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ABSTRACT. We review and extend some statistical tools that have proved useful for analyzing func-

tional data. Functional data analysis primarily is designed for the analysis of random trajectories and

infinite-dimensional data, and there exists a need for the development of adequate statistical estimation

and inference techniques. While this field is in flux, some methods have proven useful. These include

warping methods, functional principal component analysis, and conditioning under Gaussian assump-

tions for the case of sparse data. The latter is a recent development that may provide a bridge between

functional and more classical longitudinal data analysis. Besides presenting a brief review of functional

principal components and functional regression, we develop some concepts for estimating functional

principal component scores in the sparse situation. An extension of the so-called generalized functional

linear model to the case of sparse longitudinal predictors is proposed. This extension includes functional

binary regression models for longitudinal data and is illustrated with data on primary biliary cirrhosis.
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1. Introduction

While Multivariate Data Analysis (MDA) is concerned with data in the form of random vectors,

Functional Data Analysis (FDA) goes one big step further, focusing on data that are infinite-dimensional,

such as curves, shapes and images. Data of this type are increasingly collected, due to technological

advances in measurement devices and computing. Another driving force is that increasingly, complex

scientific questions are being pursued, where time dynamics or spatial dynamics are a major component.

Extending one-dimensional to multivariate objects is the focus of MDA, but this step cannot be simply

extrapolated to extend the vector case to the functional, infinite-dimensional case. In many ways the

step from finite to infinite dimension is a bigger leap than the step from one to finite dimensions, at least

from a conceptual and theoretical point of view. On the other hand, proven methods of multivariate

analysis form the backbone for some of the prominent techniques of FDA. An overarching theme in FDA

is the necessity to achieve some form of dimension reduction of the infinite-dimensional data to finite

and tractable dimensions. For theoretical analysis, dimensions are usually assumed to increase with

increasing sample size, necessitating the development of increasing-dimension asymptotics, which poses

interesting theoretical challenges. Areas that FDA draws upon besides multivariate analysis include

smoothing, especially nonparametric regression, functional analysis (linear operators in Hilbert space),

and properties of square integrable stochastic processes.

For an introduction to the field of FDA, the two monographs by Ramsay & Silverman (1997, 2002)

provide a rewarding and accessible overview on foundations and applications, as well as a plethora of

motivating examples. A special issue of Statistica Sinica appeared in July 2004 that includes a focus on

recent developments in FDA, with an excellent review article by Rice (2004). Historically, the field was

pioneered by Karhunen (1946), who developed foundational theory on stochastic processes in Hilbert

space, and by Grenander (1950) with the first systematic application of the Karhunen-Loève expansion

to functional data, including the first proposal for functional regression. C.R. Rao (1958) developed

preliminary ideas on functional principal components in applications to growth curves. Other notable

developments have been a systematic study of the functional analysis that underpins FDA by the

Toulouse school of FDA (Dauxois et al., 1982). On the more applied side, the importance of smoothing

methods for FDA, including the estimation of derivatives, was demonstrated in Gasser et al.(1984),

and their importance for functional principal component analysis was pointed out by Rice & Silverman

(1991). Functional regression models became popular after their discussion by Ramsay & Dalzell (1992).

A specific aspect of functional data is the possibility of random time transformations. The cor-

responding warping (curve registration, alignment) procedures have emerged as important tools for

some applications, ranging from speech recognition to biological growth and gene expression profiles.

When curve data are recorded, different subjects or experimental units may experience events at a
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subject-specific pace. A typical example is the human growth curve (Gasser et al., 1984; Kneip &

Gasser, 1992), where events such as the pubertal growth spurt occur at different times for different

individuals. A large fraction of the variability in a sample of curve data is then best explained as time

variation. Landmark method (Gasser & Kneip, 1995), Procrustes method (Ramsay & Li, 1998), time

acceleration models (Capra & Müller, 1997), maximum likelihood based alignment (Rønn, 2001) and

other forms of curve registration (Wang & Gasser, 1997,1998,1999; Kneip et al., 2000), and recently

time-synchronization of random processes (Liu & Müller, 2004) have been proposed, and this subfield

is still in rapid development.

This article contains a review of some basic FDA tools such as functional principal component

analysis. The topics selected for this review are a subjective selection of a few basic ideas of current

developments in FDA and no attempt is made at being comprehensive. In addition to the review,

this article contains a proposal to extend generalized functional linear models to the case of sparse and

irregular data, with an emphasis on functional binary regression and functional logistic discrimination for

the classification of longitudinal data. This proposed methodology is illustrated with longitudinal data

on primary biliary cirrhosis patients, with the aim to classify early time courses of bilirubin, observed

under sparse measurements, in regard to the long-term survival prospects of the subjects. We consider

the case where per subject or experimental unit, one samples one or several functions X(t), t ∈ I where

I ⊂ < is a domain, usually an interval. The observed trajectories typically correspond to a sample of

densely sampled longitudinal data. These data are viewed as independent realizations of a stochastic

process with smooth trajectories.

Numerous approaches to analyze data in the form of curves have been proposed, including nonlinear

parametric regression models (reviewed in Davidian & Giltinan, 1993), state space modeling (reviewed

in Jones, 1993), shape-invariant modeling (Stützle et al., 1980) and varying-coefficient models (Fan &

Zhang, 1998). The FDA approach is inherently nonparametric, as it lets “the data speak for themselves”

by avoiding parametric assumptions, so as not to prejudice the outcome and to enable flexible modeling

within a statistical framework that allows to obtain (asymptotic) inference (compare Fan & Lin, 1998).

An example that supports this principle is the pre-pubertal growth spurt that had almost vanished from

pediatrics textbooks of the 1980’s, since the parametric models that had become popular for fitting the

human growth curve did not have room for such a second growth spurt – it took a nonparametric

analysis to bring this growth spurt (which had been recognized in the pre-modeling era) back on the

map (Gasser et al., 1985).

