methods that have

proven useful in FDA include smoothing splines (Ke and Wang 2001), B-splines (Rice and Wu 2000) or

P-splines (Yao and Lee, 2006).

The classical theory and applications of FDA have been developed for densely sampled or fully

observed trajectories that in addition are sampled without noise. This setting is not conducive to

applications in longitudinal studies, due to the common occurrence of irregular and sparse measurement

times, often due to missing data. Excellent overviews on FDA for densely sampled data or fully observed

trajectories can be found in the two recent books by Ramsay and Silverman (2002, 2005). Early

approaches were based primarily on smoothing techniques and landmarks (e.g., Gasser et al., 1984,

1985). The connections between FDA with longitudinal data analysis have been revisited more recently,

compare Rice (2004), Zhao, Marron and Wells (2004) and Müller (2005). Of interest is also a discussion

that was held in 2004 at a conference dedicated to exploring these connections (Marron et al. 2004).

While a number of practical procedures and also theoretical results are available, the use of FDA

methodology for the analysis of longitudinal data is far from being established practice. This is an area

of ongoing research.
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Even the estimation of a mean trajectory is non-trivial: Dependency of the repeated measurements

coming from the same subject may be taken into account (Lin et al. 2004, Wang 2003) to improve

efficiency of this estimation step. Another problem with major practical impact occurs for longitudinal

studies, where individually varying time scales matter. In such situations, warping approaches may be

needed, as discussed in Section 3 below.

We focus in the following on an approach of applying FDA to longitudinal data that is based on

FPCA and thus allows for subject-specific models that include random effects and which are entirely

data-adaptive (section 5). Our focus is less on marginal population-average modeling, although we

discuss below the difficulties that are caused for marginal modeling in the presence of warping. Auxiliary

quantities of interest include estimates of the underlying population-average mean function and of the

covariance surface describing the dependency structure of the repeated measurements. These steps

require smoothing methods, briefly reviewed in the next section.

From the covariance surface, one estimates the eigenfunctions of the underlying stochastic process

that is assumed to generate the individual random trajectories. We do not assume stationarity. Individ-

ual trajectories are represented by their first few functional principal component (FPC) scores. These

scores play the role of random effects. Thus, functional data are reduced to a vector of scores. These

scores may subsequently be entered into further statistical analysis, either serving as predictors or as

responses in various statistical models, including functional regression models (section 6).

2 Basics of Functional Data Analysis

Functional data consist of a sample of random curves which are typically viewed as i.i.d. realizations of

an underlying stochastic process. Per subject or experimental unit, one samples one or several functions

Y (t), t ∈ T , where T is a suitable domain, usually an interval. A common assumption is that trajectories

are square integrable and smooth, say twice differentiable. A major difference between functional data

and multivariate data is that in the case of functional data, order and neighborhood relations are well

defined and relevant, i.e., one has a topology on the domain on which the trajectories are defined. In

contrast, for multivariate data, irrespective of dimension, no meaningful topology on the domain exists.

This is illustrated by the fact that one can re-order the components of a multivariate data vector and

arrive at exactly the same statistical analysis as for the data vector arranged in the original order. For

functional data, the situation is entirely different.

Goals for FDA include the construction of meaningful models for basic data descriptive measures such

as a mean trajectory. If one was given a sample of entirely observed trajectories Yi(t), i = 1, . . . , N , for
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N subjects, a mean trajectory could be simply defined as sample average, Ȳ (t) = 1
N

∑N
i=1 Yi(t), t ∈ T.

However, this relatively straightforward situation is rather the exception than the norm, as we face

the following difficulties: The trajectories may be sampled at sparsely distributed times, with timings

varying from subject to subject; the measurements may be corrupted by noise and are dependent

within the same subject; and time-warping may be present, a complication that is typical for some

longitudinal data such as growth curves and is discussed further in Section 4. So what constitutes

a reasonable population mean function is much less straightforward in the FDA setting than it is in

the multivariate case. Further notions of interest which require special attention include measures of

variance, covariance and correlation between curves.

Measures of correlation are of interest for studies in which several trajectories per subject are ob-

served. An initial idea has been the extension of canonical correlation from the multivariate (Hotelling

1936) to the functional case. The resulting functional canonical correlation requires inversion of a

compact linear operator which makes this an inverse problem. Such problems require regularization.

Two main types of regularization have been used in FDA: Regularization by an additive penalty term,

usually penalizing against non-smooth curve estimates, and used in combination with spline modeling;

or truncation of a functional series expansion such as a Fourier series or wavelet expansion, at a finite

number of terms, also known as thresholding. Both approaches depend on the choice of an appropriate

regularization parameter. For functional canonical correlation, both regularization by a penalty (Leur-

gans, Moyeed and Silverman 1993) and by truncation (He, Müller and Wang 2004) have been proposed.

One consistent finding is that functional canonical correlation is highly sensitive to the choice of the

regularization parameter (size of penalty or truncation). Due to the difficulties in calibrating the reg-

ularization for functional canonical correlation, alternative notions of a functional dynamic correlation

(Dubin and Müller, 2005; compare also Service, Rice and Chavez 1998, Heckman and Zamar 2000) have

been studied.

Beyond functional correlation, the problem of relating several observed curves per subject to each

other or to a scalar response leads to the problem of functional regression. Functional regression models

come in various flavors: For a scalar response, one may consider one or several functional predictors.

There are also situations in which the response is a function, combined with scalar or multivariate

predictors. The most complex case involves the simultaneous presence of functional predictors and

functional responses. These models will be discussed in Section 6. In functional regression, one can

distinguish a classic FDA approach which requires the availability of fully observed noise-free individual

trajectories and has been well investigated in recent years (Ramsay and Dalzell, 1991; Cardot et al. 2003)

and a modified approach suitable for longitudinal data that is of more recent origin. Methods extending
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density estimation and nonparametric regression to functional objects have also been developed in

recent years (Ferraty and Vieu 2006); such developments face theoretical challenges and are the subject

of ongoing research.

We take here functional data to mean one deals with a sample of curves, rather than with a single

curve such as in dose-response analysis or in nonparametric regression function. The use of “functional

data” is however not always that rigorous and often simply refers to the fact that a model contains a

nonparametric curve as a component.

