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Abstract

The signal-response characteristics of a living cell are determined by complex

networks of interacting genes, proteins, and metabolites. Understanding how

cells respond to specific challenges, how these responses are contravened

in diseased cells, and how to intervene pharmacologically in the decision-

making processes of cells requires an accurate theory of the information-

processing capabilities of macromolecular regulatory networks. Adopting

an engineer’s approach to control systems, we ask whether realistic cellular

control networks can be decomposed into simple regulatory motifs that carry

out specific functions in a cell. We show that such functional motifs exist

and review the experimental evidence that they control cellular responses as

expected.
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Programmed cell
death: the activation
of specific proteases
(caspases) and
nucleases that
disassemble the cell’s
proteins and nucleic
acids, leading to an
orderly and
noninflammatory
death

Module: a network
motif that is carrying
out a specific
dynamical function in
a cell

Motif: a simple
pattern of activation
and inhibition among
a small number of
interacting molecular
species

Transcription factor:
a protein that binds
(often with partners) to
regulatory sequences
of DNA to activate or
inhibit transcription of
a protein-coding gene

Kinase: an enzyme
that phosphorylates a
substrate molecule
using ATP as the
phosphate donor

FFL: feed-forward
loop

1. INTRODUCTION

The living cell, as described in any biology textbook, is a miniature, membrane-bound, self-

instructed, and self-maintaining biochemical machine, which responds to its environment in

remarkably complex ways that support its own survival and reproduction (or the survival and

reproduction of the multicellular organism of which it is a part). The cell membrane is stud-

ded with receptors that are sensitive to the cell’s external chemical environment (e.g., attractants,

repellants, and hormones) as well as to pressure, osmotic stress, attachment sites, and other sig-

naling agents. Within the cell are receptors for temperature, damaged proteins or DNA, energy

availability, and other indicators of internal state. The cell is continually processing these streams

of information and making decisions about its appropriate response in terms of gene expression,

metabolic activity, movement, growth and division, and (in some circumstances) programmed cell

death. The suite of signal-response characteristics available to a cell is what we call its physiology.

The information-processing abilities of a cell are carried out by complex networks of interacting

genes and proteins (1), an example of which is given in Figure 1. The receptors and transduc-

ers of signals are proteins; the output responses are mostly implemented by proteins; and the

intermediate decision-making is done by proteins, genes, and RNA molecules that govern one

another’s production, destruction, localization, and activity by a variety of biochemical transforma-

tions that are connected in feedback and feed-forward loops of bewildering complexity. The grand

accomplishment of molecular cell biology from 1980 to 2000 (see the millennium issue of Cell,

Vol. 100, No. 1) was the identification and characterization of the components of this biochemical

machine and their basic relationships to one another (i.e., the wiring diagram of the biocomputer in

Figure 1). The grand challenge of molecular systems biology for the next 30 years is to understand,

predict, and intervene in the decision-making of the cell.

To this end, we must first identify and characterize the basic information-processing modules

in protein regulatory networks. Just as an engineering student must first master the properties

of simple electrical circuits and mechanical devices, so the nascent systems biologist must first

identify regulatory motifs in molecular control systems and determine their possible functional

significance in signal processing and output generation.

We can already identify some basic motifs in Figure 1. Some receptors (e.g., the receptor

for antigrowth factors in the upper-left corner of Figure 1) directly activate transcription fac-

tors (Smads, in this case), which then stimulate the production of response proteins (p15), which

in turn interact with downstream components (in this case, p15 inhibits cyclin D, a key pro-

tein promoting cell growth and division). The basic motif here is a signal-transduction pathway

(X → Y ⊣ Z) comprising elementary activation and inhibition signals. Activation may be accom-

plished by upregulating protein synthesis (as Smads do for p15), by inhibiting protein degradation

(e.g., Emi1 inhibits Cdh1, which promotes the degradation of cyclins A and B), by forming mul-

timeric protein complexes (e.g., Cdh1 must associate with the anaphase promoting complex to

label A- and B-type cyclins for degradation), or by post-translational modifications (e.g., MEK

activates ERK by phosphorylation, and Caspase 8 activates Bid by trimming off a few amino acids).

Inhibition may be accomplished by downregulating protein synthesis (e.g., cyclin B–dependent

kinase phosphorylates and inactivates E2F, the transcription factor for cyclins A and E), by induc-

ing protein degradation (as Mdm2 does to p53), by complex formation (as p21 does with cyclin

D– and E–dependent kinases), or by post-translational modifications (e.g., Wee1 phosphorylates

and inactivates the kinase subunit of cyclin B–dependent kinase).

Another common motif in Figure 1 is a feed-forward loop (FFL), in which protein X affects

the activity of protein Z by two different routes. For example, E2F promotes the synthesis of

CycA directly, and by an indirect route E2F produces Emi1, which binds to Cdh1 and turns off
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Figure 1

Some representative information-processing systems in a cell. The dark blue rectangles embedded in the cell
membrane are receptors for external signal molecules ( gray boxes). The components in yellow ovals are
transcription factors. Proteins that promote ( green) or repress (red ) progression through the cell cycle are
indicated, as well as proteins that promote ( purple) or repress (blue) programmed cell death. Red boxes inside
the cell indicate internal signals (DNA damage, unreplicated DNA) and responses (e.g., repair, DNA
synthesis, and cell death). Dashed lines indicate questionable interactions. MOMP, mitochondrial outer-
membrane permeability.
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X

Y

Z

X Y X Y

X

Y

Z

Scheme 1

Motif A Motif B Motif C Motif D

FBL: feedback loop

the degradation of CycA. The prototype of an FFL is Motif A in Scheme 1. As the interactions

in the FFL can be either activation (→) or inhibition (⊣), there are eight different types of FFLs:

four coherent and four incoherent, depending on whether the net effect on the long arm is the

same as or opposite to the effect on the short arm.