Of current interest in FDA is the extendability of the FDA methodology to the case of longitudinal

data. Such data are ubiquitous and there exists a strong need in the life sciences, social sciences and

other fields for appropriate flexible methodology. It was highlighted in a recent discussion (Marron
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et al., 2004, p. 619) that unifying theory for functional and longitudinal data analysis is one of the

pressing open problems in FDA. In many longitudinal studies the data are contaminated by noise and

the available repeated measurements for individuals are obtained on sparse and irregular time grids,

rather than on dense and regular time grids, as are normally assumed for FDA. Analyzing sparse

situations thus is of great practical interest but poses practical and theoretical challenges. Functional

methods provide a variety of valuable and potentially powerful tools for longitudinal data analysis if a

bridge can be built in which longitudinal data, sampled on sparse designs, can be brought under the

umbrella of functional tools. In the framework of functional random effects models, sparse data can be

handled by incorporating random effects into models based on B-splines (Shi et al., 1996; Rice & Wu,

2000; James et al., 2001; James & Sugar, 2003). A nonparametric attempt at predicting functional

principal component scores from sparsely observed trajectories, including inference through confidence

bands, has recently been made in Yao et al.(2005a). The connections between FDA and longitudinal

data analysis will be explored further below.

If we adopt the nonparametric FDA point of view, basic statistical notions such as mean, variance,

correlation and regression need to be developed from scratch again, as the classical notions do not

lend themselves to straightforward extensions to the functional case. This is due to basic differences

between FDA and MDA: Not only are data in FDA of extremely high dimension, but also affected by

time-neighborhood and smoothness relations; time-order is crucial. The analysis changes in a basic way

whenever the time order of observations is changed. In contrast, in multivariate statistical analysis, the

order of the components of observed random vectors is quite irrelevant, and any change in this order

leads to the same results. This fact and the continuous flow of time which serves as argument lead to

differences in perspective: Smoothing methods become an indispensable tool in FDA, and the role of

the time axis opens the door to warping as an additional dimension of variation.

A basic component of the FDA toolbox is functional principal component analysis (PCA), inherited

from multivariate PCA, but with sufficiently different features to merit extra study. The review part

of this article is focused on functional PCA (section 2) and on functional regression, which to a large

extent uses functional PCA (section 3). No attempt is made at a comprehensive survey of the literature

in these areas or of FDA in general. The perspective of extending functional principal components

methodology to sparse and irregular longitudinal data will be discussed throughout. In addition to the

review, section 3 also contains the proposal to extend the generalized functional linear model to the case

of longitudinal, i.e., noisy, sparse and irregular data. The application of this technique and of functional

binomial regression to the classification of longitudinal data on primary biliary cirrhosis is reported in

section 4. Concluding remarks are in section 5.
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2. Functional Principal Components Analysis for functional and longitudinal data

Principal component analysis (PCA) has become a major tool of multivariate analysis since its in-

troduction by Hotelling (1933); compare Joliffe (2002). This method can be extended directly from

MDA to FDA. The principle of this extension is to replace vectors by functions, matrices by linear

operators, and in particular covariance matrices by auto-covariance operators; scalar products in vector

space are replaced by scalar products in function space, which is usually chosen as the space of square

integrable functions L2 on a suitable domain. The principal component functions or eigenfunctions in

FDA describe the major “Modes of Variation” of the data (Castro et al., 1986). The importance of

smoothing in the estimation of functional principal components has been emphasized in Rice & Silver-

man (1991), Capra & Müller (1997), Boente & Fraiman (2000) and Cardot (2000). Implementations

and illustrations of functional PCA include Kirkpatrick & Heckman (1989), James et al.(2001), and

Ramsay & Silverman (2002).

Assume the random trajectories X of an underlying stochastic process in L2(I) have moments as

follows: A mean function µ(t) = E(X(t)) and a covariance function G(s, t) = Cov {X(s), X(t)}, s, t ∈ I.

We then define the auto-covariance operator

(AGf)(t) =
∫

f(s)G(s, t) ds

which is a linear integral operator with kernel G (compare Courant & Hilbert, 1953). An eigenfunction

h of the operator AG is a solution of the equation (AGh)(t) = λh(t), with eigenvalue λ. We assume that

operators AG have a sequence of orthonormal eigenfunctions φk satisfying
∫

φj(t)φk(t) dt = δjk (where

δjk is the Kronecker symbol), with ordered eigenvalues λ1 ≥ λ2 ≥ . . ., i.e., (AGφk)(t) = λk φk(t). The

kernel G is a Hilbert-Schmidt kernel which can be represented as G(s, t) =
∑∞

k=1 λkφk(s)φk(t), and the

underlying process can be represented through the Karhunen-Loève expansion (Karhunen, 1943)

X(t) = µ(t) +
∞∑

k=1

ξk φk(t), (1)

where the sum is defined in the sense of L2 convergence, with uniform convergence a consequence of

Mercer’s theorem, and the expansion coefficients ξk are uncorrelated random variables (r.v.s), with

E(ξk) = 0 and var(ξk) = λk, such that
∑

k λk < ∞ and

ξk = 〈X − µ, φk〉 =
∫

(X(t)− µ(t))φk(t) dt. (2)

The ξk are frequently referred to as functional principal component scores and act as random effects

in statistical models with functional principal components. Functional PCA, just as regular PCA, can

be interpreted as an expansion of the random trajectories X in a functional basis, the eigenfunction
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basis of the auto-covariance operator which is an orthonormal basis of the Hilbert space L2(I). In

multivariate analysis the eigenvectors form the corresponding basis of a finite-dimensional vector space.

The expansion into eigenfunctions provides a “sparse” representation in the sense that for any finite K,

the “fraction of variance explained” by the truncated expansion X(t) = µ(t) +
∑K

k=1 ξ̃k φk(t), which is

F (K) = {∑K
k=1 λk}/{

∑∞
k=1 λk}, is maximized among all expansions of X into K basis functions.