When faced with functional data, a useful first step is to simply plot the data. In situations char-

acterized by reasonably dense sampling of measurements per subject, one may generate such plots by

linearly interpolating the points corresponding to the repeated measurements made on the same subject

(“spaghetti plot”). In other situations, when data are irregularly sampled or a derivative is required

as in the as in the modeling of growth curves, it is best to conduct a preliminary smoothing or differ-

entiation step before plotting the data (see Fig. 2 and 3, where in the left panel of Fig. 2 an initial

kernel differentiation was implemented, while Fig. 3 shows spaghetti plots of unprocessed data). From

such plots, one may discern a general trend in the data, changes in sampling frequencies (for example

caused by drop-outs) and shapes of individual trajectories and their variation. Last not least one may

identify subjects with outlying trajectories; these are candidates for removal before proceeding with the

analysis.

FDA relies on and exploits smoothing due to the smooth topology in the domain that distinguishes

FDA from multidimensional data analysis. Another characteristic feature of functional data is the

presence of warping, i.e., the possibility that individual time scales are randomly distorted. Some

basic smoothing ideas are discussed in the following subsection, while the next section is devoted to an

introduction to warping (also known as curve registration or curve alignment).

3 Nonparametric Regression

3.1 Kernel smoothing

Smoothing methods for nonparametric regression are an important ingredient of FDA, as the key tech-

niques exploit the continuity of the trajectories. We focus here on kernel-type smoothers that have

proven useful, due to their straightforward interpretation and the large body of accumulated knowl-

edge about their properties, especially their asymptotic behavior. Explicit representations in terms of

weighted averages in the data, which are available for this class of smoothers, greatly facilitate the inves-

tigation of asymptotic properties and also of the FDA methods that utilize them. Excellent textbooks
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and monographs on kernel-type smoothing procedures include Bowman and Azzalini (1997), Fan and

Gijbels (1996), Silverman (1986) or Wand and Jones (1995). Other smoothing methods such as various

types of splines can often be used equally well in nonparametric regression (Eubank 1999).

The goal of smoothing in the nonparametric regression setting is to estimate a smooth regression

function or surface g(u) = E(V |U = u), usually assumed to be twice continuously differentiable. For the

random design case, this regression function is characterized by the joint distribution of vectors (U, V ),

while for fixed designs the predictor levels Uj , at which responses Vj are recorded, are assumed to be

non-random (and usually assumed to be generated by a design density). The response V is univariate,

while predictors U can be univariate or multivariate. Of interest for FDA applications are the cases

u ∈ R, the case of a one-dimensional regression function, and u ∈ R2, the case of a regression surface.

To define a kernel smoother for a one-dimensional predictor, given n data points {(Uj , Vj)1≤j≤n},
we need a bandwidth or window width h and a kernel function K. The bandwidth serves as smooth-

ing parameter and determines the trade-off between variance and bias of the resulting nonparametric

regression estimates. The kernel K typically is chosen as a smooth and symmetric density function; for

some types of kernel estimators such as convolution estimators, negative valued kernels can be used to

accelerate rates of convergence (Gasser, Müller and Mammitzsch 1985). Commonly used non-negative

kernels are rectangular (box) kernels K(x) = 1, quadratic (Epanechnikov) kernels K(x) = 3
4(1 − x2),

which enjoy some optimality properties, and Gaussian kernels which correspond to the standard normal

density.

A classic kernel smoothing method primarily aimed at regular designs Uj is the class of convolution

kernel smoothers (Priestley and Chao 1972; Gasser and Müller 1984). The smoothing window for

estimating at predictor level u is [u − h, u + h] if a kernel function K with domain [−1, 1] is used.

Let S(j) = (U(j) + U(j−1))/2, where U(j) is the j-th order statistic of the Uj , and let V[j] denotes the

concomitant of U(j). Convolution type kernel estimators are defined as

ĝC(u) =
n∑

j=1

V[j]

∫ S(j+1)

S(j)

1
h

K(
u− s

h
)ds. (1)

Near the endpoints of the regression function, specially constructed boundary kernels should be used

to avoid boundary bias effects (e.g., Jones and Foster 1996; Müller 1991).

3.2 Extensions and local linear fitting

We note that these smoothers can be easily extended to the case of estimating derivatives (Gasser and

Müller 1984). Convolution type smoothers have been applied extensively to conduct nonparametric
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analysis of longitudinal growth studies (Gasser et al. 1984, Müller 1988). Growth studies belong to a

class of longitudinal studies for which one has relatively dense measurement grids. In such situations one

can smooth each trajectory individually, independent of the other observed trajectories. This is justified

by postulating asymptotically ever denser designs where the number of measurements per subject n

increases asymptotically within a fixed domain (also referred to as in-fill asymptotics). As n → ∞,

using appropriate kernels and bandwidth sequences, this approach leads to estimates of trajectories and

derivatives with typical nonparametric rates of convergence of the order n−(k−ν)/(2k+1). Here, ν is the

order of derivative to be estimated and k > ν is the order of assumed smoothness of the trajectory

(number of continuous derivatives). For an example of a sample of estimated first derivatives of growth

data, see the left panel of Fig. 2.

The analyses of growth data with these smoothing methods demonstrated that nonparametric re-

gression methods are essential tools to discern features of longitudinal time courses. An example is the

detection of a pre-pubertal growth spurt which had been omitted from previously used parametric mod-

els. Once a longitudinal feature is not properly reflected in a parametric model, it can be very difficult

to discover these features through a lack-of-fit analysis. A nonparametric approach should always be

used concurrently with a parametric modeling approach in order to ensure against omitting important

features. Nonparametric methods achieve this by being very flexible and by not reflecting preconceived

notions about the shape of time courses. In the above mentioned analysis of growth studies, first and

second derivatives where estimated for each individual separately to assess the dynamics of growth.

For the practically important problem of bandwidth choice, one can use cross-validation (minimization

of one-leave-out prediction error), generalized cross-validation (a faster approximation) or a variety of

plug-in methods aiming at minimizing Mean Squared Error or Integrated Mean Squared Error.

Boundary adjustments are automatically included in local polynomial fitting, which is a great advan-

tage. Local linear smoothers are particularly easy to use and have become the most popular kernel-based

smoothing method. They are based on the very simple idea of localizing a simple linear regression from

the entire data domain to local windows and have been around for a long time. Compared to convo-

lution kernel estimators, this method has better conditional variance properties in random designs. A

theoretical problem is that the unconditional variance of local linear estimators is unbounded, therefore

mean squared error does not exist, in contrast to the convolution methods where it is always bounded.

Practically, this is reflected by problems caused by occasional gaps in the designs, i.e., for a random

design the probability that not enough data fall into at least one smoothing window is not negligi-

ble (see Seifert and Gasser 1996, 2000, for further discussion of these issues and improved local linear

estimation).