Protein regulatory networks typically contain feedback loops (FBLs) of activatory and in-

hibitory signals, as in Motifs B and C. For example, Figure 1 has a negative FBL (Motif B)

between p53 and Mdm2, and a double-negative FBL (Motif C) between BAX and BCL. More

complex, intertwined FFLs and FBLs are also common; for example, Motif D is embodied in

X = CycB, Z = Cdh1, and Y = Cdc20 + Cdc14.

From these examples, it should be clear that by a network motif we mean a simple pattern of

activation and inhibition among a small number of genes and/or proteins. Of course, such patterns

are inevitable in any network of interacting genes and proteins. The real question is whether such

motifs serve identifiable information-processing functions in real regulatory networks. That is,

are the topological motifs actually functional modules of real significance for the cell’s physiology?

We address this issue by answering three specific questions: (a) Can we classify interaction motifs

into a complete set of nonoverlapping patterns? (b) Can we identify potential functions of each

motif? (c) And, for motifs represented in known regulatory networks, are they sufficiently isolated

to serve their expected function(s) within the network?

This review draws on a significant body of work from the laboratory of Uri Alon, much of

which is summarized in his excellent review article (2) and textbook (3). Other points of view

about motifs and modules in biochemical networks can be found in the excellent work of Thomas

& D’Ari (4), Wolf & Arkin (5), Prill et al. (6) and Soyer et al. (7).

2. CLASSIFICATION OF NETWORK MOTIFS

By our definition, a motif is a pattern of activatory (+) or inhibitory (−) interactions between a

small number (N ) of components (genes, mRNAs, proteins, metabolites) of a biochemical reaction

network. We can represent a motif as an array of signs [ai j ], where each ai j (i, j = 1, . . . , N ) is

chosen from the set {−, 0, +}, with ± indicating the sign of the effect of species j on species i,

and 0 indicating no effect. For N = 2, the total number of arrays (34 = 81) would be manageable,

but for N = 3 the number of arrays (39 = 19,683) is daunting, even after accounting for the

symmetries induced by permutation of the indices. To make our classification problem easier, we

assume that all self-interactions are inhibitory (aii = −, for all i ). This is a reasonable assumption

for protein regulatory networks, in which direct autoactivation (e.g., by autophosphorylation) is

rare. (It is not a valid assumption for pure gene regulatory networks, for which one ignores the

proteins that mediate the interactions among genes.)

For the case of inhibitory self-interactions and N = 2, there are 32 = 9 sign patterns and 6 dis-

tinct motifs (when permutations of X and Y are taken into account) (see Table 1). For N = 3, there

are 36 = 729 sign patterns and 138 distinct motifs. For a complete list of three-component mo-

tifs, please consult the Supplemental Appendix and Supplemental Table 1 (follow the Supple-

mental Material link from the Annual Reviews home page at http://www.annualreviews.org).
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Table 1   Two-component motifs

 Motif number Motif Sign pattern Degeneracy Description

0
0

0

−

−
1 NullX Y

−−

−−
5 1

Double-negative 
feedbackX Y

2
−

0−

−
2 InverterX Y

1 2 TransducerX Y
−

0−

+

3 2 Negative feedback X Y
−−

−+

4 1 Positive feedbackX Y
−

−+

+

( )

( )

( )

( )

( )

( )
Table 2 presents an abbreviated list of three-component motifs that are of interest for this

review.

3. FUNCTIONAL ROLES OF NETWORK MOTIFS

Our next job is to assign possible functional roles to the network motifs identified in Tables 1

and 2. To do so, we must associate a dynamical system to each motif and investigate the temporal

responses of each dynamical system. There are many options in this regard.

3.1. Dynamical Equations for Protein Regulatory Networks

We could associate to each motif a Boolean network, where each state variable (X1, X2, . . . , XN )

is a Boolean variable (either 0 or 1) that updates in discrete time (t = 0, 1, 2, . . .) according to

Xi (t + 1) = Bi (X1(t), X2(t), . . . , XN(t)), i = 1, . . . , N, (1)

where Bi (X1, X2, . . . , XN) are Boolean functions that implement the network motif.

Boolean networks have been used to model gene regulatory networks since the classical work of

Kauffman (8) (for recent examples, see 9–11). Although Boolean models are intuitively appealing,

they do not faithfully represent the dynamics of chemical reaction networks that evolve contin-

uously in time and in state space. For such networks, nonlinear ordinary differential equations

(ODEs) are more appropriate:

dXi

dt
= Fi (X1, X2, . . . , XN) =

M
∑

r=1

(v+

ir − v−

ir )Rr (X1, X2, . . . , XN; kr ), i = 1, . . . , N. (2)

In this case, the nonlinear functions Fi (X1, X2, . . . , XN) describe the net rate of change of the

concentration of the i-th state variable as the difference between the rates of reactions that are

producing Xi with stoichiometric coefficients vir
+ and the rates of reactions that are consuming

Xi with stoichiometric coefficients vir
−. The rates of these reactions are typically described by
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ODE: ordinary
differential equation

Phosphatase: an
enzyme that removes a
phosphate group from
its substrate by
hydrolysis of the
C–O–(PO3

2−) bond to
C–OH + HO–PO3

2−

standard rate laws of biophysical chemistry, such as the law of mass action, the Michaelis-Menten

rate law, or the Hill equation. Each of these rate laws expresses the rate of a reaction in terms of

the concentrations of the reaction’s substrates and phenomenological rate constants (the kr ’s in

Equation 2). Protein regulatory networks formulated in this way can be simulated either deter-

ministically by solving Equation 2 with standard nonlinear ODE integrators, or stochastically by

using Gillespie’s stochastic simulation algorithm (12). Although the nonlinear ODE approach can

represent the dynamics of protein regulatory networks accurately (13–18), this approach requires

a great deal of background information in terms of the precise biochemical mechanism of the

reaction network and numerical values of the reaction rate constants.