The implementation of functional principal components requires some form of regularization (Rice &

Silverman, 1991) which can be achieved with smoothing methods; smoothing splines, B-splines, P-splines

(compare Ruppert et al., 2003), kernel smoothing and local weighted least squares have been considered

for this purpose. Nonparametric implementations with kernel-type smoothing methods were developed

in Capra & Müller (1997) and Staniswalis & Lee (1998). Briefly, one estimates the mean function

by passing a scatterplot smoother through the aggregated data (tij , Yij), i = 1, . . . , n, j = 1, . . . , Ni,

where tij , Yij denote time, respectively, value of the j-th measurement on the i-th subject. In a model

without additional noise, Yij = X(tij). After obtaining an estimated mean function µ(t), one may

compute raw covariances from all observed pairs of data points for the same subject, (tij , Yij), (til, Yil),

by Gijl = (Yij − µ̂(tij))(Yil − µ̂(til)). A second surface smoothing step is then applied to the scatterplot

((tij , til), Gijl) in order to obtain the estimated covariance surface.

These smoothing steps can be easily implemented with locally weighted least squares. This smooth-

ing method has several advantages over other regularization methods, as it is straightforward to imple-

ment, draws on familiar regression strategies, and the smoothing can be controlled in a straightforward

manner. Equally important is that this smoother, along with kernel methods, is based on explicit

smoothing weights and is therefore mathematically tractable, and both finite and asymptotic proper-

ties have been extensively studied. This is of particular value in FDA, where theory is generally less

straightforward to develop and a mathematically tractable smoothing method is a prerequisite for de-

veloping asymptotics. We use the local linear scatterplot smoother S(t) at point t with bandwidth h for

a scatterplot (Vj ,Wj), j = 1, . . . , n, which is the minimizer of
∑n

j=1 κ({Vi− t}/h){Wi−β0−β1(t−Vi)}2

with respect to β0, β1, where a univariate density κ serves as kernel function. Then S(t) = β̂0(t), for

which one has an explicit representation that is linear in the Wj (Fan & Gijbels, 1996). Analogously,

surface data are smoothed by fitting local planes by weighted least squares.

Applying these or other smoothing procedures, one obtains consistent estimates for mean function µ

and covariance function G, and the smoothed covariance function is then discretized on a suitable finite

grid, on which it is represented as a covariance matrix. The corresponding spectral decomposition of this

matrix yields eigenvectors and eigenvalues. The eigenvectors may be subjected to a final smoothing step

to obtain estimated eigenfunctions (Capra & Müller, 1997). More direct procedures without smoothing

are possible for the case where one observes entire trajectories on the continuum (Dauxois et al., 1982;
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Bosq, 1991; Cardot et al., 2003). Once estimates φ̂k, λ̂k of eigenfunctions φk and eigenvalues λk have

been obtained, the fitting of individual trajectories requires estimation of functional principal component

scores. These can be obtained through the definition ξik =
∫

(Xi(t)−µ(t))φk(t)dt, by plugging estimated

mean and eigenfunctions into a Riemann sum approximation of the integral,

ξ̂ik =
Ni∑

j=1

(Yij − µ̂(tij))φ̂k(tij)(tij − ti,j−1), (3)

setting ti0 = 0. This works reasonably well if the support points tij are densely spaced and the

measurements are made without error, so that they reflect the trajectories closely. This approximation

works less well if the measurements carry additional measurement errors as is frequently the case (Yao

et al., 2003). Additional shrinkage will then improve the estimates.

For the case of noisy, sparse and irregular functional data, as frequently observed in longitudinal

studies, the above sum approximation to the integral is clearly doomed. A fully nonparametric approach

denoted as PACE (Principal Analysis through Conditional Expectation) to handle such situations was

developed in Yao et al.(2005a). An alternative practical approach based on B-splines was developed in

James et al.(2001) and James & Sugar (2003). The sparseness of the data can be modeled by assuming

that a random number Ni of measurements Tij is available for the i-th subject such that the Tij are

i.i.d. r.v.s. Including additional measurement errors, this leads to a model with measurements Uij made

at Tij according to

Uij = Xi(Tij) + εij = µ(Tij) +
∞∑

k=1

ξikφk(Tij) + εij , (4)

where the measurement errors εij are i.i.d. and independent of all other r.v.s, with Eεij = 0, var(εij) =

σ2.

We then follow through with the same smoothing steps as described above, i.e., estimate the mean

function µ(t) by applying a local linear smoother to the scatterplot {(Tij , Uij) : 1 ≤ i ≤ n, 1 ≤ j ≤ Ni},
and the covariance surface G(s, t) by first defining raw estimates Gi(Tij , Til) = (Uij−µ̂(Tij))(Uil−µ̂(Til)),

j 6= l and then applying two-dimensional smoothing to the scatterplot {(Tij , Til);Gi(Tij , Til)) : 1 ≤ i ≤
n, 1 ≤ j 6= l ≤ Ni}. In this covariance estimation step, the diagonal elements are omitted, as these carry

an additional error variance term according to var(Uij) = G(Tij , Tij))+σ2, so that the overall covariance

surface has a discontinuity along the diagonal. This phenomenon is illustrated in Fig. 3, and motivates

the estimation of σ2 by decomposing the diagonal of the covariance surface into an estimate as obtained

from the smooth surface above, omitting the diagonal elements, and into an estimate exclusively along

the diagonal; averaging the difference over a suitable domain then targets σ2. This idea can be extended

in an obvious way to accommodate heteroscedastic errors, characterized by a variance function σ2(t).
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The estimation of eigenvalues and eigenfunctions proceeds in the same way as described above for the

densely sampled case.