7



The local linear kernel smoother (Fan and Gijbels, 1996) is obtained via the minimizers â0, â1 of

M∑

j=1

K

(
u− Uj

b

)
[Vi − a0 − a1(u− Ui)]

2 , (2)

setting ĝL(u) = â0. The older kernel methods of Nadaraya (1964) and Watson (1964) correspond to the

less flexible special case of local linear fitting where one fits local constants, which leads to somewhat

awkward bias behavior.

For two-dimensional smoothing we aim at the regression function g(u1, u2) = E(V |U1 = u1, U2 = u2).

Locally weighted least squares then provide a criterion for fitting local planes to the data

{(Uj1, Uj2, Vj)j=1,...,M}, leading to the surface estimate ĝ(u1, u2) = â0, where (â0, â1, â2) are the mini-

mizers of the locally weighted sum of squares

M∑

j=1

K

(
u1 − Uj1

h1
,
u2 − Ui2

h2

)
[Vj − (a0 + a1(Uj1 − u1) + a2(Uj2 − u2)]

2 . (3)

Here, K(·, ·) ≥ 0 is a two-dimensional kernel function. It can be chosen as a product of two one-

dimensional kernel functions. Two bandwidths h1, h2 are needed, for simplicity they are often chosen

to be the same. We note that explicit formulas for these smoothers can be easily obtained (see, e.g.,

formulas (2.5) in Hall, Müller and Wang, 2006).

4 Time Warping and Curve Synchronization

4.1 Overview

Time-warping has been studied primarily for densely sampled data, such as longitudinal growth stud-

ies, but is of potential relevance for many longitudinal studies. Warping is also referred to as time

synchronization, curve registration or curve alignment (Gasser and Kneip 1995, Ramsay and Li 1998,

Rønn 2001, Liu and Müller 2004, Gervini and Gasser, 2004). In a warping model one assumes that

the time axis is individually distorted, for example by a random time transformation function that is

monotone increasing and keeps beginning and end point of the domain as fixed. The motivation for

considering warping in biomedical applications is that individuals may progress through time at their

own individual pace, referred to as biological time or eigenzeit (Capra and Müller 1997) which may

differ from clock time. A typical example is human growth where the various growth spurts (the pu-

bertal spurt but also the so-called mid-growth spurt that has been rediscovered using nonparametric

smoothing methods – see Gasser et al. 1984) occur at different ages for different individuals. In such

a situation, a cross-sectional average growth curve will often not be meaningful. The reason is that it
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will not resemble any individual trajectory closely and therefore gives a wrong impression about the

dynamics of growth.

An example is shown in Fig. 1; the left panel displays a sample of growth velocities from 54 girls

of the Berkeley Growth Study. The right panel features a comparison the cross-sectional mean growth

curve with various warped means. Among these, the landmark method, pioneered in Kneip and Gasser

(1992) is known to work very well for these data; the Procrustes method (Ramsay and Li 1998) is an

iterative procedure, warping curves at each step to match the current cross-sectional mean; and area-

under-the-curve registration (introduced in Liu and Müller 2004) synchronizes time points associated

with the same relative area under the curve between the left endpoint of the domain and this time

point. The cross-sectional mean is found to underestimate the size of the pubertal growth spurt and

also produces a biased location, and similar distortions for the midgrowth spurt, the smaller growth

growth spurt at around 5 years.
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Figure 1: Time-warping of growth curves. Left panel: Sample of estimated growth velocities (first

derivatives) of 54 girls from the Berkeley Growth Study. Right panel: Comparison of different reg-

istration procedures, including functional convex mean using area-under-the-curve registration (solid

bold), continuous monotone registration (so-called Procrustes method, solid), landmark registration

(dotted), and cross-sectional average (dashed). In both panels, x− axis is age in years and y− axis is

velocity in cm/yr. Figure reproduced from Liu and Müller (2004). Functional convex averaging and

synchronization for time-warped random curves. J. Amer. Statist. Assoc. 99, 687-699.

The conclusion is that even a simple notion such as a mean needs to be carefully considered in the
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presence of warping. A simulated example demonstrating the distorting effects of warping in FDA is

shown in Fig. 2. Here the individual trajectories have been generated as bimodal curves but the cross-

sectional mean does not reflect this shape at all. Therefore, modifications aiming at time-synchronization

are needed to arrive at a representative mean when warping is present.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

6

7

8

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

6

7

Figure 2: The effect of warping. Left panel: Sample of simulated bimodal trajectories. Right panel:

Target is the true bimodal functional warped mean (solid). Estimated means are the naive cross-

sectional mean computed from the sample curves (dashed) and the warped functional mean computed

from the sample curves, using area-under-the-curve registration (dotted). Figure reproduced from Liu

and Müller (2004). Functional convex averaging and synchronization for time-warped random curves.

J. Amer. Statist. Assoc. 99, 687-699, where more details can be found.

In the presence of warping one faces simultaneous variation in amplitude and time and this often

leads to identifiability issues. When each subject follows its own time scale, time synchronization as a

pre-processing step often improves subsequent analysis of functional data. It is also of interest in itself.

In gene time course expression analysis, gene classification can be based on simple time-shift warping

(Silverman 1995, Leng and Müller 2006).

Landmark identification and alignment (Gasser and Kneip 1995) has become a gold standard for

warping, especially for growth curves where the landmarks are often easy to identify (see Fig. 1).

Landmarks have proved useful for the analysis of longitudinal growth curves early on (Gasser et al. 1984)

due to the prominence of the growth spurts. In landmark warping one maps all landmark locations,

often defined as peaks or troughs in first or second derivatives, to the average values across the sample
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and interpolates the times in between for each individual (for example with an interpolating spline).

Landmark methods however do not work in situations where the individual curves are variable to the

extent that they do not share common shapes. Procrustes and area-under-the-curve registration are

not subject to such shape constraints. Alternative robust warping methods have been developed lately

(Gervini and Gasser 2005). Much work remains to be done in this area.

4.2 Methods for Time-Synchronization

Simple warping transformations include time-shift warping (Silverman 1995; Leng and Müller 2006)

where one assumes in the simplest case for the i-th trajectory that Yi(t) = Y0(t − τi), τi denoting a

(random) time shift for the i-th subject, and Y0 a synchronized trajectory. Another simple variant

that is often useful, especially when the sampled functions have varying domains, is scale warping.

Here one models Yi(t) = Y0(t/σi) for scale factors σi > 0. Both schemes can be combined, leading to

shape-invariant modeling (Lindstrom 1995, Wang, Ke and Brown 2003).