For this review, we seek an intermediate modeling strategy that employs nonlinear ODEs to

describe protein regulatory networks but is not tied to specific reaction mechanisms and rate

constants. We take a clue from the work of Reinitz and colleagues (19) who have modeled gene

regulatory networks using ODEs of the form

dXi

dt
= γi [F (σi Wi ) − Xi ], Wi = ωi0+

N
∑

j=1

ωi j X j , i = 1, . . . , N, (3)

where Xi is the expression level of gene i, 0 ≤ Xi ≤ 1, and F (σ W ) = 1/(1 + e−σ W ) is a sigmoidal

function that varies from 0 (when W ≪ −1/σ ) to 1 (when W ≫ 1/σ ). The parameter σ controls

the steepness of the sigmoidal function at its inflection point. Wi is the net effect on gene i of all

genes in the network. The coefficient ωi j is less than 0 if gene j inhibits the expression of gene

i, more than 0 if gene j activates gene i, or equal to 0 if there is no effect of gene j on gene i.

Equation 3 has the great advantage that it is subject to all the powerful analytical and simulation

tools of nonlinear ODEs, yet, in the limit of large σ i’s, it behaves like a discrete Boolean network.

[When σi ≫ 1, then Xi tends to flip (on a timescale ≈ γ i
−1) between 0 and 1, and the dynamical

system 3 approximates a Boolean network, Equation 1, where the nature of the Boolean function

Bi is determined by the coefficients ωi j , j = 0, . . . , N.]

We now consider a network of interacting protein kinases and phosphatases. We let Xi(t) equal

the active fraction of the i-th protein, and 1 − Xi(t) equal the inactive fraction. Then we may

describe the temporal evolution of the active forms by the nonlinear dynamical system

dXi

dt
= γi

[Ai (1 − Xi ) − Bi Xi ]

Ai + Bi

, i = 1, . . . , N,

Ai = exp

{

σi

(

αi0 +

N
∑

j=1

αi j X j

)}

, Bi = exp

{

σi

(

βi0+

N
∑

j=1

βi j X j

)}

,

(4)

where Ai and Bi are raw rates of activation and inhibition of protein Xi. These rates are expo-

nentially increasing functions of the total activation (or inhibition) impressed on the i-th protein

by all other proteins in the network, as determined by the coefficients αi j (or βi j ). The raw rates,

Ai and Bi, must be scaled by Ai + Bi to keep the relative rates of activation and inhibition in the

range [0,1]. In that case, Equation 4 is an alternative form of Equation 1 that is suitable for de-

scribing a protein regulatory network. The parameter γ i controls the timescale on which protein

i approaches its steady-state concentration:

X ss
i =

Ai

Ai + Bi

=
1

1 + e−σi Wi
, Wi = ωi0+

N
∑

j=1

ωi j X j , i = 1, . . . , N, (5)

where ωi j = αi j − βi j , i = 1, . . . , N, and j = 0, . . . , N.

We assume the following restrictions on the parameters in Equation 4: 0.1 ≤ γ i ≤ 10 (we will

assume all γ i = 1, unless otherwise noted), 1 ≤ σ i ≤ 20, αii = β ii = 0 (no self-interactions),
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Bifurcation diagram:
a plot of the
asymptotic state of a
variable (e.g., steady
state or oscillation) as
it depends on the value
of a parameter in the
differential equations

0 ≤ αi j ≤ 1 and 0 ≤ βi j ≤ 1, αi j · βi j = 0 for j ≥ 0 (no dual-regulation of protein i by protein j ),

αi0 ≤ 0, and β i0 ≤ 0.

3.2. Qualitative Dynamics of Two-Component Motifs

In this section we use ODE 4 to explore the dynamical features of the two-component motifs in

Table 1. In each case, we add a signal, S(t), to α10 (the background rate of activation of protein 1,

which is X in Table 1), and we consider either X1(t) or X2(t) to be the response of the motif. We

probe each motif with a signal that increases and decreases in a stepwise fashion with increasing t.

The characteristic responses of each motif are shown in Figure 2. (For parameter settings in each

case, see Supplemental Table 2.) The transducer (Figure 2a) simply relays the signal, whereas

the inverter (Figure 2b) changes the sign of the signal. The negative FBL (Figure 2c) tends to

dampen the magnitude of the signal; in this case, large changes in S lead to relatively smaller

changes in X1
ss. The positive FBL (Figure 2d ) and the double-negative FBL (Figure 2e) are both

able to function as toggle switches. They have two alternative stable steady states (on and off), and

transient signals can flip the switch back and forth between the two states.