In order to obtain predicted trajectories for sparse, irregular and noisy data, an alternative to the

Riemann sum (3) needs to be found. A joint Gaussian distribution assumption for both processes

X and errors εij proves useful. Defining Ũi = (Ui1, · · · , UiNi)
T , µi = (µ(Ti1), · · · , µ(TiNi))

T and φik =

(φk(Ti1), · · · , φk(TiNi))
T , we obtain the best linear predictors for the k-th functional principal component

score for the i-th subject ξik, given the sparse noisy observations Ũi, as conditional expectation E[ξik|Ũi],

which under Gaussian assumptions can be explicitly calculated,

E[ξik|Ũi] = E(ξik) + cov(ξik, Ũi)cov(Ũi, Ũi)−1(Ũi − µi) = λkφ
T
ikΣ

−1
Ui

(Ũi − µi), (5)

where

(ΣUi)j,l = cov(Uij , Uil) = cov(Xi(Tij), Xi(Til)) + σ2δjl = G(Tij , Til) + σ2δjl,

δjl as before denoting the Kronecker symbol (see Theorem 3.2.4 in Mardiaet al., 1979). Plugging in

estimates of σ2, λk, φk and G then yields the estimated predicted functional principal component score

ξ̂ik = Ê[ξik|Ũi] = λ̂kφ̂
T
ikΣ̂

−1
Ui

(Ũi − µ̂i). (6)

This method is easy to implement, effective and has reasonably good asymptotic properties.

One can extend this approach to any linear functional of the random process X. Write such a

functional in the form 〈X − µ, ζ〉 =
∫

(X(t) − µ(t))ζ(t) dt for a suitable function ζ. Then, with ζk =
∫

ζ(t)φk(t) dt, we have

〈X − µ, ζ〉 =
∫

(X(t)− µ(t))ζ(t) dt =
∞∑

k=1

ξkζk, (7)

and therefore, omitting the subject index i, E[〈X−µ, ζ〉|Ũ ] =
∑

k E[ξk|Ũ ]ζk, leading via (6) to estimated

best linear predictions

Ê[
∫

(X(t)− µ(t))ζ(t) dt|Ũ ] =
∑

k

[λ̂kφ̂
T
k Σ̂−1

U (Ũ − µ̂)]ζk. (8)

The following heuristic illustrates the transition from the sparse to the dense case: For simplicity,

we consider the underlying (not estimated) quantities as in (5) and the case where the observations are

not contaminated by noise. Then, for a fixed t, cov(ξk, X(t)) = λkφk(t) and

E(ξk|X(t)) =
cov(ξk, X(t))

var(X(t))
[(X(t)− µ(t)].

Extending this to the m-dimensional case, writing for any t1, . . . , tm, E(ξk|X(t1), . . . , X(tm)) =
∑m

l=1 βlk(X(tl) − µ(tl)), we analyze the behaviour of the βlk for large m. Assume m → ∞ and that
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the tp, 1 ≤ p ≤ m equidistantly fill out the domain of X. Approximating the covariance matrix of

(X(t1), . . . , X(tm))T by using truncated covariances c̃ov(X(s), X(t)) =
∑m

j=1 λjφj(t)φj(s) and approx-

imate eigenvectors ∆ej , where ej = (φj(t1), . . . , φj(tm)) and ∆ = |I|/m, I denoting the domain of X,

we obtain approximate inverse covariance matrices c̃ov−1(X(s), X(t)) = ∆2
∑m

j=1 λ−1
j eje

T
j . For large

m, observing ∆
∑m

p=1 φj(tp)φk(tp) → δjk,

βlk ≈
m∑

p=1

m∑

j=1

∆2λ−1
j φj(tl)φj(tp)λkφk(tp) ≈ ∆λk

m∑

j=1

λ−1
j φj(tl)∆λ−1

j φj(tl)∆
m∑

p=1

φj(tp)φk(tp)

≈ ∆φk(tl).

It follows that for large m,

E(ξk|X(t1), . . . , X(tm)) =
m∑

l=1

βlk(X(tl)− µ(tl)) ≈ ∆
m∑

l=1

φk(tl)(X(tl)− µ(tl)) ≈
∫

(X(t)− µ(t))φk(t)dt,

and therefore the conditional expectation (5) approximates the integral definition (2) of the functional

principal component scores.

Typical asymptotic results, under appropriate assumptions, include limn→∞ Ê[ξik|Ũi] = E[ξik|Ũi],

in probability, and for all t ∈ T , limK→∞ limn→∞ X̂K
i (t) = X̃i(t), in probability, where X̃i(t) = µ(t) +

∑∞
k=1 E[ξik|Ũi]φk(t) and

X̂K
i (t) = µ̂(t) +

K∑

k=1

Ê[Aik|Ũi]φ̂k(t) (9)

are the predicted individual trajectories, based on K components.

3. Functional regression models and the generalized functional linear model for longitu-

dinal data

One can distinguish various functional regression models according to the nature of predictors and

responses. The following scheme lists the most important cases that have been considered.

Predictor 7→ Response Model

Rd R Multiple Regression, GLM

Rd Rd Multivariate Regression

L2 L2 “Functional Regression Model”

Rd L2 “Functional Response Model”

L2 R “Generalized Functional Linear Model”

The first two of these are classical regression models. In the functional regression model (Ramsay

& Dalzell, 1991; Cardot et al., 1999; Cuevas et al., 2002; Cardot et al., 2003) it is assumed that both
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predictor and response are random functions. This corresponds to a simple linear regression model for

functional data. Extensions of interest would include multiple regression where several functions would

serve as predictors, and replacing the linear regression by a nonlinear regression, for example using

nearest neighbors or neighborhood metrics in function space to predict a response. Such approaches are

discussed in Ferraty & Vieu (2004) and Rice (2004) and open up promising avenues for future research

in FDA. A multitude of interesting combinations are conceivable and open to exploration, including

additive regression models, multiple index models and sliced inverse regression (Ferre & Yao, 2003). All

of these models can be applied to ordinary functional regression, as well as in other areas, such as time

series regression (Besse & Cardot, 2002) or survival regression (Müller & Zhang, 2005).