A useful framework is to view warping as a time synchronization step, formalized as follows. Time for

each subject is mapped from a standard or synchronized time t ∈ [0, 1] to the individual or warped time

X̃(t), where this mapping must be strictly monotone and invertible, and in most approaches is considered

to be a random function. Ideally, a warping method will satisfy the boundary conditions X̃(0) =

0, X̃(1) = T. The sample of observed trajectories can then be viewed as being generated by a latent

bivariate stochastic process in “synchronized time space” S (Liu and Müller, 2004) {(X̃(t), Ỹ (t)), t ∈
[0, 1]} ⊂ L2([0, 1]) × L2([0, 1]). The observed sample then corresponds to {(Ỹ (X̃−1(x)), x ∈ [0, T ]} ⊂
L2([0, T ]), and the associated warping mapping is

ψ : {(X̃(t), Ỹ (t)), t ∈ [0, 1]} 7→ {(x, Y (x)), x ∈ [0, T ]},

defined by Y (x) = Ỹ (X̃−1(x)).

The identifiability problem corresponds to the fact that this mapping does not have a unique inverse.

This is where the various warping methods such as Procrustes method or landmark warping come in,

providing a concrete synchronization algorithm. A very simple but often effective warping method that

is featured in Fig. 1 and 2 is area-under-the-curve warping. This works for samples of non-negative

random trajectories. Here one assumes that synchronized time corresponds to the relative area under

each individual trajectory. The total area is normalized to 1, and if the fraction of area under the curve

is the same for two different observed times, these are considered to correspond to the same point in

individual development and are mapped to the same synchronized time. Formally, to obtain the inverse

warping process X̃−1, which corresponds to the time-synchronizing mapping, as a function of each
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observed trajectory processes Y , one simply determines the fractions of the area under the observed

curves Y and defines this to be the synchronized time,

ϕ(Y )(x) = X̃−1(x) =

∫ x
0 |Y (s)| ds∫ T
0 |Y (s)| ds

.

Applying this time-synchronizing mapping is referred to area-under-the curve warping.

Considering the latent bivariate processes {(X̃(t), Ỹ (t), t ∈ [0, 1]}, as X̃(·) is constrained to be positive

increasing, the space where the bivariate processes live is a convex space. This leads to a convex calculus.

Given two observed processes Y1, Y2, and a fixed 0 ≤ π ≤ 1, define a functional convex sum

πY1 ⊕ (1− π)Y2 = ψ{πψ−1(Y1) + (1− π)ψ−1(Y2)},

where ψ−1 is the inverse mapping ψ−1(Y ) = {{ϕ−1(Y )}(t), Y ({ϕ−1(Y )}(t)), t ∈ [0, 1]}. The functional

convex sum can be easily extended to the case of K functions, K > 2,

K⊕

j=1

πjYj = ψ
( K∑

j=1

πjXj ,
K∑

j=1

πjYj

)
.

This then leads to the warped average function (functional convex average, shown in Fig. 1 and 2)

Ȳ⊕ =
n⊕

j=1

1
n

Yj .

Similarly, a convex path connecting observed random trajectories is {πY1 ⊕ (1 − π)Y2, π ∈ [0, 1]}.
Further results on this general warping framework and area-under-the-curve warping can be found in

Liu and Müller (2003, 2004).

5 Functional Principal Component Analysis

5.1 Square Integrable Stochastic Processes

Functional Principal Component Analysis (FPCA) has emerged as a major tool for dimension reduction

within FDA. One goals is to summarize the infinite-dimensional random trajectories through a finite

number of functional principal component (FPC) scores. This method does not require distributional

assumptions and is solely based on first and second order moments. It also provides eigenfunction

estimates which are known as “modes of variation”. These modes often have a direct biological inter-

pretation and are of interest in their own right (Kirkpatrick and Heckman 1989). They offer a visual

tool to assess the main directions in which the functional data vary. An important application is a rep-

resentation of individual trajectories through an empirical Karhunen-Loève representation. It is always

a good idea to check and adjust for warping before carrying out an FPCA.
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For square integrable random trajectories Y (t), we define mean and covariance functions

µ(t) = E(Y (t)) (4)

G(s, t) = cov {Y (s), Y (t)} , s, t ∈ T (5)

and the auto-covariance operator

(Af)(t) =
∫

T
f(s)G(s, t) ds.

This is a linear Hilbert-Schmidt operator in the function space of square integrable functions L2(T ) with

Hilbert-Schmidt kernel G (Conway 1985). Under minimal assumptions this operator has orthonormal

eigenfunctions φk, k = 1, 2, . . . with associated ordered eigenvalues λ1 ≥ λ2 ≥ . . ., i.e., satisfying

Aφk = λk φk.

The eigenfunctions of the auto-covariance operator turn out to be very useful in FDA for dimension

reduction, due to the Karhunen-Loève expansion. This expansion holds under minimal assumptions

(see Ash and Gardner 1975) and converges in the L2 sense and also pointwise. It provides an important

representation of individual trajectories Y ,

Y (t) = µ(t) +
∞∑

k=1

Ak φk(t), (6)

where the Ak are uncorrelated random variables, known as the functional principal component scores

(FPC scores). They satisfy E(Ak) = 0, var(Ak) = λk and have the explicit representation

Ak =
∫

T
(Y (t)− µ(t))φk(t) dt. (7)

The situation is analogous to the representation of random vectors in multivariate analysis by principal

components, replacing the scalar product in the vector space Rd, given by 〈x, y〉 =
∑d

k=1 xkyk by

〈x, y〉 =
∫

x(t)y(t) dt, and replacing matrices by linear operators; however since we deal with infinite

sums, issues of convergence arise.

5.2 From Karhunen-Loève Representation to Functional Principal Components

One of the main attractions of FPCA is the equivalence (in distribution) of Y − µ (centered process)

and the (uncorrelated) FPC scores, Y − µ ≡ {A1, A2, . . .}. This is a consequence of the Karhunen-

Loève representation. In applications, the sequence of FPC scores is truncated at a suitable index (if

possible, chosen data-adaptively). This truncation constitutes the needed regularization step, mapping
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the infinite trajectories to a finite number of FPC scores. Along the way, one also needs to estimate the

(smooth) mean functions and the relevant eigenfunctions. This can be done by smoothing methods as

demonstrated below.