The toggle functions of these two motifs are most clearly illustrated by one- and two-parameter

bifurcation diagrams. The one-parameter bifurcation diagram (Figure 3a) shows that the double-

negative FBL has two stable steady states in the region 0.08 < S < 0.46 (for σ = 7). To flip the

switch on, S must be increased above 0.46, and to flip the switch off, S must be decreased below

0.08. The critical switching limits of S depend on σ , as shown in the two-parameter bifurcation

diagram (Figure 3b). For σ less than ∼5, the double-negative FBL can no longer sustain bistable

behavior. Of course, the precise numerical values of these limits depend on the values of the

other parameters in the dynamical system, but, in general, we find that both the positive feedback

motif and the double-negative feedback motif exhibit bistability over a range of signal strengths,

Soff < S < Son, and that Soff and Son pull closer together as σ decreases, finally merging at a cusp

bifurcation for a critical value σ = σ crit.

3.3. Qualitative Dynamics of Three-Component Motifs

According to Supplemental Table 1, there are 138 distinct motifs for protein regulatory net-

works with three components and only inhibitory self-interactions (aii = −). Each motif has its

own unique characteristics, and we cannot explore them all owing to space limitations. Instead,

we focus on some of the more common and important three-component motifs catalogued in

Table 2.

Motif 6 (in Table 2) is a simple signal-transduction pathway, which behaves like its two-

component counterpart (inverting the signal if one of the links is negative). Motif 7 splits a signal

in two different directions. Motif 8 is a basic logic gate. Depending on parameter values, the

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Figure 2

Functional properties of two-component phosphoprotein interaction networks. We are solving Equation 4 for N = 2 and selected
values of the interaction parameters αi j and βi j (see Supplemental Table 2 for parameter values). In each case, the signal (red line) is
added to the parameter α10; i.e., the signal provides an external activation of the motif. (a) Transducer: S → X1 → X2. (b) Inverter: S →

X1 ⊣ X2. (c) Homeostasis [negative feedback loop (FBL)]. If we consider X1(t) as the response, then we see that the steady-state
response varies over a much smaller range of values than the range of input signals. (d ) Toggle switch (positive FBL). (e) Toggle switch
(double-negative FBL). In the neutral position (S = 0.3) of a toggle switch, it may persist in one or the other of two stable steady states
(on or off ). The switch can be flipped from one state to the other by toggling the signal up and down from its neutral position. ( f ) The
differential equations (Equation 3) for the two-component motifs in Table 1.
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output (Z ) of the gate can implement 14 of the 16 possible Boolean functions on two inputs (X

and Y ) (for details, see Supplemental Table 3). Some examples are shown in Figure 4. For the

AND gate, the output is True (Z = 1) when both inputs are True (X = 1 and Y = 1), and

Z = 0 otherwise. For the NAND gate, Z = 0 when X = 1 and Y = 1, and Z = 1 otherwise.

Motifs 9 and 10 are simple FBLs on three variables. If the FBL is positive (a21 · a32 · a13 = +),

then the motif may create a toggle switch (similar to the cases in Figure 2d,e). The negative FBL

(a21 · a32 · a13 = −) exhibits a new kind of behavior: sustained oscillations in X(t), Y(t), and Z(t) (see

a

c d

e

X1S X2

b

X1

S

X2
X1

S

X2

X1

S

X2

f

0

0.5

1.0

0 10 20

Time

0

0.5

1.0

0 10 20

Time

0

0.5

1.0

0 10 20

Time

0

0.5

1.0

0 10

Time

20 30 40 50

X1

S

X2

0

0.5

1.0

0 10

Time

20 30 40 50

dX1 A1(1 – X1) – B1X1

dt
=

A1 + B1

γ1

A1 = exp {σ(S + α10 + α12X2)}

A2 = exp {σ(α20 + α21X1)}

B1 = exp {σ(β10 + β12X2)}

B2 = exp {σ(β20 + β21X1)}

dX2

dt
=

A2(1 – X2) – B2X2

A2 + B2

γ2
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a b

X1
ss σ

0

5

Soff Son

0

0

S S

0.5 1.0 0 0.5 1.0

1.0

0.5

15

10

Bistable

Soff Son

Figure 3

Bifurcation diagrams for the double-negative toggle switch. (a) One-parameter bifurcation diagram. Plotting
X1

ss as a function of S, we see that the toggle switch is indeed bistable for S = 0.3. By raising S above Son ≈

0.46, we can be sure the switch is on. Once the switch is on, we must lower S below Soff ≈ 0.08 to flip it off.
Son and Soff are known as saddle-node bifurcation points. (b) This two-parameter bifurcation diagram
illustrates how the bifurcation points, Son and Soff, depend on a second parameter, in this case, σ , the
steepness of the nonlinear functions in Equation 4.

Figure 5a). Oscillations are possible only over a restricted range of signal strength, SHB1 < S <

SHB2 (Figure 5b). The points where oscillations begin and end are called Hopf bifurcation points.

As σ decreases, the Hopf bifurcation points come closer together (Figure 5c), and the capacity of

this negative FBL to oscillate is lost for σ less than ∼8.

Oscillations in a simple negative FBL are modified in characteristic ways if a two-component

FBL is inserted into the three-component loop as in Motifs 18 and 19. Inserting a two-component

negative FBL tends to destroy the capacity of the three-component negative FBL to oscillate. To

illustrate this effect, we modify the simple negative FBL in Figure 5 (X → Y ⊣ Z → X) by

adding some positive feedback from Z to Y, i.e., by increasing the parameter α23 from zero. The

effect of increasing α23 (at constant σ = 10) is to decrease the range of S values for which the

network oscillates (see Figure 5d ). As α23 increases, the oscillations lose amplitude (Figure 5e)

and eventually vanish for α23 larger than ∼0.45.