The extension of the simple linear regression model E(Y |X) = β0 + β1X to functional data

(X(t), Y (t)) consisting of predictor trajectories X and response trajectories Y is

E(Y (t)|X) = µ(t) +
∫

X(s)β(s, t) ds

for a “regression parameter function” β. Estimation of the parameter function β(·, ·) is an inverse

problem and requires regularization. Regularization can be implemented in a variety of ways, for

example by penalized splines (James, 2002) or by truncation of series expansions (discussed below).

A “Functional Normal Equation” (He et al., 2000) extends the multivariate normal equations, and a

solution can be obtained under certain conditions. Implementation of this model with sparse longitudinal

data has been considered in Yao et al.(2005b). A review of functional regression models can be found in

Chiou et al.(2004), where also a discussion of basic elements of functional diagnostics and goodness-of-fit

can be found.

Special cases that merit studies on their own right are the “Functional Response Model” (Chiou et

al., 2004), where the response is a random function Y (t) and the predictors Z are scalars or vectors, and

the generalized functional linear model (James, 2002; Müller & Stadtmüller, 2005), where the predictors

are functions and the responses are generalized variables, of binary, count or continuous type. A simple

functional response model that has been termed a functional smooth random effects model (Chiou et

al., 2003) is

E{X(t)|Z} = µ(t) +
∞∑

k=1

E(ξk|Z)φk(t),

where Z is a possibly multivariate covariate and X is the response function. Further dimension reduction

may be achieved by specifying single index models E(ξk|Z) = αk(γ′kz), for k = 1, 2, . . . , where the αk

are smooth link functions, and the γk are normalized parameter vectors, in the case of multivariate

covariates Z.

A problem closely related to functional regression is functional correlation. To measure the de-

pendency of pairs or vectors of random curves, a natural approach is to extend canonical correlation
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(Hotelling, 1936) from MDA to FDA. This involves the inversion of a compact operator (He et al.,

2003) and therefore requires sensible regularization, as proposed in Leurgans et al.(1993) and further

investigated in He et al.(2004). The difficulties to find proper regularization prompted a search for

alternative functional correlation measures (Service et al., 1998; Heckman & Zamar, 2000; Dubin &

Müller, 2005).

Discrimination and classification of curve data is of interest in engineering (Hall and Poskitt, 2001),

astronomy (Hall et al., 2000) or for the analysis of gene expression profiles. Discriminant analysis for

curve data can be addressed by functional binary regression, which is a special case of generalized

functional linear models. Given data ({Xi(t)}, Yi), i = 1, . . . , n, with random predictor curves Xi(t)

and a real-valued dependent variable Y , a link function g(·) and a variance function σ2(·), a generalized

functional linear model or functional quasi-likelihood model is determined by a parameter function β(·),
a constant α and linear predictors η = α +

∫
β(t)(X(t) − µ(t)) dt with conditional means µ = g(η),

where E(Y |X(t)) = µ and var(Y |X(t)) = σ2(µ) = σ̃2(η) for a function σ̃2(η) = σ2(g(η)). The data

model is then

Yi = g

(
α +

∫
β(t)Xi(t) dt

)
+ ei, i = 1, . . . , n, (10)

with zero mean errors ei of appropriate variance structure.

For a given orthonormal basis φj , j ≥ 1 of L2, setting ζ = β in (7) leads to the linear pre-

dictor representation η = α +
∑∞

j=1 βjξj with r.v.’s ξj =
∫

(X(t) − µ(t))φj(t) dt and coefficients

βj =
∫

β(t)φj(t) dt. Regularized estimates are obtained by truncating these expansions at a finite

number of terms K = K(n) → ∞ and solving an estimating equation of the type U(β) = 0. With

ξ(i)T = (ξ(i)
1 , . . . , ξ

(i)
p ), ηi =

∑K
j=1 βjξ

(i)
j , µi = g(ηi), i = 1, . . . , n, the vector valued score function and

score equation are defined by

U(β) =
∑

i

(Yi − µi)g′(ηi)ξ(i)/σ2(µi), U(β) = 0. (11)

The solutions of this estimating equation then yield the regression function estimates β̂(t) = β̂0 +
∑

j β̂jφj(t). Semiparametric extensions with unknown link/variance functions can also be constructed,

and under regularity conditions one obtains asymptotic consistency and inference results (Müller &

Stadtmüller, 2005).

As an illustration of the PACE principle outlined in section 2, we now may easily extend this model

to the case of sparse and noisy longitudinal data as predictors. Namely, since the generalized functional

linear model is based on the linear predictor η, a direct application of (8) yields (see (5))

Ê[ηi|Ũi] = α +
K∑

k=1

[λ̂kφ̂
T
ikΣ̂

−1
Ui

(Ũi − µ̂i)]βk. (12)
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One applies this method by fitting a regular generalized linear model with the desired variance and link

functions by ordinary likelihood or quasi-likelihood with predictors xki = λ̂kφ̂
T
ikΣ̂

−1
Ui

(Ũi − µ̂i), yielding

estimates for α and βk, k = 1, . . . , K. The resulting parameter function estimate is then

β̂(t) =
K∑

k=1

β̂kφ̂k(t). (13)

Any functional regression model that is an extension of a single index or multiple index (Chiou &

Müller, 2004) model such as the models proposed by James & Silverman (2004) can be extended in the

same way to the case of longitudinal data as predictors.

4. Binomial functional regression for sparse data: An application to the classification of

longitudinal data on primary biliary cirrhosis

We consider longitudinal data on patients with primary biliary cirrhosis (PBC), a liver disease.

The data resulted from a Mayo Clinic trial that was conducted in 1974 to 1984. They are available

at http://lib.stat.cmu.edu/datasets/pbc and have been described in Fleming & Harrington (1991) and

Murtaugh et al.(1994). The data contain various sparsely and irregularly sampled covariates, as well

as the survival or censoring time for each of 312 patients. We consider longitudinal serum bilirubin

measurements (in mg/dl), with the aim of predicting long-term survival based on a series of sparse

initial measurements. Serum bilirubin concentration is known to be elevated in the presence of chronic

liver cirrhosis, such as PBC.