Alternative representations of functional data by expansions in fixed basis functions have also been

considered. These include Fourier and wavelet bases (Morris and Carroll 2006). These representations

have the advantage that neither mean nor eigenfunctions need to be determined from the data. Wavelets

are particularly suited for data with somewhat non-smooth trajectories such as functions containing

small jumps and sharp edges. They are less well suited to reproduce really smooth trajectories. The

disadvantage of fixed basis functions is that they may not be very parsimonious and many more basis

functions are needed to represent a given sample of trajectories. In addition, the estimated coefficients

are not uncorrelated (which means they carry less information and are less convenient for subsequent

applications such as regression).

A preliminary exploration of functional principal components for longitudinal data is due to C.R.

Rao (1958). Other key references are Castro, Lawton and Sylvestre (1987), who introduced the notion

that eigenfunctions are functional ”modes of variation”, Rice and Silverman (1991), who emphasized

the need for smoothing for which they used B-splines, and Ramsay and Silverman (2005), who start

with a pre-smoothing step to first generate a sample of smooth trajectories, before proceeding with

FPCA.

If complete trajectories are observed, or data observed on a grid are pre-smoothed and then considered

as completely observed, one typically creates an equidistant grid {t1, t2, . . . , tN} of N design points on

the domain T (where N is the same as the number of sampled trajectories, which corresponds to the

number of subjects) and then one treats the data as N -vectors, one for each of the N subjects. One

then performs a multivariate principal component analysis for these N -vectors, i.e., one obtains mean

vector, eigenvectors and principal component scores, without any smoothing (compare Cardot, Ferraty

and Sarda 1999). Theoretical analysis then focuses on asymptotics as N → ∞. If data however are

not densely or irregularly sampled, or are contaminated with noise, this approach does not work and

smoothing is necessary. As noise-contaminated measurements are rather the norm than the exception,

the case of completely observed trajectories is mainly of theoretical interest.

5.3 The Case of Longitudinal Data

For sparsely sampled longitudinal data, pre-smoothing to create completely observed trajectories is

a less attractive option as it introduces bias and artificial correlations into longitudinal data. This
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is because scatterplot smoothing requires relatively dense and not too irregular designs. If there are

”gaps” in the predictors, bandwidths must be increased which in turn leads to increased bias. Irregular

and sparse data, as typically encountered in longitudinal studies, were first considered by James, Hastie

and Sugar (2001), who used B-splines. The B-spline approach with random coefficients, pioneered by

Shi, Weiss and Taylor (1996) and Rice and Wu (2000), can also be easily adapted to the sparse and

irregular case.

The FPCA approach and Karhunen-Loève representation cannot be directly adopted to longitudinal

data, which from now on we assume to consist of sparse, irregular and noisy measurements of the longi-

tudinal trajectories. According to (7), the FPC scores which are the random effects in the representation

would be estimated by approximating the integral by a Riemann sum. This works nicely for the case of

fully observed trajectories but does not work for longitudinal data, due to large discretization errors. If

the data are contaminated by noise, the approximation by sums does not work consistently, even if the

measurements are dense. The case of noisy measurements in FDA was first emphasized in the work of

Staniswalis and Lee (1998).

We model noisy longitudinal data as follows: Let Yij be measurements of trajectories Yi(·) made at

sparse and irregularly spaced time points tij , 1 ≤ i ≤ n, 1 ≤ j ≤ ni. Then

Yij = Yi(tij) + εij = µ(tij) +
∞∑

k=1

Aikφk(tij) + εij .

Here the εij are i.i.d. measurement errors with moments Eεij = 0, Eε2ij = σ2, and the εij are considered

to be independent of the FPC scores Aik, denoting the score for the i−th subject and k−th eigenfunction.

An example for sparse and irregular data for which this model may apply are longitudinal CD4

counts of AIDS patients (Fig. 3, left panel).

5.4 Principal Analysis by Conditional Expectation

Her we describe the PACE (Principal Analysis via Conditional Expectation) method to carry out FPCA

for longitudinal (used synonymously here for sparse and irregularly sampled) data (Yao et al. 2005a).

The basis for this method is the PART – Principal Analysis of Random Trajectories algorithm for

obtaining the empirical Karhunen-Lov̀e representation of smooth functional data, where measurements

are contaminated with additional measurement error. This algorithm works irrespective of whether

the measurements have been sampled or a dense and regular grid or on a sparse and irregular grid.

Alternative algorithms that use pre-smoothing are available (see, e.g., Ramsay and Silverman 2005 and

the associated web site).
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Figure 3: Longitudinal CD4 Data for N = 238 male subjects, here shown for a subsample of 25 subjects.

Left panel: Plot of the data, connecting repeated measurements by straight lines. Right panel: Smooth

estimate of the covariance surface, where the diagonal has been removed. Figure reproduced from Yao,

F., Müller, H.G., Wang, J.L. (2005). Functional data analysis for sparse longitudinal data. J. American

Statistical Association 100, 577-590.
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The PART algorithm consists of the following steps: In a first step, one pools all available measure-

ments (tij , Yij), i = 1, . . . , N, j = 1, . . . , ni, into one scatterplot and uses a one-dimensional smoother

to obtain the estimate µ̂(t) of the overall mean function µ(t). A technical requirement here is that the

pooled locations tij over all subjects are dense on the domain or at least can be reasonably considered

to become dense asymptotically. This will lead to consistency for this estimation step. Next, one forms

all pairwise products

(Yij − µ̂(tij))(Yil − µ̂(til)), j 6= l,

which will be the responses for predictors (tij , til). Both these responses and the predictor are entered

into a 2-dimensional scatterplot smoother. The output is the estimated covariance surface. The diagonal

elements (for which j = l) are omitted from the input into the 2-dimensional smoother, since they are

contaminated by the measurement errors. The measurement error variance in fact can be estimated

from these diagonal elements, either under the assumption that it is a fixed constant, or under the

assumption that it varies over time. In the latter case, one obtains the variance function of the errors

by smoothing along the direction of the diagonal.

While in our implementation we use the smoothers described in subsection 1.2, any alternative

smoothing method can be used as well. One potential problem is that while the estimated covariance

matrix is easily seen to be symmetric (as the responses that are entered are symmetric in tij , til), it is

not necessarily positive definite. This problem can be solved by projecting on positive definite surfaces,

truncating negative eigenvalues (for details, see Yao et al. 2003). From the estimated covariance

surface, one obtains eigenfunctions and eigenvalues numerically after discretizing. The bandwidths for

the smoothing steps can be obtained by cross-validation or similar procedures.