Conversely, inserting a two-component positive (or double-negative) FBL into a three-

component negative FBL changes the character of the oscillations quite dramatically. To illustrate

how, we add some negative feedback from Z to Y by increasing the parameter β23 from zero. As

β23 increases, the oscillations grow in amplitude, lengthen in period, and become less sinusoidal

and more spiky, as illustrated in Figure 5f. The reasons for this behavior become evident in a

one-parameter bifurcation diagram (see Figure 5g). For β23 > ∼0.6, the control system has three

coexisting steady states (one stable and two unstable). As β23 increases, the oscillations grow in

amplitude until they coalesce with the unstable saddle point and disappear at an infinite-period bi-

furcation. (In Figure 5g, the infinite-period bifurcation occurs at β23 ≈ 0.7.) The two-parameter

bifurcation diagram (the S-β23 plane in Figure 5h) shows a region of robust oscillations that

is bounded on the sides by loci of Hopf bifurcations and capped off at the top by a locus of

infinite-period bifurcations.

Motif 11 has been studied in great detail by Mangan & Alon (20), who have emphasized its role in

noise suppression when X and Y activate Z according to an AND gate (or inactivate Z according to

a NOR gate). In that case, brief pulses of X are insufficient to activate Z because there is not enough
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a b

c d

00                 10                 11                 01                 00 00                 10                 11                 01                 00
0

0.5

1.0

0

Time

5025

X YZ

0

0.5

1.0

0

0.5

1.0

0

0.5

1.0

0

Time

5025

0

Time

5025

0

Time

5025

X YZ

00                 10                 11                 01                 00

X YZ

00                 10                 11                 01                 00

X YZ

Figure 4

Some logic gates (Motif 8 in Table 2): (a) AND, (b) NOR, (c) NAND, and (d ) NOT(A → B). Parameter
values are provided in Supplemental Table 3. The two input signals (X and Y ) are plotted in red and blue,
respectively, and the output (Z ) is in black. The numbers 00, 10, 11, and 01 indicate the states of the input
signals.

time for X to receive the necessary assistance from Y. Once Z is activated, then removal of the

signal from X results in immediate inactivation of Z. So this motif is described as slow on, fast off.

Motif 12 has been proposed (21, 22) as a simple mechanism for perfect adaptation. In this case

(Figure 6a), a stepwise increase in the signal, X(t), induces a pulse-like response in Z(t), but the

response returns to its original steady-state value (or nearly so). As this is a common response in

sensory systems, Tyson et al. (23) called it a “sniffer.” Incoherent FFLs can also operate similar

to the triggering mechanism of a gun (Figure 6b). In this case, Z(t) exhibits a pulse-like response

to a square-wave signal [i.e., X(t) varies from high to low and then back to high]. When X(t)

is high, the motif is in a steady state of low Y and low Z. X(t) must drop to a sufficiently low

value for a sufficiently long time for Y to accumulate (like cocking a gun). Then X(t) must rise

sufficiently rapidly and strongly to activate Z before Y disappears (like pulling the trigger on a

cocked gun). Notice in Figure 6 that these two behaviors are responses of the same motif (with

the same parameter values) to different temporal signaling patterns.

Motif 13 has two positive FBLs coupled together through a common intermediate. Clearly,

such a motif can exhibit multiple steady states but not oscillations. Indeed, for some parameter

values, Motif 13 can exhibit three stable steady states (i.e., tristability) (see Figure 7).
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Figure 6

Alternative responses of incoherent feed-forward loops (Motif 12 in Table 2): (a) sniffer and (b) trigger.
Parameter values are provided in Supplemental Table 4.

In Motif 15, a positive and a negative FBL are coupled through a common intermediate. This

motif is a powerful generator of limit cycle oscillations (e.g., see Figure 8).

Motifs 14, 16, 17, and 20 have been not much studied by theoreticians, to our knowledge.

We have not yet identified and catalogued their information-processing potentials. Motifs 16 and

17 will generate multiple steady states but not oscillations. Motif 20 may have some interesting

properties as logic gates. Neither have motifs with five and six links been studied systematically

by theoreticians.

4. FUNCTIONAL MODULES IN REAL BIOCHEMICAL NETWORKS

Our third and last task is to determine whether any of these motifs are actually functioning as

expected in real, experimentally characterized, biochemical regulatory networks. Transducers and

inverters (Table 1, Motifs 1 and 2; and Table 2, Motif 6) are the most common features of signal-

ing networks, like Figure 1. Typically we expect to see a hyperbolic relationship between the signal

(X ) and the response (Y ), but more threshold-like (sigmoidal) relationships are often observed

(Figure 9). Sigmoidal response curves may derive from cooperative interactions among signal

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Figure 5

Oscillations in three-component negative feedback loops (FBLs) (Motifs 10, 18, and 19 in Table 2).
Parameter values are given in Supplemental Table 4. (a) Oscillations of a simple negative FBL (Motif 10)
for S = 0.6. (b) One-parameter bifurcation diagram for Motif 10. Oscillations exist in the interval SHB1 < S
< SHB2. The end points are known as Hopf bifurcation (HB) points. (c) Two-parameter bifurcation diagram
for Motif 10 shows an oscillatory region bounded by an HB locus for σ > 8. (d ) The interval of oscillations,
SHB1 < S < SHB2, shrinks as α23 increases; i.e., Motif 10 morphs into Motif 18. (e) Oscillations of Motif 18
for S = 0.6 and α23 = 0.4. Compared with panel a, the amplitude and period of oscillation decrease as α23

increases. ( f ) Oscillations of Motif 19 for S = 0.6 and β23 = 0.6. Compared with panel a, the amplitude
and period of oscillation increase as β23 increases. ( g) One-parameter bifurcation diagram for Motif 19 at
S = 0.9. Oscillations commence at an HB at β23 = 0.2765 and end at an infinite-period bifurcation at
β23 = 0.7018. (h) Two-parameter bifurcation diagram for Motif 19. The oscillatory domain is bounded on
the left and right by loci of HBs and at the top by a locus of infinite-period (IP) bifurcations. The motif has
three steady states in the wedge-shaped region in the upper-right corner, but it is bistable only in the shaded
region to the right of the HB locus.
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10