The bilirubin measurements were log-transformed, and only patients were included that survived

the first 910 days of the study, our chosen observation period for the bilirubin time courses. Based

on the bilirubin time courses during the first 910 days, we then aim at predicting survival beyond 10

years after entering the study. As outcome variable, we introduce a binary indicator variable to indicate

whether survival beyond ten years occurred or not. Only patients for whom survival status beyond 10

years was known were retained for this analysis. A total of 258 patients in the study satisfied these

criteria. Of these, 84 died between 910 and 3650 days in the study, and 174 lived beyond 10 years. The

problem we address is to discriminate between these two groups, solely based on the observed initial

time courses of bilirubin. Our approach is to implement a functional binomial regression model using

a logistic link, where the binary response corresponds to group membership. This is an example of the

functional generalized linear model (10), here implemented for sparse longitudinal data by means of

(12), for the special purpose of classifying the observed longitudinal time courses.

The observed initial bilirubin time courses are shown in Fig. 1. The sparse and irregular nature

of the bilirubin measurements is evident, as number of measurements, range of the observations and
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timing of the measurements differ from patient to patient. These irregularities arise as patients dropped

out or were not seen on time for scheduled checks. Longer-living patients generally are found to have

lower levels of bilirubin, as expected. No other shape characteristic of the time courses visually stands

out. Such plots usually serve as a first descriptive step in FDA, allowing for a visual check of the data,

possible identification and removal of outliers, and a preliminary assessment of trends and shapes.

In a second step, these data were subjected to PACE – principal analysis by conditional expectation,

as described in section 2, adapting functional PCA to the sparse nature of these measurements. This

provides estimates of mean functions, covariance surface, and eigenfunctions. The estimated mean

functions are displayed in Fig. 2, separately for the two groups and for the overall mean. We find that

the long-lived group has a more or less constant mean bilirubin level over time, with a flat peak around

700d, while the level of the high-risk group is not only higher, but is also increasing over time, with

accelerated increases towards 900d.

The smoothed covariance surface in Fig. 3 demonstrates that most of the variation in the trajectories

occurs towards the right endpoint, where the covariance function has a peak. The smooth part of the

covariance surface is obtained after removing the diagonal of the empirical covariance matrix and a

smoothing step. The additional ridge shown along the diagonal corresponds to the effect of measurement

error that will be present only along the diagonal. The area between the base and the top of the ridge

along the diagonal in Fig. 3, divided by the length where the ridge is visible, provides an estimate for

the error variance σ̂2 in model (4). If the height of the ridge varies, as it does here, an alternative of

interest is to assume a variance function for the error, i.e., heteroscedasticity, rather than a fixed error

variance. Bandwidths for covariance smoothing were chosen as [370d, 370d], the smallest bandwidths

for which the resulting smoothed covariance surface became positive definite.

Positive definiteness of estimated covariance surfaces is not guaranteed and occasionally can be a

problem in practical applications. As in Yao et al.(2003), one may then project on positive definite

surfaces as follows: Once eigenfunctions and eigenvalues have been determined, one checks whether

λ̂j > 0 for all estimated eigenvalues. If this is not the case, one simply drops eigenvalue/eigenfunction

pairs for which the estimated eigenvalue is negative, and reconstitutes the estimate of the covariance

surface from the remaining eigenvalue/eigenfunction estimates. Then the modified covariance surface

estimate is

C̃(s, t) =
K∑

j:λ̂j>0

λ̂jφ̂j(s)φ̂j(t).

The first three eigenfunctions resulting from PACE, based on covariance and mean function esti-

mates, are displayed in Fig. 4. In accordance with the behaviour of the covariance surface, most of the

variation of the eigenfunctions is concentrated towards the right end. The estimated eigenfunctions are
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approximately orthonormal, which is reflected in their increasing bumpiness as their order increases; in-

deed, it is easy to show that additional sign changes are needed in order to maintain orthogonality as the

order increases. These eigenfunctions correspond to the “modes of variation” of the data and indicate in

which functional directions the sample of functions will vary the most. First and second eigenfunctions

are fairly flat in the beginning and differentiate time courses only in the right half of the domain, where

the first eigenfunction picks up rapidly rising time courses, while the second eigenfunction is aligned

with declining time courses (or vice versa, as the sign is not uniquely determined).

One-curve-leave-out cross-validation aiming at minimizing prediction error has been suggested for

the choice of the number of components K (Rice & Silverman, 1991). Define µ̂(−i), φ̂
(−i)
k and Ŷ

(−i)
i

as estimated mean function, eigenfunctions, and predicted trajectory for the i-th subject, obtained by

omitting the data for the ith subject. The cross-validation choice K̂ then is

K̂ = argminK

n∑

i=1

Ni∑

j=1

{Uij − X̂
(−i)
i (Tij)}2.

Computationally faster alternatives can be obtained via a pseudo-Gaussian likelihood (Yao et al., 2005a),

conditional on the predicted functional principal component scores ξ̃ik. Using the same notation as in

(5), this pseudo-Gaussian likelihood is given by

L̂ =
n∑

i=1

{−Ni

2
log (2π)− Ni

2
log σ̂2 − 1

2σ̂2
(Ũi − µ̂i −

K∑

k=1

ξ̂ikφ̂ik)T (Ũi − µ̂i −
K∑

k=1

ξ̂ikφ̂ik)}, (14)

where minimization of AIC = −L̂ + K and BIC = −L̂ + Klogn then leads to implementations of AIC

and BIC model selectors. All of these criteria, when applied to the data of our example, point to two

as a reasonable number of eigenfunctions, and this choice was implemented in the subsequent analysis.