Once mean function and eigenfunctions have been obtained, an important step in completing the

empirical Karhunen-Loève representation, and thus the functional dimension reduction, is the estimation

of the FPC scores. Following representation (7) of the scores, one could plug estimates for the unknown

quantities into the integral which could be approximated by a Riemann sum to obtain estimated FPC

scores. This is however only reasonable for sufficiently dense designs and for noise-free observations. If

the observations are noisy or sparse, the Riemann sums will not provide reasonable approximations to

the integral.

This is where the PACE approach to predict individual FPC scores comes in. We need Gaussian
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assumptions, i.e., Aik, εij are jointly normal. Define

Ỹi = (Yi1, · · · , Yini)
T ,

µi = (µ(ti1), · · · , µ(tiNi))
T ,

φik = (φk(ti1), · · · , φk(tiNi))
T .

The best predictors for the random effects are obtained via the conditional expectation

E[Aik|Ỹi] = E(Aik) + cov(Aik, Ỹi)cov(Ỹi, Ỹi)−1(Ỹi − µi)

= λkφ
T
ikΣ

−1
Yi

(Ỹi − µi),

where

(ΣYi)j,l = cov(Yi(tij), Yi(til)) + σ2δjl, δjl = 1 if j = l, and 0 if j 6= l.

Plugging in the estimates discussed above then leads to estimated predicted FPC scores

Ê[Aik|Ỹi] = λ̂kφ̂
T
ikΣ̂

−1
Yi

(Ỹi − µ̂i). (8)

5.5 Predicting Individual Trajectories

Once the number of included random coefficients K has been determined, we can use the predicted

FPC scores (8) to obtain predicted individual trajectories

Ŷ (t) = µ̂(t) +
K∑

k=1

Ê(Ak|Ỹi) φ̂k(t). (9)

An important issue is the choice of K, the number of included components. This corresponds to the

number of FPC scores and accordingly, the number of random effects in the model. For this choice, one

can use the scree plot. This plots the fraction of variance unexplained by the first K components as a

function of K,

S(K) = 1−
K∑

k=1

λ̂k/
∞∑

k=1

λ̂k.

One looks for a “knee” in this graph, i.e., a value of K at which the rate of decline slows substantially,

as K increases further.

A second promising approach are AIC-type criteria. As no likelihood exists a priori, one can devise

various types of pseudo-likelihood and then construct a pseudo-AIC value. For example, a pseudo-

Gaussian log-likelihood is

L̂1 =
N∑

i=1

{−ni

2
log (2π)− 1

2
log (detΣ̂Ỹi

)− 1
2
(Ỹi − µ̂i)T Σ̂−1

Ỹi
(Ỹi − µ̂i)}, (10)
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while a conditional version of the likelihood, conditioning on predicted FPC scores, would be

L̂ =
N∑

i=1

{−ni

2
log (2π)− ni

2
log σ̂2 − 1

2σ̂2
(Ỹi − µ̂i −

K∑

k=1

Âikφ̂ik)T (Ỹi − µ̂i −
K∑

k=1

Âikφ̂ik)}. (11)

In either version, the pseudo-AIC value is then AIC = −L̂ + K.

A characteristic of the PACE method is that it borrows strength from the entire sample to predict

individual trajectories, in contrast to the more traditional nonparametric regression analysis of longi-

tudinal data, where each curve would be fitted separately from the others by appropriate smoothing.

We note that this traditional approach has been successful for regular designs as encountered in growth

studies, but is less feasible for the more typical longitudinal data where the number of observations per

curve is small. In theoretical analysis this is adequately reflected by assuming that the number of re-

peated measurements per subject is bounded, while the number of individuals will potentially be large.

We note that once the FPC scores have been computed, they can be entered into further statistical

analysis. Pairwise scatterplots of one FPC score against another, plotted for all subjects, can reveal

patterns of interest. Pairs or vectors of FPC scores are useful for classification or clustering of samples

of trajectories (Müller 2005; compare also James and Sugar 2003).

A number of asymptotic properties of functional principal components have been investigated. Most

of the earlier results are due to the French school (Dauxois, Pousse and Romain 1982). Assuming more

than one but at most finitely many observations are available per trajectory, and without assuming

Gaussian assumptions, it was shown in Hall, Müller and Wang (2006) that the eigenfunction estimates

achieve the usual nonparametric rates for estimating a smooth function, as sample size N → ∞.

For the case where entire trajectories are available without measurement error, the optimal rates are

parametric (Hall & Hossini-Nasab 2006). The above estimates for covariance surface and mean function

converge in sup-norm and so do the eigenfunctions, under longitudinal designs (Yao et al. 2005a).

The predicted FPC scores converge to the actual FPC scores as the designs get denser (more and

more measurements per subject, see Müller 2005). Under additional Gaussian assumptions, then the

estimates of the predicted FPC scores converge to their targets, and pointwise/uniform confidence bands

can be constructed for predicted trajectories (Yao et al 2005a).

5.6 Application to Longitudinal CD4 Data

As an illustration, this algorithm was applied to longitudinal CD4 counts for a sample of CD4 counts

obtained for 283 male AIDS patients (Multicenter AIDS Cohort Study 1987). Potential issues with

informative drop-out in this study are ignored in this analysis. The data fit the description of sparse
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and irregular data and are shown in the left panel of Fig. 3, where the data for each individual are

connected by straight lines. The numbers of observations per subject are between 2 and 14. We

aim at describing the characteristic features of the underlying longitudinal trajectories. The estimated

covariance function for these data is in the right panel of Fig. 3, where the diagonal has been omitted

as described above. The overall mean function µ̂(t) is depicted in the lower panels of Fig. 4. The

conditional pseudo-likelihood (11) based AIC criterion yielded K = 3, i.e., three eigenfunctions are

included.

Of interest is an assessment of the extremes in a sample. In the functional situation it is not so

straightforward what these extremes are. One possibility is to identify those subjects whose trajectories

are most aligned with an eigenfunction. This device and further exploration of samples of trajectories

by means of the eigenfunctions has been studied by Jones and Rice (1992). The lower panels of Fig.

4 display these extreme trajectories. These trajectories and the eigenfunctions provide an idea about

the modes of variation that are present. The first mode is a linear decline, exemplified by the subject

in the left lower panel of Fig. 4; the second mode is a decline with a plateau in the middle, during

the third year, after which a more rapid decline in CD4 counts resumes. The third and weakest mode

corresponds to a leveling off towards the end, stabilizing at a low level, with a possible increase. One

should not read too much into the increase at the right end of the third eigenfunction; this may simply

be caused by boundary effects.