Z

Figure 7

Tristability (Motif 13 in Table 2). Parameter values are provided in Supplemental Table 4. (a) One-
parameter bifurcation diagram for σ = 8, with three stable steady states for S in the vicinity of 0.5.
(b) Two-parameter bifurcation diagram; tristability exists in the narrow strip where the two cusp-shaped
regions overlap.

molecules (24), from zero-order ultrasensitivity in enzyme-catalyzed reactions (25), from

competition with other binding proteins (26, 27), or from multisite modifications of response

molecules (28).

Negative feedback (as in Table 1, Motif 3) is commonly used to maintain species X at a relatively

constant level in a fluctuating environment. This seems to be the role of IκBα in keeping NF-κB

in check, and the role of Mdm2 in keeping p53 at a constant low level in undamaged cells.

Motifs 4 and 5 (Table 1) are also common in Figure 1, and they are often implicated in sit-

uations where a cell undergoes an irreversible change of state or toggles back and forth between

two stable steady states. Bistability was first described in the lactose utilization pathway of bacteria

by Novick & Weiner (29) and characterized more recently by Ozbudak et al. (30). Gardner et al.

(31) were the first to engineer bistability into a synthetic gene regulatory system. Double-negative

X

Y

Z

–0.4 –0.2 0 0.2 0.4

a b

0

0

S

50 100

1.0

0.5

0

1.0

0.5

Time

Figure 8

Oscillations in an activator-amplified negative feedback loop (Motif 15 in Table 2): (a) oscillations at S = 0
and (b) one-parameter bifurcation diagram. Parameter values are provided in Supplemental Table 4.
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Figure 9

Signal transduction and inversion in the Wee1-CycB-Cdc25 axis. (a) Wee1 phosphorylation and (b) Cdc25
phosphorylation by cyclin B–dependent kinase (a dimer of CycB and Cdk1) in frog-egg extracts. In each
panel, the experimental data are fitted to a Hill function with exponent nH . Because phospho-Wee1 is the
inactive form and phospho-Cdc25 is the active form, panel a is an example of signal inversion and panel b of
signal transduction. In the case of Wee1, Kim & Ferrell (27) presented evidence that the sigmoidal response
curve results from competitive binding of CycB/Cdk1 to some other proteins in the extract. In the case of
Cdc25, J.E. Ferrell (private communication) has evidence that the sigmoidal response curve results from
multisite phosphorylation of Cdc25. Data in panel a from Reference 27, used by permission; unpublished
data in panel b from J.E. Ferrell, used by permission.

Cell cycle: the
sequence of events by
which a growing cell
replicates all its
components and
divides them evenly
between two daughter
cells

FBLs abound in the cell cycle control network, where they are thought to create the fundamental

distinction between G1 phase (unreplicated chromosomes) and S/G2/M phase (replicated chro-

mosomes) (15, 26, 32). Positive feedback and bistability are common themes in theories of cellular

memory (33, 34) and differentiation (35).

Bistability is also observed in three-component motifs, such as the Cdc25-CycB-Wee1 system

(Motif 13b in Table 2), as first predicted by Novak & Tyson (17) and later verified independently

by Sha et al. (36) and Pomerening et al. (37). The Rb-E2F-CycE system is a three-component

positive FBL (Motif 9 in Table 2), and evidence for bistability in this motif has been garnered by

Yao et al. (38).

Programmed cell death is another natural place to look for evidence of a bistable switch,

because the caspase control network should be activated only when the damage to a cell exceeds

a certain threshold. (Caspases should remain inactive indefinitely in cells that are undamaged or

that have not received any suicide signals.) Bistability in the cell-death response was attributed by

Eissing et al. (39) to the three-component positive FBL (Casp3 → Casp6 → Casp8 → Casp3) in

Figure 1, and by Bagci et al. (40) to the long positive FBL created by Casp3 degradation of BCL.

Albeck et al. (13, 41), however, presented evidence that these positive FBLs are not relevant to

the cell-death response, and their snap-action model eschews any reference to bistability. While

accepting the MIT group’s evidence for snappy release of SMAC and CytoC from mitochondria,

Zhang et al. (42) believe nonetheless that the decision for this release must be implemented by

a bistable switch, which they locate upstream of MOMP in the interactions of BH3-BCL-BAX

(compare Figure 1 with Motif 21 in Table 2).