Predicted log(bilirubin) trajectories for eight patients with sparse measurements can be viewed in

Fig. 5. Predicted functional principal component scores ξ̃i1, ξ̃i2 (6) are used to construct predicted

trajectories X̂(t) = ξ̃i1φ̂1(t)+ ξ̃i2φ̂2(t). Overall, the obtained fits appear reasonable in the interior, while

some of the bumpier fits near the right boundary are less well supported by the observations themselves

and seem to involve some extrapolation.

The estimated probabilities of belonging to the long-lived group are also provided in Fig. 5. These

are obtained in a last step by solving the score equation (11) which can be done easily with iterated

weighted least squares or with generally available software, by running a binomial regression with

predictors ξ̃ik, where we choose here the logit link. We pair patients with similar shapes of predicted

trajectories in adjacent left and right panels and note that the survival probability is mainly determined

by the log(bilirubin) level, with a declining trend being slightly advantageous.
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The predicted functional principal component scores ξ̃i1, ξ̃i2 themselves are illustrated in Fig. 6.

This figure indicates that the discrimination task is not straightforward for these data; there exists

substantial overlap between the two groups. Using two eigenfunctions, Table 1 provides the sample

statistics for the coefficient estimates β̂k, k = 0, 1, 2, that are obtained from the logistic regression of

group indicator (long-lived =1, short-lived =0) on the predicted functional principal component scores

ξ̃k, k = 1, 2, with linear predictor η = α + β1ξ̃1 + β2ξ̃2.

Table 1: Parameter estimates from logistic model fit for classifying PBC data.

α β1 β2

Estimate 0.8583 -0.0256 -0.0293

std.err. 0.0226 <0.0001 0.0001

p-value <0.0001 0.0003 0.0171

Table 2: One-leave out classification results for functional logistic model in PBC study.

True

Classified Long Survival Short Survival

Long 126 28

Short 50 56

Putting everything together, we can then predict group membership from the observed sparse data.

Using the one-leave-out prediction error criterion, the overall misclassification rate for this procedure is

26.54%. Further details are in Table 2.

5. Outlook

Functional data analysis is a rapidly evolving field. There are many problems left to be addressed

in future research. Theoretical developments supporting FDA methodology are still in an initial stage

and there exists a need to develop realistic functional asymptotics, especially inference. Using flexible

parametric models such as B-splines with finitely many components is a parametric short-cut that

allows to obtain inference easily due to its fully parametric nature and may lead to satisfactory results

in various applications. Such approaches however do not reflect the functional nature of the problem

and are not providing the correct asymptotics, as long as the number of knots is kept fixed.

Other open problems concern the application of FDA methods to samples of functions that are not
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traditional random trajectories. Larger classes of objects than have been previously addressed with these

methods, which traditionally have been densely sampled random trajectories observed without error,

are targeted by new versions of FDA. Extensions to irregularly measured and noisy trajectories have

been discussed in this paper. Examples of objects with special properties that are of interest are samples

of density functions (Kneip & Utikal, 2001) and hazard functions (Müller et al., 1997). Non-continuous

measurements such as binomial or Poisson distributed repeated measurements provide another class of

interest. Objects such as random surfaces and higher-dimensional functions in image analysis and also

the analysis of shapes, texts, gene sequences and textures are possible targets of suitably modified FDA

techniques.

Application areas of FDA are likely to encompass many fields of statistics where scalar or mul-

tivariate observations are complemented by observations in the form of random trajectories, such as

time-course gene expression data (Aach & Church, 2001; Liu & Müller, 2003; Zhao et al., 2004), physi-

ological time courses (Ratcliffe et al., 2002) or industrial and quality control problems (Faraway, 1997;

Woodall et al., 2004).
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Gasser, T., Müller, H.G., Köhler, W., Prader, A., Largo, R. & Molinari, L. (1985). An analysis of the

mid-growth spurt and of the adolescent growth spurt based on acceleration. Ann. Human Biology

12, 129-148.

16



Grenander, U. (1950). Stochastic processes and statistical inference. Arkiv för Matematik, 195-276.

Hall, P. & Poskitt, D.S. (2001). A functional data-analytic approach to signal discrimination. Techno-

metrics 43, 1-9.

Hall, P., Reimann, J. & Rice, J. (2000). Nonparametric estimation of a periodic function. Biometrika

87, 545-557.

He, G., Müller, H.G. & Wang, J.L. (2000). Extending correlation and regression from multivariate

to functional data. Asymptotics in statistics and probability, Ed. Puri, M.L., VSP International

Science Publishers, pp. 301-315.

He, G., Müller, H.G. & Wang, J.L. (2003). Functional canonical analysis for square integrable stochastic

processes. J. Multiv. Anal. 85, 54-77.

He, G., Müller, H.G., Wang, J.L. (2004). Methods of canonical analysis for functional data. J. Statist.

Plann. and Inf. 122, 141-159.

Heckman, N. & Zamar, R. (2000). Comparing the shapes of regression functions. Biometrika 87,

135-144.

Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. J.

Educational Psychology 24, 417-441, 498-520.

Hotelling, H. (1936). Relations between two sets of variates. Biometrika 28, 321-377.

James, G. (2002). Generalized linear models with functional predictors. J. Royal Statist. Soc. B 64,

411-432.

James, G., Hastie, T. G. & Sugar, C. A. (2001). Principal component models for sparse functional data.

Biometrika 87, 587-602.

James, G. & Sugar, C. A. (2003). Clustering for sparsely sampled functional data. J. Amer. Statist.

Assoc. 98, 397-408.

James, G. & Silverman, B.W. (2004). Functional adaptive model estimation. Preprint.

Joliffe, I.T. (2002). Principal component analysis. Springer, New York.

Jones, R.H. (1993). Longitudinal data with serial correlation. Chapman & Hall, London.

Karhunen, K. (1946). Zur Spektraltheorie stochastischer Prozesse. Ann. Acad. Sci. Fennicae A I 37.