Finally, we are interested to model individual trajectories, which are obtained via the estimated FPC

scores, see equation (9). The predicted trajectories for four subjects, including confidence bands, are

shown in Fig. 5, including Gaussian-based confidence bands. Open questions that will be of interest for

future research include the extension of FDA methods to repeated non-Gaussian (binomial, Poisson)

data, the case of varying eigenfunctions in dependency on a covariate, and incorporating informative

missingness and time-to-event information. A full exploration of practical features in the context of

various longitudinal studies will also be of interest.

6 Functional Regression Models

6.1 Overview

For longitudinal data analysis, the trajectories observed for each subject can serve as both predictors and

response in a regression model. The case where they are included among the predictors has been well

explored in FDA, primarily for the case where the trajectories are fully observed without noise (Cardot

et al. 2003, Cai and Hall 2006). We review here some of the available models. Linear functional models
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Figure 4: Eigenfunctions, mean function and extreme trajectories for longitudinal CD4 data. Upper

three panels: First, second and third eigenfunction, from left to right. Lower three panels: Mean

function for all trajectories (solid), and three individuals with data and fitted trajectories, most aligned

in the directions of the three eigenfunctions. Figure reproduced from Yao, F., Müller, H.G., Wang, J.L.

(2005). Functional data analysis for sparse longitudinal data. J. American Statistical Association 100,

577-590.
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Figure 5: Predicted trajectories for four subjects of the longitudinal CD4 study. Each panel displays

the observed data (circles), predicted trajectory (solid) and local (dashed) as well as uniform (dotted)

95% confidence bands, based on the Gaussian assumption. Figure reproduced from Yao, F., Müller,

H.G., Wang, J.L. (2005). Functional data analysis for sparse longitudinal data. J. American Statistical

Association 100, 577-590.
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may include a random trajectory in either predictors, responses, or both. We assume here the data are

written as (X,Y ), where Y stands for response and X for predictor, which could be scalar or functional.

Means will be denoted by µX , µY . In the functional case we denote eigenfunctions by φk for X and ψk

for Y .

The linear model for a scalar response and a functional predictor is

E(Y |X) = µY +
∫

T
(X(s)− µX(s))β(s) ds,

where β is the regression parameter function. An extension to functional responses is the model

E(Y (t)|X) = µY (t) +
∫

T
(X(s)− µX(s))β(s, t) ds, (12)

where now the regression parameter function has two arguments, i.e., is a surface. This model dates

back to Ramsay and Dalzell (1991). It can be interpreted as an extension of the multivariate linear

regression model E(Y |X) = BX for a parameter matrix B to the functional case.

In such a multivariate linear regression model a common estimation scheme proceeds via the least

squares normal equation: For X ∈ Rp, Y ∈ Rq, the normal equation is cov(X,Y ) = cov(X)B, where

cov(X, Y ) is the p × q matrix with elements ajk = cov(Xj , Yk). This equation can be solved for B

if the p × p covariance matrix cov(X) is invertible. The situation is much less straightforward for the

functional extension. We can define an analogous “Functional Normal Equation” (He, Müller and Wang

2000),

rXY = RXXβ, for β ∈ L2,

where RXX : L2 → L2 is the auto-covariance operator of X, defined by

(RXXβ) (s, t) =
∫

rXX(s, w)β(w, t)dw,

where

rXX(s, t) = cov [X(s), X(t)] , rXY (s, t) = cov [X(s), Y (t)] .

As RXX is a compact operator in L2, it is in principle not invertible. Thus we face an inverse problem

which requires regularization (compare He, Müller and Wang 2003).

A model that is useful in classifying longitudinal time courses is the generalized functional linear

model (James 2002; Müller and Stadtmüller 2005; Müller 2005). Here the predictors are functional, the

responses are generalized variables such as binary outcomes which may stand for class membership or

Poisson counts. With an appropriate link function g, this model can be written as

E(Y |X) = g

(
µ +

∫

T
X(s)β(s) ds

)
, (13)
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coupled with a variance function var(Y |X) = V (E(Y |X)). This model is an extension of the common

Generalized Linear Model. It can be implemented with both known or unknown link/variance function

(see Müller and Stadtmüller 2005).

The class of “functional response models” (Faraway 1997, Chiou, Müller and Wang 2003, 2004) is

of interest in functional dose-response models and similar applications. In this model the predictor is

usually a vector Z, while the response is functional,

E{Y (t)|Z = z} = µ(t) +
K∑

k=1

αk(γT
k z)ψk(t).

Here the γk are single indices (i.e., vectors which project the covariates Z onto one dimension, and the αk

are link functions to the random effects. Sometimes simpler structured models such as a “multiplicative

effects model” are useful,

µ(t, z) = µ0(t)θ(z), E{Y (t)} = µ0(t), E(θ(Z)) = 1,

for a function θ(·) (see Chiou et al 2003).

Further classes of models of interest are those with varying supports. In the regression models above

the entire predictor function is assumed to contribute to a response. In many applications this might

not be realistic. Examples for this were given in Malfait and Ramsay and Müller and Zhang (2005).

In the latter paper, the response is remaining lifetime, to be predicted from a longitudinal covariate

which is observed to current time. As current time progresses, the functional regression model needs to

be updated. This leads to time-varying domains and accordingly to time-varying coefficient functional

regression models. In the extreme case, the usual varying coefficient model

E(Y (t)|X) = µY (t) + β(t)X(t)

(under the assumption of one predictor process) emerges as a special case; here β(·) is the varying

coefficient function (Fan and Zhang 1998, Wu and Yu 2002).

These models can be extended to the longitudinal (sparse and irregular) case, following the above

PACE approach whenever the model can be written in terms of FPC scores. In the following we show

this for the functional regression model (12).

6.2 Functional Regression for Longitudinal Data

Extending the functional linear regression model (12) introduced above for FPCA to the case of sparse

and irregular data, we assume that available measurements for predictor and response curves are given
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as follows, with their Karhunen-Loève representations included,

Uil = Xi(sil) + eil = µX(sil) +
∞∑

m=1

Aimφm(sil) + eil,

Vij = Yi(tij) + εij = µY (tij) +
∞∑

k=1

Bikψk(tij) + εij ,

where the times where measurements sij , recorded for predictor processes X, resp. tij , recorded for

response processes Y , can differ between X and Y , but are both assumed to be sparse. The random

effects (FPCA scores) are denoted here by Aim for predictor processes and by Bik for response processes.