Branching outputs (Motif 7 in Table 2) are also common signaling motifs because transcription

factors (such as E2F or p53) often modulate the expression of more than one gene, and enzymes

(such as CycB-dependent kinase) often modify more than one substrate. Logic gates (Motif 8)

are prevalent in transcriptional regulatory networks, where the expression of a gene is controlled

by two or more transcription factors that bind to upstream regulatory sequences. In our protein
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regulatory network (Figure 1), the transcription factor E2F receives signals from many sources,

and we show just two of them: RB and CycB. RB binds to E2F and changes its effect on target

genes (from + to 0 or even to −), and E2F is inhibited by phosphorylation by CycB-dependent

kinase. E2F activity is a NOR function of RB and CycB; i.e., E2F is active if and only if both RB

and CycB are inactive. The transcriptional coactivator β-catenin is another good example of a

logic gate. β-Cat is a NOT(A → B) function (Figure 4d ) of cell-cell and cell-matrix interactions:

β-Cat = True if and only if cell-cell = False and cell-matrix = True. This logic is essential

to wound healing, because it promotes cell proliferation (β-Cat = True) if and only if cell-cell

contacts are broken (i.e., the tissue is wounded) but cell-matrix interactions are still intact (i.e.,

the repair cell is properly located in the tissue rather than, say, misplaced in the blood stream or

lymphatic system).

Negative FBLs with three or more components (Motif 10 in Table 2) are also common in

Figure 1: for example, CycB → Cdc20 → Cdc14 → Cdh1 ⊣ CycB, or CycE ⊣ p27 ⊣ CycB ⊣

E2F → CycE. These negative FBLs are important in driving cell cycle events through a periodic

sequence of states (32). Other cases in Figure 1 that appear to be two-component negative FBLs

(e.g., p53-Mdm2 and NFκB-IκBα) may actually be longer loops because the interactions involve

transcription-translation delays and transport between nucleus and cytoplasm (43). As anticipated,

these control loops exhibit sustained oscillations under proper conditions (44–47). The famous

repressilator is a synthetic gene network (X ⊣ Y ⊣ Z ⊣ X) constructed by Elowitz & Leibler (48)

to prove the capacity of a simple negative FBL to generate sustained oscillations in single cells.

FFLs (Motifs 11 and 12 in Table 2) are interesting and important motifs in many regulatory

networks. Using bioinformatic methods, Alon and colleagues (49, 50) have shown that FFLs

are unusually common (i.e., much more common than would be expected by chance) in gene

regulatory networks and in signal-transduction networks. Using dynamic models, they uncovered

possible functions of these FFLs (noise suppression and adaptation), and they have presented

experimental evidence for these dynamic properties (20, 51). Ghosh et al. (52) have studied the

noise-suppressive characteristics of FFLs, and Wall et al. (53) have catalogued the dynamical

properties of FFL circuits.

In our protein interaction network (Figure 1), we see both coherent FFLs (e.g., E2F promotes

CycA synthesis directly, and E2F promotes CycA activation indirectly through CycE removal of

p27, an inhibitor of CycA) and incoherent FFLs (e.g., CycB phosphorylates and inhibits Cdh1

directly, and CycB activates Cdc14, an enzyme that dephosphorylates and activates Cdh1). In

these cases, the FFLs are embedded in more complex networks, and we discuss their functional

properties below. We refer the reader to a recent paper by Csikasz-Nagy et al. (54) that presents

evidence for the over-representation (i.e., more common than chance expectation) of the FFL

motif shown in Scheme 2 that exists in the budding yeast transcriptome-phosphoproteome. In

this motif, CDK is the cyclin-dependent kinase, TF is the transcription factor, and EP is the

executor protein (i.e., a protein that drives some event of the cell cycle, such as DNA synthesis,

chromosome condensation, spindle assembly, or cell division). In this motif, executor-protein

synthesis is either promoted or repressed by the transcription factor, and both the transcription

factor and executor protein are phosphorylated by cyclin-dependent kinase, which may have either

positive or negative effects on their activity. By dynamic modeling, Csikasz-Nagy et al. (54) suggest

CDK

TF

EP

Scheme 2
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MPF: M-phase
promoting factor

that coherent FFLs should be associated with executor proteins that are active either in the G1

phase of the cell cycle (when cyclin-dependent kinase activity is low) or in the S/G2/M phase of the

cell cycle (when cyclin-dependent kinase activity is high), and incoherent FFLs may be expected

to function as triggering modules (cock-and-fire) at the G1/S transition or at exit from mitosis

(the metaphase-anaphase-telophase transition). The authors present some modest evidence for

these suggestions, which for the most part must be considered predictions of motif analysis, yet

to be tested experimentally.

Motif 14 is seen in Figure 1 in the Wip1-p53-Mdm2 axis. The dynamical implications of this

motif are not understood. Is one of the negative FBLs responsible for homeostatic preservation

of p53 at low levels in undamaged cells, and the other responsible for p53 oscillations in damaged

cells? [See Batchelor et al. (55) for recent considerations of this particular motif.]

Motif 15 (amplified negative FBL) is a common source of oscillations in cell physiology (56).

It lies behind classical cellular oscillators, like the cyclic AMP signaling system in slime molds

(57, 58) and MPF (M-phase promoting factor) oscillations in frog eggs (17, 59). MPF was first

discovered in frog eggs by Masui & Markert (60), and many years later Maller and colleagues

(61–63) identified MPF as a dimer of cyclin B and a protein kinase subunit (p34cdc2). MPF os-

cillations drive periodic rounds of DNA synthesis and mitosis in cytoplasmic extracts prepared

from frog eggs (64). Recent experiments by Pomerening et al. (65) show conclusively that MPF

oscillations depend on an amplified negative FBL (Motif 15) in the Cdc25-CycB-Cdc20 axis. The

intact system shows sustained oscillations (Figure 10a,b) exactly as predicted by a mathematical

model of the motif. If the positive feedback side of the motif is abrogated, the negative FBL by

itself generates MPF oscillations that (in comparison to the intact motif) are more rapid, more

sinusoidal, and of smaller amplitude (Figure 10c,d ), exactly as predicted by the model. Although

some might argue that the effects are subtle, they seem to have dramatic consequences for nuclei

in the two extracts. For the extract sporting an intact control system, the nuclei show synchronous,

periodic rounds of alternating DNA synthesis and mitosis, exactly as they should. For the extract

lacking the positive FBL and exhibiting less robust MPF oscillations, the nuclei are replicating

their DNA asynchronously and show no clear mitotic figures. Hence, the positive FBL seems to

be necessary for proper coordination of DNA synthesis and mitosis during cell cycles of the early

frog embryo.