Kirkpatrick, M. & Heckman, N. (1989). A quantitative genetic model for growth, shape, reaction norms

and other infinite-dimensional characters. J. Math. Biol., 27, 429-450.

Kneip, A. & Gasser, T. (1992). Statistical tools to analyze data representing a sample of curves. Ann.

Statist., 16, 82-112.

Kneip, A., Li, X., MacGibbon, K.B. & Ramsay, J.O. (2000). Curve registration by local regression.

Can. J. Statist., 28, 19-29.

Kneip, A. & Utikal, K.J. (2001). Inference for density families using functional principal component

analysis analysis. J. Amer. Statist. Assoc. 96, 519-532.

17



Leurgans, S.E., Moyeed, R.A. & Silverman, B.W. (1993). Canonical correlation analysis when the data

are curves. J. Royal Statist. Soc. Series B 55, 725-740.

Liu, X. & Müller, H.G. (2003). Modes and clustering for time-warped gene expression profile data.

Bioinformatics 19, 1937-1944.

Liu, X. & Müller, H.G. (2004). Functional convex averaging and synchronization for time-warped

random curves. J. Amer. Statist. Assoc. 99, 687-699.

Marron, J.S., Müller, H.G., Rice, J., Wang, J.L., Wang, N.Y., Wang Y.D., Davidian, M., Diggle, P.,

Follmann, D., Louis, T.A., Taylor, J., Zeger, S., Goetghebeur, E., Carroll, R.J. (Discussants)

(2004). Discussion of nonparametric and semiparametric regression. Statistica Sinica 14, 615-629.

Mardia, K. V., Kent, J. T. & Bibby, J. M. (1979). Multivariate Analysis, London: Academic Press.

Müller, H.G., Wang, J.L., Capra, W.B., Liedo, P., Carey, J.R. (1997). Early mortality surge in protein-

deprived females causes reversal of sex differential of life expectancy in Mediterranean fruit flies.

Proceedings of the National Academy of Sciences USA 94, 2762-2765.

Müller, H.G. & Stadtmüller, U. (2005). Generalized functional linear models. Ann. Statist., to appear.

Müller, H.G. & Zhang, Y. (2005). Time-varying functional regression for predicting remaining lifetime

distributions from longitudinal trajectories. Biometrics, to appear.

Murtaugh, P.A., Dickson, E.R., Van Dam, G.M., Malinchoc, M., Grambsch, P.M., Langworthy, A.L. &

Gips, C.H. (1994). Primary biliary cirrhosis: prediction of short-term survival based on repeated

patient visits. Hepatology 20, 126-136.

Ramsay, J. & Dalzell, C.J. (1991). Some tools for functional data analysis. J. Royal Statist. Soc. Series

B 53, 539-572.

Ramsay, J. & Li, X. (1998). Curve registration. J. Royal Statist. Soc. Series B 60, 351–363.

Ramsay, J. & Silverman, B. (1997). Functional data analysis, New York: Springer.

Ramsay, J. & Silverman, B. (2002). Applied functional data analysis, New York: Springer.

Rao, C.R. (1958). Some statistical methods for the comparison of growth curves. Biometrics 14, 1-17.

Ratcliffe, S.J., Leader, L.R. & Heller, G.Z. (2002). Functional data analysis with application to period-

ically stimulated foetal heart rate data. I: Functional regression. Statist. Med. 21, 1103-1114.

Rice, J. (2004). Functional and longitudinal data analysis: Perspectives on smoothing. Statistica Sinica

14, 631-647.

Rice, J. & Silverman, B. (1991). Estimating the mean and covariance structure nonparametrically when

the data are curves. J. Royal Statist. Soc. Series B, 53, 233-243.

Rice, J. & Wu, C. (2000). Nonparametric mixed effects models for unequally sampled noisy curves.

Biometrics, 57, 253-259.

Rønn, B.B. (2001). Nonparametric maximum likelihood estimation for shifted curves. J. Royal Statist.

Soc. Series B, 63, 243-259.

18



Ruppert, D., Wand, M.P. & Carroll, R.J. (2003). Semiparametric regression. Cambridge University

Press

Service, S.K., Rice J.A. & Chavez, F.P. (1998). Relationship between physical and biological vari-

ables during the upwelling period in Monterey Bay, CA. Deep-sea research II – topical studies in

oceanography 45, 1669-1685.

Shi, M., Weiss, R. E. & Taylor, J. M. G. (1996). An analysis of paediatric CD4 counts for Acquired

Immune Deficiency Syndrome using flexible random curves. Applied Statistics, 45, 151-163.

Staniswalis, J.G. & Lee, J.J. (1998). Nonparametric regression analysis of longitudinal data. J. Amer.

Statist. Assoc. 93, 1403-1418.
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Figure 1: The observed time courses of log(serum bilirubin) during the first 910 days in the study, for

84 short-lived (upper panel) and 174 long-lived (lower panel) patients from the PBC study.
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Figure 2: Smoothed mean functions for all patients in the sample (solid), the long-lived patients (dot-

ted) and the short-lived patients (dashed) (with bandwidth 300d). The values on the y axis are log-

transformed bilirubin levels.

21



tst

G(t,t)+σ2 

G(t,s) 

Figure 3: Smoothed covariance function G(s, t), obtained by omitting the diagonal terms (with band-

widths [370d,370d]). Overlaid is the discontinuous ridge along the diagonal that is caused by additional

noise, where the tip of the ridge corresponds to G(t, t) + σ2 and the base to G(t, t).
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Figure 4: First (solid), second (dashed) and third (dotted) smoothed eigenfunctions for the PBC data,

explaining, respectively, 79.3%, 17.6% and 2.1% of total variance.
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Figure 5: Observed sparse data, predicted log(bilirubin) trajectories and predicted probabilities for

belonging to the long-lived group for eight randomly selected patients of the PBC study.
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Figure 6: Second versus first predicted functional principal component scores for PBC data. The crosses

indicate long-lived and the circles short-lived patients.
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