Applying FPCA, by using the orthonormality properties of the eigenfunctions, one finds that the

regression parameter function β in (12) can be represented by

β(s, t) =
∞∑

k,m=1

E[AmBk]
E[A2

m]
φm(s)ψk(t). (14)

This reduces the problem to estimate β to the problem to obtain an estimate of E[AmBk], for which

we consider

Ê[AmBk] =
∫ T

0

∫ S

0
φ̂m(s)Γ̂XY (s, t)ψ̂k(t) dsdt, (15)

where Γ̂XY (s, t) is a local linear smoother for the cross-covariance function ΓXY (s, t) = cov(X(s), Y (t))

(Yao et al. 2005b).

Once the regression parameter surface β has been obtained, one then may aim at predicting individual

response trajectories, from the available observations of the corresponding predictor process, i.e., to

predict Y ∗ from the observations U∗ = (U∗
1 , · · · , U∗

L∗)
T available for X∗(·), where ∗ means these are the

data for one individual. Under Gaussian assumptions, the best predictor is given by

E[Y ∗(t)|X∗(·)] = µY (t) +
∫ S

0
β(s, t)(X∗(s)− µX(s) ds

= µY (t) +
∞∑

k,m=1

E[AmBk]
E[A2

m]
A∗mψk(t).

An estimate for this predictor is simply obtained by plugging in estimates for the unknown quantities.

Choosing K and M for the number of included components to represent X− and Y− processes, we

arrive at

Ŷ ∗
KM (t) = µ̂Y (t) +

M∑

m=1

K∑

k=1

Ê[AmBk]

Ê[A2
m]

Ê[A∗m|U∗]ψ̂k(t), (16)

where Ê[A∗m|U∗] is estimated by the PACE method as described in subsection 4.3, given observations

U∗ = (U∗
1 , · · · , U∗

L∗)
T of X∗(·).
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Theory developed in Yao et al (2005b) includes consistency of the regression parameter surface

estimates, as well as some basic inference, and also construction of pointwise and uniform confidence

bands for predicted trajectories, under Gaussian assumptions. This paper also contains extensions

of the usual coefficient of determination R2 = var(E[Y |X])/var(Y ) to the functional case. Applying

orthonormality properties of the eigenfunctions, one such possible extension can be represented as

R2 =

∫
T var(E[Y (t)|X])dt∫

T var(Y (t))dt
=

∑∞
k,m=1 E(AmBk)2/E(Am)2∑∞

k=1 E(Bk)2
. (17)

The quantities E(Am)2, E(Bk)2 correspond to the eigenvalues of the X− and Y− processes, and

E(AmBk) can be estimated as in (15), which then leads to estimates of this version of functional R2.

6.3 Illustration with Data from the Baltimore Longitudinal Study of Aging

Longitudinal measurements of Body mass index (BMI) and systolic blood pressure (SBP) were obtained

for 812 participants of the Baltimore Longitudinal Study on Aging (BLSA), as reported in (Pearson et

al. 1997). The measurements fit the description of irregular and sparse. We provide a brief summary of

the functional regression analysis conducted in Yao et al (2005b). The data and mean function estimates

for all subjects can be found in Fig. 6. From this figure one can see the irregular nature of the timings

as well as their sparseness. The relationship between the trajectories in left and right panels is difficult

to discern.

Running the functional regression machinery, we obtain the estimate of the regression surface function

β̂(·, ·) for these data as depicted in Fig. 7. This function illustrates the influence of predictor functions

on response trajectories. The time axis of predictor trajectories is labeled s, running towards the right,

while the time axis of response trajectories is labeled t, running towards the left. In this functional

regression model, the the entire predictor trajectory influences the entire response curve. We can

interpret the features of this regression parameter surface as follows: At early ages, around 60, SBP is

related to an overall average of BMI. At late ages, around 80, SBP is positively correlated with what is

best characterized as rate of increase in BMI. A continuous transition between these regimes occurs in

between.

Finally, predicted trajectories of systolic blood pressure for four randomly selected participants are

displayed in Fig. 8. The predictors are the measurements of body mass index which are not shown in

the graphs. A curious stricture occurs in the confidence bands around age 75. This is an area where

apparently the variation of the response trajectories has a minimum.

The methods described above can be extended to the case of more than one predictor process, where

one can use the FPC scores derived from the different predictor processes as predictors.
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Figure 6: Longitudinal measurements of body mass index (left panel) and systolic blood pressure (right

panel) for 812 participants in the Baltimore Longitudinal Study of Aging (BLSA). Thick solid curves

are estimated mean functions. Reproduced from the article Yao, F., Müller, H.G., Wang, J.L. (2005).

Functional linear regression analysis for longitudinal data. Annals of Statistics 33, 2873-2903.
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Figure 7: Estimated regression parameter surface β (14) for BLSA data. Reproduced from the article

Yao, F., Müller, H.G., Wang, J.L. (2005). Functional linear regression analysis for longitudinal data.

Annals of Statistics 33, 2873-2903.
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Figure 8: Predicted response trajectories for four participants of the BLSA study. Shown are predicted

trajectories (solid curves), data for the response trajectories (circles, connected by straight lines) and

pointwise 95% confidence intervals. Note that the data shown are not used for the prediction which is

entirely based on measurements relating to predictor trajectories. Reproduced from the article Yao, F.,

Müller, H.G., Wang, J.L. (2005). Functional linear regression analysis for longitudinal data. Annals of

Statistics 33, 2873-2903.
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7 Outlook

Besides the functional data analysis methodology described above, several approaches to functional

ANOVA have applications for longitudinal data. These include ANOVA decompositions using smooth-

ing spline smoothing, proposed in Brumback and Rice (1998) and applications of P-splines (Bugli and

Lambert 2006). Other non- or semiparametric models of interest for longitudinal studies are varying

coefficient models where Y (t) is related to a series of predictors X1(t), . . . , Xp(t). Typically one con-

ducts a linear regression at each time point in a grid of time points and then one smooths the resulting

regression coefficients. Furthermore, shape-invariant modeling is a promising functional method.

For functional inference, bootstrap based on the data of one individual as a resampling unit is being

used but the theoretical foundations have not yet been developed. Asymptotic inference is available

under Gaussian assumptions, but is not available on a wider scale; see Fan and Lin (1998). Functional

approaches provide a flexible alternative to common parametric models for analyzing longitudinal data

and are computationally easy to implement.

At this time, a number of key techniques are in place, notably smoothing and differentiation of noisy

data, warping, functional principal components and penalized regularization. The unique combination

of techniques from functional analysis, stochastic processes, nonparametrics and multivariate analysis

and the many open questions make this a rewarding research area.
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