Motif 15 also exhibits a behavior known as excitability, which has been used by Suel et al. (66)

to explain the competence network in bacteria. Motif 16, with a short positive FBL embedded

in a long positive FBL, may be evident in Figure 1 if we assume, along with Bagci et al. (40),

that caspase 3 can degrade BCL and thereby promote BAX activation. Laslo et al. (67) modeled a

hematopoietic cell-fate decision (neutrophil versus macrophage) with a mathematical model based

on Motif 16. Ciliberto et al. (68) used a mechanism similar to Motif 17 to model p53 oscillations.

In addition to the p53-Mdm2 negative FBL, they proposed a long, overlapping positive FBL:

p53 → PTEN ⊣ PIP3 → Akt → Mdm2 ⊣ p53. Although Motif 17 cannot oscillate (56), Ciliberto

et al.’s (68) mechanism shows robust oscillations because the negative FBL incorporates some time

delay due to Mdm2 phosphorylation and transport into the nucleus. Motif 18, with long and short

overlapping negative FBLs, is represented in Figure 1 in the IRAK-NFκB-SOCS3 axis. It is not

known what role, if any, the long negative FBL may play in generating NFκB oscillations.

Motif 19 is a powerful mechanism for generating bistability and oscillations. This motif plays

a major role in temporal organization of the eukaryotic cell cycle (32). Motif 20 is also evident

in Figure 1. For example, Cdh1 and CycB (X and Y) are coupled by mutual inhibition, and

Cdh1 promotes the degradation of CycA (Z), whereas CycB represses the production of CycA by

phosphorylating and inactivating E2F. The other version of this motif is exemplified by XIAP (X),

which inhibits both Casp9 (Y) and Casp3 (Z), two species coupled by a positive FBL. The dynamic

www.annualreviews.org • Reaction Network Motifs 235

A
n
n
u
. 
R

ev
. 
P

h
y
s.

 C
h
em

. 
2
0
1
0
.6

1
:2

1
9
-2

4
0
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.a
n
n
u
al

re
v
ie

w
s.

o
rg

b
y
 V

ir
g
in

ia
 T

ec
h
 U

n
iv

er
si

ty
 o

n
 0

1
/0

4
/1

2
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

.



0  20   40     60      80      100

120

100

80

60

40

20

0

M

MPF activity

Cyclin B

0          20         40          60         80        100      120

140

120

100

80

60

40

20

0

M
P

F
 a

ct
iv

it
y

Cyclin B

~6.6 fold

Relative time (peak 2 = 2.0) Relative time (peak 2 = 2.0)

0       1.0               2.0                       3.0 0                    1.0                  2.0                   3.0                  4.0

a b

c d

R
e

la
ti

v
e

 l
e

v
e

ls
(%

 o
f 

m
a

x
im

u
m

)

Time (min)

Cyclin B

MPF activity

M
P

F
 a

ct
iv

it
y

 (
a

.u
.)

M
P

F
 a

ct
iv

it
y

 (
a

.u
.)

Figure 10

MPF oscillations in frog-egg extracts. MPF is a dimer of CycB and Cdk1 and can be inactivated by phosphorylation of the Cdk1
subunit by Wee1, and activated by the removal of the phosphate group by Cdc25. (a) Cyclin B protein (red ) and MPF activity
(dark blue) are measured at 2-min intervals. (b) The data are plotted (parametrically in time) on the MPF-cyclin phase plane. The
trajectory traces out a limit cycle, exactly as predicted by Motif 15 in Table 2. (c) Same as panel a, except that the authors have pooled
the results of many experiments run for longer periods of time. (d ) Same as panel c, except that the positive feedback loop has been
weakened by supplementing the extract with a nonphosphorylable form of Cdk1. Data from Reference 65, used by permission.

consequences of such overlapping FFLs, called regulating feedback and regulated feedback by Alon

(3), have not been studied in any detail.

5. FUTURE DIRECTIONS

Real protein regulatory networks, such as that shown in Figure 1, are complex combinations of

the simple regulatory motifs classified in this review. Although the motifs seem to be exhibiting

their expected dynamical behaviors in many cases, it is not yet known to what extent the modular

functionality we have described can be used to understand the information processing of real

intracellular networks. The living cell is not a human-engineered system, built from carefully

designed components that hook together by standardized interfaces. In the living cell, there is likely

to be considerable interference (retroactivity) among the component modules (69). It remains to

be understood how complex cellular control functions can be accomplished by coupling together

functional modules that may be strongly interacting with each other.
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SUMMARY POINTS

1. The living cell is an information-processing system.

2. Information is processed by complex networks of interacting genes, proteins, and

metabolites.

3. These networks can be decomposed into small interaction motifs that carry out specific

information-processing functions.

4. The basic functions are signal transduction, homeostasis, noise suppression, logic gate,

adaptation, cock-and-fire, toggle switch, and oscillation.

5. Examples of all these basic motifs, functioning as expected, are found in the macromolec-

ular regulatory networks of living cells.

6. Understanding the functional motifs employed by cells will be crucial to future efforts

to predict and intervene in their decision-making capabilities.
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